
Robustness of SDPs for Partial Recovery of

Clustering Subgaussian Mixtures

UROP+ Final Paper, Summer 2016

Siqi Chen
Mentor: Amelia Perry

Project suggested by Ankur Moitra

August 2016

Abstract

In this paper, we examine the robustness of a relax-and-round k-means
clustering procedure, a method for clustering subgaussian mixtures using
semidefinite programming first introduced in [MVW16]. We are interested
in the robustness of the algorithm when there is an adversarial corruption
of εN points each through distance at most R0. We show that under
such corruption this specific algorithm well-approximates the center of
the subgaussians.

1

1 Introduction

GivenN points, k-means clustering aims to partition theseN observations into k
clusters in which each observation belongs to the cluster with the nearest mean,
or mathematically the objective is to minimize the sum of squared distances
between observations and their cluster means. The term “k-means” was first
used by James MacQueen [Mac67] in 1967, though the idea goes back to Hugo
Steinhaus in 1957. The standard algorithm was first proposed by Stuart Lloyd
[Llo82] in 1957, though it wasn’t published outside of Bell Labs until 1982. This
optimization problem is computationally hard to solve for an arbitrary set of
input points, but may remain tractable on average in distributional models,
such as gaussian or subgaussian mixtures.

So what happens when each of the unknown clusters is in some gaussian
probability distribution? And what are some of the constraints on these clusters
in order to have sufficient signal for successful approximation?

Dasgupta [Das99] introduced an algorithm based on random projections and
showed that this algorithm well-approximates centers of Gaussians as long as
the centers are well-separated. After that, performance guarantees for several
algorithmic alternatives have emerged, and every existing performance guaran-
tee either shows that the algorithm correctly clusters all points according to
Gaussian mixture component, or that it well-approximates the center of each
Gaussian.

Mixon, Villar and Ward [MVW16], however, looked at the problem when
each of these clusters is in some unknown subgaussian probability distribution.
They introduced a model-free relax-and-round algorithm for k-means clustering
based on a semidefinite relaxation due to Peng and Wei [PW07]; and adapting
the idea from Guédon and Vershynin [GV15] which proved the consistency of a
certain semidefinite program on detecting communities in the stochastic block
model from the following steps:

• the SDP gets the right answer with some reference objective (unknown to
the algorithm);

• if the actual objective is close to the reference objective (in some support
norm), then the solution is close to the actual solution;

• the hypothesis is satisfied: the actual objective is close to the reference
objective

[MVW16] provided a performance guarantee for the algorithm to well-approximate
the center of each subgaussian. Note that earlier work on SDPs for the stochas-
tic block model addressed exact clustering of all vertices [ABH16, HWX16], and
[GV15] was the first paper to prove that an SDP correctly clusters a large frac-
tion of vertices in a setting where exact recovery is impossible. This approach
of [GV15] is particularly well suited for proving partial recovery results.

Yet most real life situations may not have the exact k-means clustering
set-up, that is why we are interested in the robustness of the algorithm when

2

there are some corruptions of points. Inspired by how Moitra, Perry and Wein
[MPW16] described the robustness properties of Guédon and Vershynin analysis
in the original setting of the stochastic block model, we examine the key steps
of [MVW16] in Section 3, and with some characteristics of SDP as we prove in
Lemma 3.3, we show that the algorithm is robust when there is an adversarial
corruption of ε0N points, each through a distance at most R0.

2 Preliminary: The Mixon-Villar-Ward Frame-
work and Partial Recovery

The Mixon-Villar-Ward Framework develops the relax-and-round k-means clus-
tering procedure. It provides a performance guarantee for the algorithm that
well-approximates the center of each Gaussian. It consists of the following three
steps:

Step 1: Approximation. In this first step, [MVW16] adapts an approach
used by Guédon and Vershynin [GV15] to provide approximation guarantees for
the following semidefinite program under the stochastic block model for graph
clustering.

For each t ∈ [k] := {1, · · · , k}, let Dt be an unknown subgaussian probability
distribution over Rm, with first moment γt ∈ Rm and second moment matrix
with largest eigenvalue σ2

t . For each t, an unknown number nt of random points
{xt,i}i∈[nt] is drawn independently from Dt. Given k and points {xt,i}i∈[nt],t∈[k],
Peng and Wei [PW07] first introduced the following semidefinite program:

minimize Tr(DX)

subject to Tr(X) = k

X1 = 1

X ≥ 0, X � 0

where D denotes the N ×N matrix defined entry-wise by Dij = ‖xi−xj‖22. Let
XD denote the minimizer of the SDP, we would hope for XD to look like the
block matrix with 1/ni in the diagonal blocks and 0 in the off-diagonal blocks.

We now introduce some of the other notations we will be using in this paper:
Take ∆ab := ‖γa − γb‖2, and let the reference matrix R be defined as

(Rab)ij := ξ+∆2
ab/2+max{0,∆2

ab/2+2〈ra,i−rb,j , γa−γb〉}, where rt,i := xt,i−γt,
and ξ > 0 is a parameter. Denote XR as the minimizer of the SDP when D is
replaced by R. Then, as [MVW16] showed in Lemma 1:

If 1a ∈ RN denote the indicator function for the indices i corresponding to
points xi drawn from the ath subgaussian, and γa 6= γb whenever a 6= b, then
XR =

∑k
t=1(1/nt)1t1

T
t (the reference SDP recovers the truth).

Proposition 2.1. Fix ε, η > 0. There exist universal constants C, c1, c2, c3
such that if α = nmax/nmin . k . m and N > max{c1m, c2 log(2/η), log(c3/η)},

3

then
‖XD −XR‖2F ≤ ε

with probability at least 1 − 2η provided ∆2
min ≥

C

ε
k2ασ2

max, where ∆min =

mina6=b ‖γa − γb‖2 is the minimal cluster center separation.

The proof of Proposition 2.1 is shown in the proof of Theorem 2 in [MVW16].

Step 2: Denoising. Convert XD from Step 1 into an estimate for the centers
{γt}t∈[k].

Let P denote the m × N matrix whose (a, i)th column is xa,i. Then PXR

is an m×N matrix whose (a, i)th column is γ̃a, the centroid of the ath cluster,
which converges to γa as N →∞.

Proposition 2.2. Assume the points {xa,i}i∈[n] come from N (γa, σ
2Im) in Rm

for each a ∈ [k]. Then E[
1

N

∑k
a=1

∑n
i=1 ‖xa,i − γa‖22] = mσ2. Let ca,i denote

the (a, i)th column of PXD, if kσ . ∆min ≤ ∆max . Kσ, then

1

N

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 . K2σ2

with high probability as n→∞.

The proof of Proposition 2.2 is shown in Corollary 3, a corollary of a more
technical result (Theorem 11) in [MVW16].

Step 3: Rounding. Present a rounding scheme that provides a clustering of
the original data from the denoised results from Step 2. The cost of rounding
is a factor of k in the average squared deviation of the estimates.

3 Robustness of SDPs for Partial Recovery

We show that Mixon-Villar-Ward Framework performs well when one randomly
moves ε0N points, each through a distance at most R0. We will analyze the
first two steps presented in Mixon-Villar-Ward:

Step 1: Approximation. Let D′ be the N × N matrix defined entry-wise
by D′ij = ‖x′i − x′j‖22, where x′i corresponds to where xi is after we make ε0N

movements, each up to distance R0. Show that ‖X ′D −XR‖2F is small.

Theorem 3.1. Fix ε, η > 0. There exist universal constants C, c1, c2, c3 such
that if α = nmax/nmin . k . m and N > max{c21m, c2 log(2/η), log(c3/η)},
then

‖X ′D −XR‖2F ≤ ε

4

with probability ≥ 1− 2η provided ∆2
min ≥

C

ε
kα(ε0R0 + σ2

maxk), where ∆min =

mina6=b ‖γa − γb‖2 is the minimal cluster center separation.

The proof of Theorem 3.1 uses the two lemmas directly derived from [MVW16].

(1) ‖X ′D −XR‖2F ≤
5

nmin∆2
min

Tr(R(X ′D −XR)). [Lemma 8]

(2) Put D̃′ := P1⊥D
′P1⊥ and R̃ := P1⊥RP1⊥. Then Tr(R(X ′D − XR)) ≤

2F(D̃′ − R̃) [Lemma 9]

Here, F is a support norm introduced by [MVW16] as follows: Let F(M)
denote the value of the following program: F(M) = maximum |Tr(MX)|,
subject to Tr(X) = k, X1 = 1, X ≥ 0, X � 0 and let XM denote its
maximizer.

Since we aim to bound ‖X ′D − XR‖2F , we are going to show that F(D̃′ − R̃)
does not increase by too much when we make the adversarial changes.

Lemma 3.2. Triangular Inequality of F norm: F(A+B) ≤ F(A) + F(B)

Proof. F(A + B) = max |〈A + B,X〉| = |〈A + B,XA+B〉| ≤ |〈A,XA+B〉| +
|〈B,XA+B〉| ≤ |〈A,XA〉|+ |〈B,XB〉| = F(A) + F(B), where the first inequality
follows from triangular inequality of absolute value and the second inequality
follows from the definition of F norm.

Lemma 3.3. Given symmetric matrix A of size n× n where all entries except
the ith column and ith row are identical.

A =



a · · · a b a · · · a
...

. . .
...

...
...

. . .
...

a · · · a b a · · · a
b · · · b c b · · · b
a · · · a b a · · · a
...

. . .
...

...
...

. . .
...

a · · · a b a · · · a


Then there exists an n×n matrix XA such that XA is a maximizer for the SDP
that defines F(A), and

XA =



x y
. . .

...
x y

y · · · y z y · · · y
y x
...

. . .

y x


5

for some x, y, z with some w filling all empty entries. Here x ≤ 1; y ≤
1

n− 1
;

z ≤ 1; w ≤
1

n− 2
. We call matrix XA “in the form of xyzw”.

Proof. Let X0 be a maximizer for the SDP that defines F(A). Show that there
exists XA in the required form that also maximizes the SDP. The core idea of
the proof is that if two entries of X0, whose correspondents in XA are labeled the
same, (this can be separated into three cases: diagonal-diagonal, entry-entry,
ith-ith) have different values, find another matrix X1 such that it maximizes
the program and the average of these two maximizers produces the same value
on these two entries. Since the sum of two PSD matrices is also a PSD matrix,
the average of X0 and X1 is a maximizer for the program with same value on
those two entries. We look at entry values in the order of diagonal-diagonal,
diagonal-entry, ith-ith:

Diagonal-diagonal Suppose two of the diagonal entries xjj and xkk are dif-
ferent. X1 is generated by exchanging the two rows and then the two columns
(exchanging columns before rows works in the same way). Without loss of
generality, we show the case when j = 1, k = 2, j, k 6= i.

X0 =


x11 x12 x13 · · · x1n
x21 x22 x23 · · · x2n
x31 x32 x33 · · · x3n

...
...

...
. . .

...
xn1 xn2 xn3 · · · xnn

 =⇒ X1 =


x22 x21 x23 · · · x2n
x12 x11 x13 · · · x1n
x32 x31 x33 · · · x3n

...
...

...
. . .

...
xn2 xn1 xn3 · · · xnn


X1 is positive semi-definite: suppose for the purpose of contradiction that

there exists a vector u with entries u1, · · · , un such that uTX1u < 0, then let v
be the vector defined as

vt =


uk if t = j

uj if t = k

ut otherwise

Then vTX0v < 0, a contradiction to X0’s being positive semi-definite. Hence,
X1 is positive semi-definite.

As the operation does not change the sum of any row/column/diagonal, PSD
matrix X1 satisfies all the conditions listed in the SDP that defines F norm. By
symmetry of A and X1, |〈A,X1〉| = |〈A,X0〉|. Therefore, X1 also maximizes the

program, and the average of X0 and X1 has same value (
xjj + xkk

2
) on entry jj

and kk.

Entry-entry Now that entries on the diagonal except ii position have the
same value, suppose entry xjk and xpq has different value. We can separate the
program into (xjk, xjq) and (xjq, xpq) pair, where at least one of the pair has

6

different value. By symmetry of X0, we can simplify the entry-entry case into
the case where entries on the same column have different values, as in the case of
(xjq, xpq). Similar to the diagonal-diagonal case, X1 is generated by exchanging
these two rows and then the two corresponding columns (exchanging columns
before rows works in the same way). Without loss of generality, we show the
case when X21 and x31 have different values. (j = 2, p = 3, q = 1, j, k, q 6= i).

X0 =


x11 x12 x13 · · · x1n
x21 x22 x23 · · · x2n
x31 x32 x33 · · · x3n

...
...

...
. . .

...
xn1 xn2 xn3 · · · xnn

 =⇒ X1 =


x11 x13 x12 · · · x1n
x31 x33 x32 · · · x3n
x21 x23 x22 · · · x2n

...
...

...
. . .

...
xn1 xn3 xn2 · · · xnn


By same reasoning as in the first case, X1 also maximizes the program, and

the average of X0 and X1 has same value (
xjq + xpq

2
) on entry jq and pq.

Ith-ith Suppose entry xij and xki has different value. By symmetry of X0,
xji = xij 6= xki. Therefore, we can simplify the ith-ith case into the case
where entries on the ith column have different values, as in the case of (xji, xki).
Similarly, X1 is generated by exchanging these two rows and then the two cor-
responding columns. In this case, X1 maximizes the program, and the average

of X0 and X1 has same value (
xji + xki

2
) on entry ji and ki.

Therefore, given symmetric matrix A, there exists XA in the required form.
By definition of F(A), each row of XA sums up to 1 and all entries are non-
negative. Therefore, we have

{
x+ (n− 2)w + y ≤ 1

(n− 1)y + z ≤ 1
=⇒



x ≤ 1

y ≤
1

n− 1
z ≤ 1

w ≤
1

n− 2

Lemma 3.4. Of all the n points, label them 1 to n. If we move point i through
a distance of at most r, then F(D̃′ − D̃) ≤ 14r.

Proof. Let u be the vector defined entry-wise by uj = ‖D′ij−Dij‖22, then |uj | ≤ r
and D̃′ − D̃ = P1⊥(ueTi + eiu

T)P1⊥. Find vector v such that u = v + λ1 and
the average of entries of v is 0. Then |vj | ≤ 2r and P1⊥v = v. Since P1⊥1 = 0,
we have:

7

D̃′ − D̃ = P1⊥(ueTi + eiu
T)P1⊥

= P1⊥((v + λ1)eTi + ei(v + λ1)T)P1⊥

= P1⊥ve
T
i P1⊥ + P1⊥eiv

TP1⊥

= veTi P1⊥ + P1⊥eiv
T

= v(P1⊥ei)
T + (P1⊥ei)v

T

Note that (P1⊥ei)
T = (− 1

n , · · · ,−
1
n ,

n−1
n ,− 1

n , · · · ,−
1
n)T , then

|(D̃′ − D̃)jk| ≤

{
4r
n j, k 6= i

2r otherwise

As a result,

F(D̃′ − D̃) = max |〈D̃′ − D̃,X〉|
= max(max〈D̃′ − D̃,X〉, -min〈D̃′ − D̃,X〉)
≤ max(max〈(D̃′ − D̃)inc, X〉, -min〈(D̃′ − D̃)dec, X〉)

where (D̃′ − D̃)inc (alternatively, (D̃′ − D̃)dec) is entry-wise bigger (smaller)
than D̃′ − D̃,

(D̃′ − D̃)inc =



4r
n · · · 4r

n 2r 4r
n · · · 4r

n
...

. . .
...

...
...

. . .
...

4r
n · · · 4r

n 2r 4r
n · · · 4r

n
2r · · · 2r 2r 2r · · · 2r
4r
n · · · 4r

n 2r 4r
n · · · 4r

n
...

. . .
...

...
...

. . .
...

4r
n · · · 4r

n 2r 4r
n · · · 4r

n


and (D̃′− D̃)dec = −(D̃′− D̃)inc. The inequality follows as XD̃′−D̃ is entry-wise

non-negative, thus max〈D̃′−D̃,X〉 = 〈D̃′−D̃,XD̃′−D̃〉 ≤ 〈(D̃′−D̃)inc,XD̃′−D̃〉 ≤
〈(D̃′−D̃)inc,X(D̃′−D̃)inc〉 = max〈(D̃′−D̃)inc, X〉. Similarly, -min〈D̃′−D̃,X〉 ≤
-min〈(D̃′ − D̃)dec, X〉.

By Lemma 3.3, there exists an n× n matrix Xinc in the form of xywz such
that

F((D̃′ − D̃)inc) = 〈(D̃′ − D̃)inc, Xinc〉

= (n− 1)
4r

n
x+ 2(n− 1)2ry + 2rz + (n− 1)(n− 2)

4r

n
w

≤ 4r + 4r + 2r + 4r = 14r

As a result, max〈(D̃′ − D̃)inc, X〉 = F((D̃′ − D̃)inc) ≤ 14r. Similarly,
min〈(D̃′ − D̃)dec, X〉 ≥ −14r.

Therefore, F(D̃′ − D̃) ≤ 14r.

8

Proof of Theorem 3.1:
If we randomly move ε0N points, each up to distance R0, among a total of

N points,

F(D̃′ − R̃) ≤ F(D̃′ − D̃) + F(D̃ − R̃) (Lemma 3.2)

≤
∑
εN

F(each move) + F(D̃ − R̃) (Lemma 3.2)

≤ 14R0εN + F(D̃ − R̃) (Lemma 3.4)

Combining the proof of Theorem 2 in [MVW16], there exist constants C1,
C2, C3,c1, c2, c3 such that with probability at least 1− 2η:

‖XD′ −XR‖2F ≤
5

nmin∆2
min

Tr(R(XD′ −XR))

≤
10

nmin∆2
min

F(D̃′ − R̃)

≤
140R0εN

nmin∆2
min

+ C1

min{k,m}(
√
N + c1

√
m+

√
c2 log(2/η))2σ2

max

nmin∆2
min

+ C2

knmaxσ
2
max

nmin∆2
min

+ C3

√
N log c3/η

nmin∆2
min

If additionally we require N > max(c21m, c2 log(2/η), log(c3/η)), we get

‖XD′ −XR‖2F ≤ Ckα
(ε0R0 + σ2

max min{k,m})
∆2

min

≤ Ckα
(ε0R0 + σ2

maxk)

∆2
min

Rearranging gives the result stated in Theorem 3.1.

Step 2: Denoising. Let P ′ denote the m×N matrix whose (a, i)th column
is x′a,i, where x′a,i corresponds to where xa,i is after we make ε0N movements,
each up to distance R0. Then P ′X ′D is an m × N matrix whose columns are
estimates for the centers of clusters. We show that these estimated centers are
close to the centroids of clusters.

Theorem 3.5. Let c′a,i, γ̃a respectively denote the (a, i)th column of P ′X ′D and
PXR, then

1

N

k∑
a=1

n∑
i=1

‖c′a,i − γ̃a‖22 . (R0ε0 +
‖Γ‖22→2

k
)k

(ε0R0 + σ2
maxk)

∆2
min

with high probability as n→∞. Here, Γ is the “shape matrix” whose ath column
is γ̃a − 1

k

∑k
b=1 γ̃b.

For comparison, E[
1

N

∑k
a=1

∑n
i=1 ‖xa,i − γa‖22] = mσ2, meaning the c′a,i serves

as “denoised” versions of the xa,i provided that ‖Γ‖2→2 and R0 are not too
large compared to ∆min, and that σmax is not too large compared to σ.

9

Proof. By triangular inequality of Frobenius norm, we have:

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 = ‖P ′X ′D − PXR‖2F

≤ (‖P ′X ′D − PX ′D‖F + ‖PX ′D − PXR‖F)2

We will introduce our own argument for bounding the first term, and for the
second term we will follow the argument of Theorem 11 in [MVW16].

Using some matrix norm inequalities, we derive:

‖P ′X ′D − PX ′D‖F = ‖X ′D(P ′ − P)T ‖F ≤ ‖X ′D‖2→2‖P ′ − P‖F
≤ (‖X ′D −XR‖2→2 + ‖XR‖2→2)

√
R0ε0N

≤ (‖X ′D −XR‖F + 1)
√
R0ε0N

For ‖PX ′D−PXR‖F , Section 4: Denoising in [MVW16] specialized to spher-
ical gaussians, because they used a matrix concentration result for spherical
gaussians from Vershynin [Ver12]. By instead using the matrix concentration
result from Vershynin’s Remark 5.40, we are able to present results in higher
generality than the original paper:

Assume each subgaussian has the same number n of samples, then the result
from Step 1: Approximation can be simplified into:

‖X ′D −XR‖2F ≤ Ck
(ε0R0 + σ2

maxk)

∆2
min

Following the same idea in [MVW16], without loss of generality, we assume∑k
a=1 γ̃a = 0. Then,

‖PX ′D − PXR‖F ≤ ‖P‖2→2‖X ′D −XR‖F

Decompose P = Γ ⊗ 1T + G, where columns of G are independent random
subgaussian vectors in Rm with second moment matrix Σ. From [MVW16],

‖Γ⊗ 1T ‖22→2 = n‖Γ‖22→2 ≥ ∆2
min/2

and for every t ≥ 0, Remark 5.40 in [Ver12] gives that

‖G‖22→2 = ‖GTG‖2→2 ≤ N(‖ 1

N
GTG− Σ‖2→2 + ‖Σ‖2→2)

≤ N(max(δ, δ2) + σ2
max)

with probability at least 1− 2e−ct
2

for some c, and δ = C

√
m

N
+

t

N
. Therefore,

when N � m, ‖G‖22→2 . Nσ2
max. Estimate ‖P‖2→2 from triangular inequality,

assuming ∆2
min ≥

C

ε
kα(ε0R0 + σ2

maxk) as stated in Theorem 3.1,

‖P‖2→2 .

√
N

k
‖Γ‖2→2 =⇒ ‖PX ′D − PXR‖F .

√
N

k
‖Γ‖2→2‖X ′D −XR‖F

10

Combining the two terms, we derive

k∑
a=1

n∑
i=1

‖ca,i − γ̃a‖22 ≤ (‖P ′X ′D − PX ′D‖F + ‖PX ′D − PXR‖F)2

. R0ε0N‖X ′D −XR‖2F +
N

k
‖Γ‖22→2‖X ′D −XR‖2F

. (R0ε0N +
N

k
‖Γ‖22→2)k

(ε0R0 + σ2
maxk)

∆2
min

Divide both sides by N gives the result as stated in Theorem 3.5.

4 Conclusion and Future Research

In this paper, we examined the robustness of semi-definite programs for partial
recovery by showing that the estimate centers are close to the theoretical cen-
troids under the relax-and-round k-means clustering procedure first introduced
in [MVW16]. For future research, we would find a way to measure accuracy
and look at how well the procedure works when we move up to ε0N points, and
we could possibly apply the method on some actual data sets to see how well it
recovers the centers.

Acknowledgements

I would like to thank Amelia Perry for mentoring the project and for all the
help and guidance. I would like to thank Prof. Ankur Moitra for supervising
this project. Finally, I would like to thank the MIT Math Department and the
UROP+ program for making this project possible.

References

[ABH16] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact re-
covery in the stochastic block model. IEEE Transactions on Infor-
mation Theory, 62(1):471–487, 2016.

[Das99] S. Dasgupta. Learning mixtures of gaussians. In Foundations of
Computer Science, 1999. 40th Annual Symposium on, pages 634–
644, 1999.

[GV15] Olivier Guédon and Roman Vershynin. Community detection in
sparse networks via Grothendieck’s inequality. Probability Theory
and Related Fields, pages 1–25, 2015.

[HWX16] Bruce Hajek, Yihong Wu, and Jiaming Xu. Achieving exact cluster
recovery threshold via semidefinite programming. IEEE Transactions
on Information Theory, 62(5):2788–2797, 2016.

11

[Llo82] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129–137, Mar 1982.

[Mac67] J. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of the Fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Volume 1: Statis-
tics, pages 281–297, Berkeley, Calif., 1967. University of California
Press.

[MPW16] Ankur Moitra, William Perry, and Alexander S Wein. How robust
are reconstruction thresholds for community detection? In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, pages 828–841. ACM, 2016.

[MVW16] Dustin G Mixon, Soledad Villar, and Rachel Ward. Clustering
subgaussian mixtures by semidefinite programming. arXiv preprint
arXiv:1602.06612, 2016.

[PW07] Jiming Peng and Yu Wei. Approximating k-means-type cluster-
ing via semidefinite programming. SIAM Journal on Optimization,
18(1):186–205, 2007.

[Ver12] Roman Vershynin. Introduction to the non-asymptotic analysis of
random matrices. In Yonina C. Eldar and Gitta Kutyniok, editors,
Compressed Sensing, chapter 5, pages 210–268. Cambridge Univer-
sity Press, Cambridge, 2012.

12

