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Abstract. In R3, one can construct polyhedral surfaces such that, for some point p not on the
surface, none of the vertices of the surface is visible from p. For a given compact surface K and a
point we study the relation between the set of partial-linear embeddings of K with hidden vertices
into R3 and the set of embeddings of K whose image is a smooth manifold with at least one principal
curvature pointing towards p at each point that is visible from p. In particular, we establish results
that suggest that elements of any of these spaces can be C0-approximated by elements of the other
one. Considering that these approximations may be extended to work parametrically, we conjecture
that the space of partial linear mappings with vertices hidden from a point p is weakly homotopy
equivalent to the space of mappings whose image has at least one principal curvature pointing
towards p at all visible points, endowed with the C0-topology.

1. Introduction

1.1. Motivation and results.

In R2, given a point p and a polygonal curve, one can always find a visible vertex, meaning, the
segment between the vertex and p does not intersect the curve elsewhere. Perhaps surprisingly,
this is no longer true when considering polyhedral surfaces in R3[1].

In the spirit of the h-principle, one may expect to find a natural obstruction to smooth surfaces
being pointwise-approximated by polyhedral surfaces with hidden vertices and establish necessary
and sufficient conditions for this to be possible. In section 2, we show that such an obstruction is
given by having two principal curvatures pointing away from p at a point with a neighborhood all
visible from p. We also establish that when this is not the case, the smooth surface can be at least
locally approximated by polyhedral surfaces with hidden vertices.

In section 3, we work in the opposite direction and given a polyhedral surface with hidden
vertices, we present a way to approximate it by a smooth surface with at least one principal
curvature pointing towards the observer at each point.

In section 4, we sketch a generalization of the construction from section 3 establishing the ap-
proximation in the parametric case. We also speculate on the strategy one is likely to follow to
prove that the constructed approximation establishes a weak homotopy equivalence between the
space of polyhedral surfaces in R3 with hidden vertices and the considered class of smooth surfaces
in R3.

1.2. Preliminary definitions.

We begin with a brief discussion of the objects we will be studying. Often we will assume without
loss of generality that the point p appearing below is the origin.
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We consider only compact smooth orientable 2-manifolds and smooth mappings of them into R3.
We always choose the coorientation of a surface S so that p lies on the region of R3 \ S to which
the negative normal vector points.

Definition 1.1. For a manifold K and an embedding f : K → R3 of it into R3, we say a point
x ∈ R3 is visible from p if the segment between p and the image of x lies completely in the closure
of one of the two components of R3 \ f(K). Otherwise, we say x is hidden from p. We say p is
well-visible if there is a neighborhood U around it all of whose points are visible.

Definition 1.2. Consider a PL-manifold K. We say that a partially linear embedding g : K → R3

is shy if there exists a point p ∈ R3 such that all 0-simplices v of the image P = g(K) are hidden
from p. When we need to specify the point p, we say that g (or its image P) is shy with respect to
p.

Definition 1.3. For a smooth connected compact surface S and a point p, we denote by Sp the
subset of points in S that are visible from p. We denote by S− the subset of points x of Sp that
have one or two negative principal curvatures when we choose the co-orientation of a chart around
x to be such that p is on the negative side of the surface (we will always use this co-orientation).
We say that a surface S is visibly non-convex from p (or of visible non-convexity) if Sp ⊆ S−.

Definition 1.4. We say an embedding g : L→ R3 is a C0-approximation of error ε of an embedding
f : K → R3 if there is a homeomorphism h : g(L)→ f(K) with ||h(x)−x|| < ε for all x. In addition,
we say f is C0-approximated by a family of mappings if for all ε > 0, the family contains mappings
that are C0-approximations of error ε of f .

Definition 1.5. An ε-perturbation of a manifold K is the image of a homeomorphism h such that
d(h(x), x) < ε for all x ∈ K.

2. Approximating visibly non-convex surfaces with shy PL-mappings

Our first result shows the importance of the property of visible non-convexity for C0-approximation
by shy PL-manifolds.

Theorem 2.1. Let f : K → R3 be a smooth embedding of a 2-manifold with image S and let
x ∈ f(K) be a well-visible point such that both principal curvatures at x are positive (with respect
to the agreed coorientation). Furthermore, assume p /∈ TxS. Then S cannot be C0-approximated
by shy PL-mappings.

Proof. Using the hypothesis of two positive principal curvatures, we can choose a connected neigh-
borhood U of x such that ∂U and p lie in different half-spaces of TxS. Well-visibility of x lets us
choose U such that all points in U are visible from p. Furthermore, choose U and ε′ > 0 such that,
if B(ε, ∂U) denotes all points at distance less than ε′ of ∂Ū , S \B(ε′, ∂U) consists of two connected
components such that the one which is a subset of U is visible from p for all 2ε′-perturbations of
the other component.

For the sake of contradiction, assume there is a C0-approximation of S of error ε by a shy
PL-mapping of image P with ε small enough so that:

• U \B(ε, ∂U) 6= ∅
• ε < 1

2 inf
u∈B(ε,∂U)∩S d(u, TxS), where d denotes signed Euclidean distance to the plane TxS,

with sign chosen so that d(p, TxS) < 0
• ε ≤ ε′

If the approximation is given by a homeomorphism h : P → S, define the set PU = h−1(Ū),
which has ∂PU = h−1(∂U). Now, consider y0 ∈ PU such that

d(y0, TxS) = sup
y∈PU

d(y, TxS).
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Since we are maximizing a continuous function over a polyhedron, we can assume y to be a vertex
or a point in the boundary. However, the latter cannot happen due to the second assumption in
the choice of ε. We claim that y is visible from p, thus P is not shy.

In fact, we have d(x, TxS) = 0, so d(y0, TxS) ≥ −ε (we are using signed distances with the
convention that coorientation is chosen so that the positive normal vector at x points to the region
of R3 \ S that p does not lie in) and thus y0 /∈ B(ε, ∂U):

• the choice of y0 ensures that no other point of PU lies on the segment [y0, p]
• the second condition on ε ensures that h−1(B(ε, ∂U)) has all its points at a distance greater

than ε of TxS, thus not affecting the visibility of y0

• the third condition on ε ensures that no point in h−1(S\(U∪B(ε, ∂U))) affects the visibility
of y0

Hence, the theorem is proven.
�

Remark 1. If we consider the weakened visibility hypothesis ”x is visible from p” and remove the
p /∈ TxS condition, we cannot longer use the local structure of positive curvatures around x to
outrule the existence of a C0-approximation by shy PL-mappings. Indeed, it is easy to construct a
surface for which there is a neighborhood U around x in which only x is visible, by creating other
three points x1, x2, x3, all in the segment [p, x] and such that ∩i=1,2,3TxiS is the line through p
and x. Then S can be approximated by PL-mappings that are shy in a neighborhood around x by
simply enforcing.

Furthermore, one can prove that surfaces of visible non-convexity can be locally approximated
by shy PL-mappings around generic points.

Theorem 2.2. For a smooth embedding of a compact surface f : K → R3 with image S of visible
non-convexity with respect to a point p /∈ f(K) and any x ∈ S such that p /∈ TxS, one can find
a neighborhood U around x such that Ū can be C0-approximated to arbitrary precision by a PL-
mapping of image P and whose only visible vertices lie on ∂P. Furthermore, the simplices with a
visible vertex can be assumed to be arbitrarily small.

Proof. Case 1: x is hidden.
In this case the claim is trivial as we can take a neighborhood U ⊂ S of x such that all of its

points are hidden and C0-approximate U by any PL-manifold.
Case 2: x is visible
First take a neighborhood U of x small enough so that the stereographic projection π : U → TxS

from p onto the plane TxS is injective. By the hypothesis of one negative curvature, for y ∈ U close
enough to x, there is a cone of directions Cy centered at π(y) such that the preimages of rays in
those directions have a negative normal curvature. It will however be better to interpret this cone
as a subset of S1, forgetting the center π(y). This cone varies continuously with respect to y, so
one can find a neighborhood V ⊆ U of x small enough so that CV = ∩y∈V Cy is a non-trivial cone
(i.e. contains an open set of S1). Consider any two directions in the same connected component of
CV ⊆ S1 and take two small vectors w1, w2 in these directions. Consider the lattice L spanned by
w1 and w2 on TxS.

Consider the sets of segments:

L1 = {[aw1 + bw2, (a+ 2)w1 + bw2] : a, b ∈ Z, a+ b ≡ 0(mod 2)}
L2 = {[aw1 + bw2, aw1 + (b+ 2)w2] : a, b ∈ Z, a+ b ≡ 1(mod 2)}

Define also L̃i as a set of segments with endpoints π−1(∂l) for any l ∈ Li. Then, by the
hypothesis of w1, w2 pointing in directions contained in CV , all points in U , in particular those in
π−1(L), have negative normal curvature in the directions tangent to π−1(wi). This implies that

all of (L̃1 ∪ L̃2) lies on the set of non-positive co-orientation with respect to S, with only the
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(a) Top-view of the approximation by a shy PL-
mapping, i.e., as it is seen from p

(b) Side-view of the approximation by a shy PL-
mapping

Figure 1. All vertices of the PL-mapping are vertices of at least one red or blue
triangle. All vertices of a red triangle are hidden by a blue triangle and vice-versa.
The red and blue triangles arise as the slightly widened faces around the subsets L1

and L2 of the lattice L as in the ensuing proof. Although these faces are rectangles
in the proof, each of which corresponds to two adjacent triangles in the pictures,
both procedures work–the latter is simply slightly better for the pictures. The green
faces fill the gaps in a well-established fashion to complete the PL-surface.

vertices lying on S itself. Now, each vertex in L1 lies inside a segment of L2 (e.g. aw1 + bw2 lies on

(aw1+(b−1)w2, aw1+(b+1)w2)), so each vertex of L̃1 (inside π−1(U)) is hidden by a segment of L̃2

(e.g. π−1(aw1 + bw2) is hidden by the interior of [π−1(aw1 + (b− 1)w2), π−1(aw1 + (b+ 1)w2)] ∈ L̃2

as all of this interior lies on the domain of negative co-orientation) and vice versa.

Finally, choose a small δ and replace each segment in L̃1 ∪ L̃2 by a rectangle of width δ in such
a way that adjacent segments are replaced by rectangles whose short sides are parallel and a slight
distance apart (much smaller than δ, say η), each segment becomes a middle line of the rectangle
replacing it, and the widths of the rectangles are perpendicular to the rays from p to the middle
line. This new structure has four vertices at a distance smaller than 1

2δ + η from each of those

in L̃1 ∪ L̃2, but now they are hidden (since the widths of a rectangle and the rectangle above it

are not parallel, as they come from different L̃i, we can choose η to be small enough so that the
upper rectangle, of width δ, covers the short side of the lower rectangle, also of width δ, even after
the displacement by η). The structure can be completed into a PL-manifold without adding new
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vertices, similar to Figure 1, and, if w1, w2 were chosen small enough, it will be a C0-approximation
of error ε of Ū with vertices only corresponding to points in δU .

�

Of course, one would like to be able to C0-approximate the whole of any surface of visible non-
concavity by a single shy PL-mapping. There are two obstacles in this direction: constructing the
local PL-mappings around points with p ∈ TxS and merging the local PL-mappings into a single
global one. We present two partial results regarding the first obstacle. First, notice that the set
{x ∈ S′|p ∈ TxS′} corresponds exactly to the singular points under a radial projection πS2 to the
unit sphere centered at p (x 7→ x

||x|| when p = 0). The following proposition shows there exists an

arbitrarily small perturbation S′ of S in which the set of singular values under this projection to a
field of view has a well-characterized structure. Secondly, we present a picture that explains some
intuition on how to construct a local PL-mapping around these points.

Proposition 2.3. For a smooth embedding f : K → R3 of visible non-convexity of a compact
surface K and any δ > 0, there exists an embedding g : K → R3 with image g(K) = S′ also
of visible non-convexity that satisfies ||g(y) − f(y)|| < δ for all y ∈ K and such that the set of
singularities of the projection onto a unit sphere centered at p is a 1-submanifold of S′ consisting
of only two types of points: ’fold’ and ’cusp’ points.

Proof. The existence of S′ relies on Whitney’s Singularity theory [2], which allows us to control
the singularities that appear when projecting a surface into a field of view from p. More precisely,
by translating p and the image of f , we can assume p = 0. Since p /∈ f(K), we can think of f
as a map into R3 \ {0} ' R≥0 × S2. Write f = fr × fθ for the corresponding radial and angular
component functions of f . Then fθ : K → S2 is a smooth map between compact surfaces, so
Whitney’s singularity theory asserts it can be C∞-approximated to arbitrary precision by a map
gθ with only two types of singularities (i.e. points where the differential does not have full rank),
which in addition form a 1-submanifold M ⊆ K:

• fold points: points in K such that local coordinates can be chosen in the domain and image
so that the point is the origin and the map is (x, y) 7→ (x2, y)
• cusp points: points in K such that local coordinates can be chosen in the domain and image

so that the point is the origin and the map is (x, y) 7→ (x3 + xy, y)

Now, dfx was assumed to have full rank for all x ∈ K and K was assumed to be compact, so there
exists a smooth function gθ sufficiently close (in C3(K,R3)) to fθ such that g = fr × gθ : K → R3

satisfies that:

• dgx is also full-rank for all x ∈ K
• g is injective
• the image of g is a surface of visible non-convexity. This is possible as the set S− of points

with negative curvature is open in S and contains the closed set Sp of points visible from p.
Then we can find an open S0 such that Sp ⊆ S0 and S̄0 ⊆ S− and request that only points
in S0 become visible under the perturbation and that, since the approximation is C3 close,
there remains at least one negative curvature at all points in the image of S0

The first two conditions ensure g is an embedding. Finally, notice that gθ = πS2 ◦ g is the
projection onto the unit sphere, so the singular points of gθ are precisely the desired 1-submanifold
of ’fold’ and ’cusp’ points.

�

Lastly, the following figure shows how to construct a shy PL-mapping that approximates S′

around a neighborhood of a cusp point or fold point, alas the construction has not been formalized.
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Figure 2. In the figure, the construction behaves similar to that of Theorem 2.2
away from the singular points. However, unlike the construction of Theorem 2.2,
along the fold points and single cusp point, the vertices of the red faces are covered
by the subsequent one, rather than by a blue face.

3. Approximating shy PL-mappings with visibly non-convex surfaces

Here we prove a sort of converse of the results of the previous section. The key idea of the proof
is to slightly push each face in the direction of positive co-orientation so as to make them visibly
non-convex, then smooth out the edges while preserving this property, and ultimately note that the
smoothing at the vertices allows a lot of flexibility since they are not visible, although a standard
procedure is not described.

Theorem 3.1. Consider a PL-embedding g : K → R3 with image P that is shy with respect to a
point p. Then there exist radii rv < Rv for each vertex v ∈ K such that:

• g|K\g−1(∪vB(v,rv)) can be C0-approximated by mappings whose images are surfaces of visible
non-convexity from p
• each of these surfaces intersects the boundaries of each of the B(v,Rv) transversally and

the intersection is diffeomorphic to a circle
• for each v, all points of B(v,Rv) are hidden from p with respect to the approximation

constructed

Remark 2. Ideally, the approximation would be done for the whole of g, in which case the theorem
would read ”any PL-embedding g of a compact surface can be C0-approximated by a smooth map
whose image is a surface of visible non-convexity”. This result follows from theorem 3.1 if one
assumes the intuitive claim that the image S of the approximation given by the theorem can be
’completed’ with smooth caps diffeomorphic to D2 that lie inside each B(v, rv) and glue smoothly
with S \ ∪vB(v, rv). Furthermore, for the purpose of section 4, it would be important that such
construction can be made to behave continuously for parametrized PL-embeddings.

Proof. Fix ε > 0 for which we will construct a C0-approximation with error ε.
The choices that follow are so that the sets Ne ∩ P (to be defined) intersect only in small

neighborhoods around the vertices of P all of whose points are hidden and such that the Ne vary
continuously under homotopies of PL-mappings of g.

For each vertex v let rv > 0 be the greatest positive number such that B(v, 2rv) ∩ P is hidden,
such that any other vertex is at a distance at least 3rv, and such that any point in the interior of
a face not incident to v is at a distance at least 2rv.
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For each edge e, consider the closed subsegment e∗ = e \ (B(v, rv) ∪ B(w, rw)) where v, w are
the vertices to which e is incident. Assign de > 0 to each edge such that

3de = min
x∈e∗,y∈f∗ 6=e∗

||x− y||

i.e. 3de is the minimum distance between e∗ and any other such truncated edge. In particular,
de < rv whenever v is incident to e.

Additionally, let 2ce be the minimum distance between e′ and any point that lies on a face other
than the two that intersect at e′.

Let δe = min(de, ce, ε). Including ε in the minimum is not necessary for this proof, but for the
purposes of Section 4, we require δe to decrease as ε does.

Write Ne for the intersection of the tubular neighborhood of radius δe around e and P. Let
P0 = P \ ∪eNe, i.e. a set resulting from removing an open neighborhood around the 1-skeleton of
P. The conditions above are chosen so that:

• δe, and therefore Nε, varies continuously when the embedding g does
• the choice of rv ensures the B(v, rv) are disjoint and that they do not intersect faces non-

incident to v
• the choice of de ensures that for non-adjacent edges e1, e2, it happens that Ne1 ∩Ne2 = ∅
• the choice of de also ensures that, for adjacent edges e1, e2 incident to a vertex v, it holds

that Ne1 ∩Ne2 ⊆ B(v, rv).
• the choice of ce ensures that if Ne intersects a face it is either a face that has e as an edge, or

it is a face incident to an endpoint v of e and in which case the intersection lies in B(v, rv)

In particular, the Ne pairwise intersect only in small non-visible disjoint neighborhoods around
the vertices. We thus see that for a face ∆ with edges e(∆) we have ∆ \ ∪e∈PNe = ∆ \ ∪e∈e(∆)Ne,
so in the construction of P0, at each face we have only removed a small tubular neighborhood of
each of its edges. Hence, P0 is a collection consisting of one non-empty proper open connected
subset of each face of P.

To construct a C0-approximation F : P → R3 of error ε, we first define it on P0, then around
the truncated edges e∗, and finally in the balls at the vertices B(v, rv).

For each face ∆ consider any point x0 ∈ ∆∩P0 and let n̂ be the normal unit vector to ∆ in the
positive coorientation. Let P be the plane on which ∆ lies and let r∆ = maxe an edge of ∆ re. For
x ∈ P define

f∆,δ,λ(x) = x+ (δ − λ||x− x0||2)n̂

where δ, λ are such that δ = supx∈B(∆,r∆)∩P λ||x−x0||2 = 1
100 min

(
ε, infy∈∆∩P0,z∈∆′,∆ 6=∆′ ||y − z||)

)
.

The image of this function on P is a paraboloid and in particular

||x− f∆,δ,λ(x)|| ≤ ε/100

for x ∈ B(r3). We define the C0-approximation on P0 to be

F |P0(x) = f∆x,δ,λ(x)

where ∆x is the face on which x lies. The choice of δ, λ ensures FP0 is injective and that it is a
C0-approximation of error ε.

Before proceeding with the construction, let’s show the following

Claim 3.2. At each point in the image of F |P0, both principal curvatures are negative.

Proof. Since each connected component of P0 is a subset of a plane and we can assume p = 0
without loss of generality, it suffices to show that if S is a plane not passing through the origin with
a normal vector n̂, orientation chosen so that n̂ is pointing to the positive side and d > 0, then
f∆,δ,λ(∆) has two negative curvatures at each point for any choices of x0 ∈ ∆ ⊆ S, δ > 0, λ > 0.
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Consider an orthonormal parametrization ψ of the plane that ∆ lies on with ψ(u, v) = x0+uŝ+vt̂
where {ŝ, t̂, n̂} is an orthonormal basis. Let φ = f∆,δ,λ ◦ψ|∆, a parametrization of the image of our
construction. We compute the coefficients of the first and second fundamental forms:

φu = ŝ− 2λun̂, φv = t̂− 2λvn̂

φuu = −2λn̂, φuv = 0, φvv = −2λn̂

E = 1 + 4λ2u2, F = 4λ2uv,G = 1 + 4λ2v2

e = −2λ, f = 0, g = −2λ

Hence the mean and Gaussian curvatures satisfy:

H =
eG− 2fF + gE

2(EG− F 2)
=
−2λ(2 + 4λ2(u2 + v2))

2(1 + 4λ2(u2 + v2))
< 0

K =
eg − f2

EG− F 2
=

4λ2

1 + 4λ2(u2 + v2)
> 0

and since H = 1
2(κ1 + κ2) and K = κ1κ2 where κ1, κ2 are the principal curvatures, we conclude

both of them are negative.
�

It then remains to construct F |∪eNe in such a way that F is smooth and that visible non-convexity
holds for its image.

We continue to define F around each edge. Namely, let πe be the orthogonal projection onto e
and let

V (e) = {x ∈ Ne : x /∈ B(v, rv) for any v}
We define F |V (e) for all e at this step.

For each edge, let ∆1, ∆2 be two faces of P with ∆1 ∩∆2 = e. Also, write ∆∗i = ∆i ∩P0. Define

a coordinate system with orthonormal basis t̂, ẑ, n̂ such that:

• (0, 0, 0) is the midpoint of e
• n̂ is orthogonal to e, bisects the angle between ∆2 and ∆2, and points towards the region

of positive coorientation
• ẑ lies on e
• t̂ is orthonormal to the previous two. Without loss of generality assume the direction of ẑ

was chosen so that we can choose t̂ such that simultaneously ẑ× t̂ = n̂ and ∆2 has positive
t-coordinate.

Let Pi be the plane containing ∆i. The functions f∆i,δ,λ : Pi → R3 define two paraboloids each
containing one of the F |P0(∆∗i ). We create an interpolation between these paraboloids to define
F (V (e)).

Let πi : Pi → Pzt be the projection from each Pi onto the z-t-plane, which is a diffeomorphism.
We write fi(z, t) = f∆i,δ,λ(π−1

i (z, t)) for convenience. Consider a smooth function g(z, t) : Pzt →
[0, 1] satisfying

• the value of g depends only on t, i.e. ∂g
∂z = 0

• g is decreasing as a function of t, i.e. ∂g
∂t ≤ 0

• g(z, t) = 1 for (z, t) ∈ π1(∆∗1) and g(z, t) = 0 for (z, t) ∈ π2(∆∗2)
• g(z, 0) = 1

2

• g(z, t) ∈ (0, 1) only if ||(z, t)− π−1
i (z, t)|| ≤ ε/100

In particular, the choice of g becomes unique if we impose that it must be the rescaling of of maximal
support that satisfies the conditions above of the function t 7→ 1

e exp(− 1
1−( t+1

2
)2 ) for −1 ≤ t < 1

and t 7→ 0 otherwise. Having a unique such choice is not important for the current proof, but will
be essential for the ensuing discussion.
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We define the interpolation between the paraboloids by

Ge(z, t) = g(z, t)f1(z, t) + (1− g(z, t))f2(z, t)

which is smooth as all the functions involved are smooth.
Let πzt be the projection onto the z-t-plane (so πi = πzt|Pi). Finally, for x ∈ ∆∗1 ∪ V (e) ∪∆∗2 we

define
F̃e(x) = Ge(πzt(x))

. This function agrees with the one for F on points in P0 as for x ∈ ∆∗1 we have g(πzt(x)) =
g(π1(x)) = 1 so

F̃e(x) = Ge(πzt(x)) = f1(πzt(x)) = f∆1,δ,λ(x) = F |P0(x)

and similarly on ∆∗2. Let P1 = ∪eV (e). Since the V (e) are disjoint, this allows us to extend F to

all of P0 ∪ P1 by setting F (x) = F̃e(x) for x ∈ V (e).
We furthermore show the

Claim 3.3. F |P0∪P1 is an embedding, a C0-approximation with error ε/10, and is visibly non-
concave.

We first show that no point in the current domain of F is displaced by more than ε. If x ∈ P0,
||x − F (x)|| < ε/100. If x ∈ P1 ∩ ∆1 \ P0 and ||π1(x) − x|| > ε/100, then g(x) ∈ {0, 1}, so
F (x) = f∆1,δ,λ(x), so ||x − F (x)|| < ε/100. If x ∈ P1 ∩ ∆1 \ P0 and ||π1(x) − x|| > ε/100, then
||x− f∆1,δ,λ(x)|| < ε/100 and

||x− f∆2,δ,λ(x)|| ≤ ||x− π1(x)||+ ||π1(x)− π−1
2 (π1(x))||+ ||π−1

2 (π1(x))− f∆2,δλ(π−1
2 (π1(x)))||

< ε/100 + ε/100 + ε/100 = 3ε/100

where the bound on the last term comes from the choice of λ and since π−1
2 (π1(x)) ∈ B(∆2, r∆2)∩P2.

Thus in this case

||x− F (x)|| ≤ ||x− f∆1,δ,λ(x)||+ ||x− f∆2,δ,λ(x)|| < 6ε/100

Hence, ||x− F |P0∪P1(x)|| < ε/10 for all x ∈ P0 ∪ P1.
We can now show F |P0∪P1 is an embedding. For injectivity, if two points y, y′ ∈ P0 ∪ P1

satisfied F (y) = F (y′) then the choice of λ and δ (which ensure that our construction displaces
points in distances that are much smaller than those between non-adjacent faces) and the inequality
||x− F |P0∪P1(x)|| < ε/10, imply that for any faces on which y and y′ lie must share an edge (this
statement includes the case in which y and y′ lie on the same face). Call the edge e and name
the faces adjacent to e as ∆1, ∆2 as in the construction of Ge. It suffices then to show that Ge is
injective. This follows from looking at transversal sections. Namely, for each value of z, let Wz be
the plane orthogonal to the z-axis at that value. Then for x ∈ Pzt we see

x ∈Wz ⇔ f∆i,δ,λ(π−1
i (x)) ∈Wz for i = 1, 2⇔ Ge(x) ∈Wz

, which in addition implies ∂
∂z 〈Ge(x), ẑ〉 = 1 for all x ∈ Pzt. We have

∂

∂t
Ge(z, t) = g(z, t)

∂

∂t
f1(z, t) + (1− g(z, t))

∂

∂t
f2(z, t) + (f1(z, t)− f2(z, t))

∂

∂t
g(z, t)

As λ → 0, we know ∂
∂tfi(z, t) →

∂
∂tπ
−1
i (z, t) and we also know 〈 ∂∂tπ

−1
i (z, t), t̂〉 = 1 and, in

particular, is independent of λ. On the other hand, as λ → 0, f1(z, t) − f2(z, t) → π−1
1 (z, t) −

π−1
2 (z, t), so 〈f1(z, t)− f2(z, t), t̂〉 → 0. Finally, since g(z, t) was chosen independently of λ, we see

that for λ→ 0, the equation above and the considerations in this paragraph imply〈
∂

∂t
Ge(z, t), t̂

〉
→ g(z, t) + (1− g(z, t)) = 1

which is a positive constant. Hence, if λ was chosen small enough, it holds that ∂
∂t〈Ge(x), t̂〉 > 0

for all x ∈ πzt(∆1 ∪∆2).
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Together with ∂
∂z 〈Ge(x), ẑ〉 = 1, this implies the injectivity of G, thus of FP0∪P1 .

Injectivity of the differential is then evident: we know from the previous paragraph ∂
∂z 〈Ge(x), ẑ〉 =

1, ∂
∂t〈Ge(x), ẑ〉 = 0 and ∂

∂t〈Ge(x), t̂〉 > 0. Hence dFx has rank two, so it is injective.
Finally, visible non-concavity has already been shown at points in F (P0). Although not all of

F (P1) is necessarily visible, we show that at all its points we have one negative principal curvature.
For x ∈ P1, consider the edge e such that x ∈ V (e) and without loss of generality assume {ẑ, t̂, n̂}
coordinates have been chosen so that x ∈ ∆1. Since the principal curvatures are the eigenvalues of
the second fundamental form, it suffices to show there is a curve on F (P0) such that the second
fundamental form evaluated on the tangent direction to the curve at x is negative. Consider the
image of a line in V (e) parallel to e. Such a line is (locally) parametrized as α(τ) = (z0 + τ, t0, n0)
where x = (z0, t0, n0). Let γ(τ) = F ◦ α(τ) and write c(τ) = (u(τ), v(τ)). We have

II(u′, v′) = 〈γ′′(τ),N〉
where N is the normal to the surface at x.
On the one hand, letting xi = (zi, ti, ni) be the point with respect to which f∆i,δ,λ was defined,

we have

f∆i,δ,λ ◦ α(τ) = x+ (δ − λ||(z0 + τ − zi, t0 − ti, n0 − ni)||2)n̂i

⇒ d

dτ
(f∆i,δ,λ ◦ α(τ)) = −2λ(τ + z0 − zi)n̂i

⇒ γ′(τ) = −2λg(τ)(τ + z0 − z1)n̂1 − 2λ(1− g(τ))(τ + z0 − z2)n̂2

(1) ⇒ γ′′(τ) = −2λ(g(τ)n̂1 + (1− g(τ))n̂2)

To estimate N, we consider that Ge : Pzt → R3 gives a parametrization of F (P0 ∪ P1) in
some neighborhood of x. For shorthand, write Gz = ∂

∂zGe(z, t) and Gt = ∂
∂zGe(z, t). Also, write

bi = ∂
∂tπ
−1
i (z, t) = t̂ + (−1)i+1hn̂, for some h ∈ R. As usual, as λ → 0, we have fi|πzt(∆1∪∆2) →

π−1
i |πzt(∆1∪∆2) uniformly as C∞ maps. In particular, we have convergence on the functions and on

their first derivatives. Hence, considering that g depends only on t so ∂
∂zg(z, t) = 0, we may write

Gz = (f1(z, t)− f2(z, t))
∂

∂z
g(z, t) + (g(z, t)

∂

∂z
f1(z, t) + (1− g(z, t))

∂

∂z
f2(z, t))

= (g(z, t)
∂

∂z
π−1

1 (z, t) + (1− g(z, t))
∂

∂z
π−1

2 (z, t)) + ε1(z, t)

= ẑ + ε1(z, t)

where ε1(z, t) is a small error vector that converges uniformly to 0 on πzt(∆1 ∪∆2) when λ→ 0.
Similarly

Gt = (f1(z, t)− f2(z, t))
∂

∂t
g(z, t) + (g(z, t)

∂

∂t
f1(z, t) + (1− g(z, t))

∂

∂t
f2(z, t))

= (π−1
1 (z, t)− π−1

2 (z, t))
∂

∂t
g(z, t) + (g(z, t)

∂

∂t
π−1

1 (z, t) + (1− g(z, t))
∂

∂t
π−1

2 (z, t)) + ε2(z, t)

= ρ
∂

∂t
g(z, t)n̂+ t̂+ (2g(z, t)− 1)hn̂+ ε2(z, t)

where ε2(z, t) is a small error vector that converges uniformly to 0 on πzt(∆1 ∪∆2) when λ→ 0
and ρ is the real number such that π−1

1 (z, t)− π−1
2 (z, t) = ρn̂.

Hence, for some scalar σ > 0, we have

σN = Gt ×Gz = n̂− (ρ
∂

∂t
g(z, t) + (2g(z, t)− 1)h)t̂+ ε3(z, t)

where ε3(z, t) is a small error vector that converges uniformly to 0 on πzt(∆1 ∪∆2) when λ→ 0.



APPROXIMATION OF SMOOTH SURFACES BY POLYHEDRAL SURFACES WITH HIDDEN VERTICES11

We know ni ·bi = 0 and that ni has positive n-coordinate, so ni = ξ((−1)iht̂+n̂) for ξ = 1√
h2+1

>

0. Thus

γ′′(τ) = −2λξ(n̂+ (1− 2g(z, t))ht̂)

Finally,

〈γ′′(τ),N〉 = −2λξ

σ
((1 + (1− 2g(z, t))2h2 − (1− 2g(z, t))hρ

∂

∂t
g(z, t)) + ε4(z, t)

where ε4(z, t) ∈ R and converges to 0 uniformly over πzt(∆1 ∪∆2) when δ → 0. Hence, assuming
δ was chosen to be small enough, as the terms other than ε4 do not depend on λ, we would obtain
〈γ′′(τ),N〉 < 0 if we show (1− 2g(z, t))hρ ∂∂tg(z, t) < 0.

Now, since we assumed x ∈ ∆1, we have t ≤ 0, so g(z, t) ≥ 1
2 which gives (1− 2g(z, t)) ≤ 0. We

also have by hypothesis ∂
∂tg(z, t) ≤ 0. Finally, there are three cases:

• If the internal angle at e is smaller than π, then h > 0 and ρ < 0
• If the internal angle at e is π, then h = ρ = 0
• If the internal angle at e is greater than π, then h < 0 and ρ > 0

Hence, in all cases it holds that (1− 2g(z, t))hρ ∂∂tg(z, t) ≤ 0, which implies that the curvature of
F |(P0∪P1) in the direction of γ is negative and completes the proof of the claim. �

To finish the proof of the theorem, we need to choose Rv appropriately. Since B(v, 2rv) is hidden
by P0 ∪P1, we know that given ε was small enough (for instance that ε-perturbation of P keeps all
of B(v, 3

2rv) hidden) and since rv is independent of ε, there is Rv slightly larger than rv such that
B(v,Rv) is hidden by any approximation of P0 ∪ P1 of error ε. We may take Rv = 1.1rv for well-
definedness. Furthermore, for λ = 0 and any radius rv ≤ r ≤ 2rv it holds that ∂B(v, r) ∩ P0 ∩ P1

is a transversal intersection homeomorphic to a circle. In particular, for r = Rv, the intersection
lies in the interior of P0 ∩ P1, so for small enough λ > 0, it holds that ∂B(v,Rv) ∩ F (P0 ∩ P1) is a
transversal intersection diffeomorphic to a circle, and we are done.

�

Notice that if we restrict to PL-embeddings with PL-structure given only by triangular faces
(always possible as all surfaces can be triangulated), we can choose x0 canonically as the center
of mass of each face. Then F |P0∪P1 as constructed in the proof is completely determined given a
choice of triangulation T of P, and of parameters ε and λ (that are small enough with respect to
the conditions outlined along the proof). For this reason, we write FT,ε,λ for the corresponding
map obtained from the construction with these parameters in what follows.

4. Behavior of the constructions for parametrized mappings

In this section we describe how the suggested extensions of the previous results may piece together
to establish a stronger relation between shy PL-embeddings of a surface and embeddings with
smooth image of visible non-convexity.

4.1. The space |ShyPL-K| of shy PL-mappings.

The ultimate purpose of the investigations has been to try to show that for any fixed compact
2-manifold K the space of its shy PL-embeddings into R3 (call this set ShyPL-K, but we do not
specify a topology as we will see some issues in choosing the right topological space to study)
is weakly homotopy equivalent to the space of its embeddings into R3 whose image is a surface
of visible non-convexity (call it VNC-K and consider the C0-topology on it). The usual way to
establish such a weak homotopy equivalence is by constructing a map between the two spaces and
showing that the induced maps in homotopy groups are injective and surjective. However, in the
present case, it is unclear that there could exist a generic map from ShyPL-K to VNC-K (or how
one could construct such a map explicitly). To resolve this, the intention is to define such a map
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by choosing an appropriate ε > 0 for each point in a space of mappings and defining the map at
such point to be one of the constructed C0-approximations of error ε in such a way that they vary
continuously.

In section 3 we partially achieve this, at least when we restrict to a given triangulation of K
as follows. First, for T a triangulation of K, we write ShyPL-KT ⊆ ShyPL-K for the subset of
mappings that are partial-linear with respect to T . The topology in ShyPL-KT we consider is the
C0 one, namely, the one induced by the metric d(f, f ′) =

∫
K ||f(x)− f ′(x)||. Now, choose a small

ε > 0 continuously for each f ∈ ShyPL-KT . Then the rv and Rv from the construction in section
3 are determined (and depend continuously on f).

Then, theorem 3.1 provides a construction of mappings arbitrarily C0-close to f . More precisely,
it proves there exists some Λ(f, ε) > 0 such that for any 0 < λ < Λ(f, ε), we can construct a map
FT,ε,λ : P \B(v, rv)→ R3 that is C0-close to the identity on P \B(v, rv). If, in addition we assume
as suggested by the remark next to theorem 3.1 that the construction can be canonically extended
to all of P, we would have a mapping Fλ : P → R3 such that F ◦ f is C0-close to f . Although
not proven, it seems the variation of Λ with respect to f and ε behaves in a way that may allow
us to choose λ in a continuous manner for each f ∈ ShyPL-KT . Then, we would have obtained a
well-defined continuous map from ShyPL-KT into VNC-K.

At this point it may be tempting to construct a map from ShyPL-K into VNC-K as follows: for
each f ∈ ShyPL-K, consider the coarsest triangulation T of K with respect to which f is partial-
linear and define the map from ShyPL-K to be that given by the map in ShyPL-KT . However,
there are two issues with this:

• the triangulations with respect to which f is partial-linear are only partially ordered, so
there may not be a single coarsest one
• this approach will not give a continuous map with respect to the C0-topologies on ShyPL-K

and VNC-K as the construction does not behave well when a new edge appears during a
folding of an initially flat face. Namely, if f and f ′ are partial linear with respect to T and
T ′, respectively, and the latter is a subtriangulation of the former, the obtained Fλ and F ′λ
in ShyPL-KT and ShyPL-KT ′ may not become C0-close when f and f ′ do regardless of the
choice of λ.

Both issues are related in that they arise from the fact that the construction in Theorem 3.1 is
not determined by f , ε and λ, but is heavily dependent on the triangulation of P.

Hence, if we are to use the construction in section 3 to study the relation between ShyPL-K and
VNC-K, we need to be careful on how to define the space of shy PL-mappings and its topology.
Namely, we consider the geometric realization of the simplicial set that assigns to each ordinal [n]
the set of chains (f, T1) → . . . → (f, Tn) where Tj is a subtriangulation of Ti whenever i ≤ j and
f is partial-linear with respect to all Ti. Abusing the notation for geometric realization, call this
space |ShyPL-K|. Geometrically, this creates a n-simplex for each chain (which is convenient as
although all points in the simplex correspond to the same embedding f , we can continuously vary
the image in VNC-K as we move along the simplex to account for the introduction of new edges)
and glues them together in a coherent manner (namely subchains of a longer chain appear as a
subsimplices of a larger simplex in |ShyPL-K|).

4.2. Construction of a continuous map F : |ShyPL-K| → VNC-K.

We now exploit this advantage of having points representing not only the partial linear map-
pings f , but also the partial linear structure that we are considering on it. Namely, we describe
how to construct a continuous map F : |ShyPL-K| → VNC-K assuming that the remark after the
statement of the theorem 3.1 has provided maps FT,ε,λ : ShyPL-K → VNC-K and that for each
triangulation T we have chosen continuous parameters εT (f) and λT (f) such that we have a con-
tinuous map FT : ShyPL-KT → VNC-K satisfying FT (f) = FT,εT (f),λT (f)(f). The key idea is that
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the introduced simplices let us interpolate between the maps at their vertices by first adjusting the
λ parameter, then the ε parameter to be small enough so that we can take linear combinations
of the approximations corresponding to various triangulations and, once they are small enough,
taking linear interpolations of these approximations. Geometrically what this does is shrink the
neighborhoods around the edges so that they do not interfere with each other across triangulations
and thus their linear combinations possess a direction of negative curvature. We describe such con-
struction recursively. However, we impose an additional condition: εTn(f) has been chosen small
enough so that for any Ti of which Tn is a subtriangulation and any edge e0 of Ti, the associated
neighborhood NTi(e0) around this edge as defined in the construction of Theorem 3.1 (if εTn(f) is
used instead of εTi(f)) does not intersect any of the neighborhoods NTn(e) as e ranges over the
edges e 6= e0 of Tn.

For each [x] ∈ |ShyPL-K| consider a pre-image x (under the map induced by the quotient
topology), a simplex ∆n to which x belongs and suppose it corresponds to the chain (f, T1) →
. . . → (f, Tn). Let x = (k1, . . . , kn) ∈ ∆n where the ki are the barycentric coordinates of x
with respect to the vertices x1, . . . , xn of ∆n. Let m be the largest index such that km 6= 0.
Then, we let F(x) =

∑m
i=1 tiFTi,ε,λ(f) where ti, ε, and λ are described below, assuming that for

x′ = ( k1
1−km , . . . ,

km−1

1−km , 0, . . . , 0) the corresponding parameters are ε′, λ′, t′i:

• If 1
2 ≤ km ≤ 1, we let, λ = λTm ε = εTm , ti = t′i(2−2km) for 1 ≤ i ≤ m−1, and tm = 2km−1

• If 1
4 ≤ km ≤

1
2 , let λ = λTm , ε = (4km − 1)εTm + (2− 4km)ε′, ti = t′i for 1 ≤ i ≤ m− 1, and

tm = 0
• If 0 ≤ km ≤ 1

4 , let λ = 4kmλTm + (1− 4km)λ′, ε = ε′, ti = t′i for 1 ≤ i ≤ m− 1, and tm = 0

It is then immediate that this definition is independent of the representative x of the class [x]
that we used, as various representatives only differ by having longer barycentric coordinates with
additional zeroes on the right.

Furthermore, the condition of visible non-convexity is easy to verify in this construction as the
resulting surface is a linear combination of visibly non-convex mappings such that set of points
that a linear combination is taken of, there is a fixed direction in which all of them have negative
curvature. More precisely, see that for each y ∈ K there is at most one edge e of Tn such that
f(y) ∈ NTi(e) for at least one index i for which this neighborhood is defined. Then, in all the
mappings FTi,ε,λ either the image of f(y) has negative curvatures in all directions or it has negative
curvature in the direction of FTi,ε,λ(γ(τ)) where γ(τ) is as described in Theorem 3.1.

4.3. Relation between parametric approximation and the conjectured weak homotopy
equivalence.

Lastly, we describe how one could expect to show that F is a weak homotopy equivalence between
|ShyPL-K| and VNC-K, i.e. show that F induces an isomorphism in homotopy groups, assuming
that surfaces of visible non-convexity can also be approximated by shy PL-mappings, not only for a
fixed mapping as suggested by Section 2, but parametrically, which allows one to define G below. In
the construction of F we could have specified any arbitrary precision ε > 0 so that ||F(f)−f ||C0 ≤ ε
for all f and we expect that for some appropriate choice of ε we could proceed as follows:

• Surjectivity: Given a spheroid S ⊆ VNC-K, we may find δ > 0 so that if G : S → ShyPL-K
is an approximation parametrized by S with ||G(f) − f ||C0 ≤ δ for all f ∈ S, we have
||F ◦ G(f) − f ||C0 ≤ 2ε for all f ∈ S (possible since S is compact). Although this only
ensures that S and F ◦ G(S) are C0-close, one could expect to construct a homotopy in
VNC-K between them by specifying a canonical procedure to ’unfold’ the more complex
G ◦ F(f) back into f while preserving visible non-convexity throughout.
• Injectivity: Given spheroids F(S1) and F(S2) in VNC-K and a homotopy H : Sn × I →

VNC-K between them, we want to specify δ > 0 and G as above so that ||G(ft)− ft||C0 ≤ δ
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for all ft ∈ H(Sn × I). Then, if one creates homotopies Hi for i = 1, 2 between G ◦ F(Si)
and Si (possibly by unfolding edges into the original PL-structure), one can compose the
homotopies H−1

1 , G(H), and H2 to create a homotopy between S1 and S2, which shows
injectivity.
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