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1. Introduction

1.1. Analytic Langlands correspondence. In [1, 3, 2], an analytic version of the Langlands correspon-
dence was formulated for curves over local fields. The general setup, which we recount just for completeness,
is as follows. Let X be a smooth projective irreducible curve over a local field F , let G be a connected
simple algebraic group over F , and let B be its Borel subgroup. Let S be a finite set of F -points in X.
By BunG(X,S) we denote the the algebraic stack of G-bundles E on X with reduction to B on E|S . On
the spectral side, one considers a Hilbert space H of, roughly, square-integrable half-densities on the open
dense substack of stable bundles in BunG(X,S); in [3], a commutative algebra of Hecke operators were
constructed, initially only on a dense subspace of H, but are conjectured to extend by continuity to compact
normal operators on H. On the “arithmetic” side, at least in the case F = C, it is conjectured that the joint
spectrum of Hecke operators should correspond to the set of LG-opers with real monodromy, where LG is
the Langlands dual group of G.

In [2], this recipe was implemented for G = PGL2, X = P1, and S a set of distinct F -points t0, . . . , tm+1

in X, where m ≥ 1 (a necessary condition). Let us suppose F = C, which will be relevant to us, but most
of the discussion holds for a general local field, archimedean or not. In this case, a G-bundle with parabolic
reduction is simply a rank 2 vector bundle, up to tensoring by line bundles, with distinguished dimension 1
subspaces in the fibers above the marked points t0, . . . , tm+1. Such bundles are called quasiparabolic bundles.
In this case, the moduli stack of stable quasiparabolic bundles is known to be a smooth, quasiprojective
variety, and is the union of two connected components, bundles of degree 0 and 1, respectively. There are
isomorphisms identifying the two components, given by Hecke modification at any of the marked points;
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so it suffices to consider the degree 0 component Bun0G. This space could be parametrized birationally by
Pm−1 ([2], lemma 3.1): by fixing the lines above t0 = 0 and tm+1 = ∞, a generic quasiparabolic bundle is
uniquely given by m complex numbers, each specifying the line above t1, . . . , tm, up to simultaneous scaling.
Therefore, H = L2(Bun0G) = L2(Pm−1

C ) is simply the space of square-integrable half-densities on Pm−1

(sections of |K|, where K = O(−m) is the canonical bundle). An element ψ ∈ H can therefore be realized as
a complex-valued function ψ(y1, . . . , ym) on Cm\{0}, such that ψ(zy) = |z|−mψ(y) for any z ∈ C×.

Under this parametrization, the Hecke operators take the following explicit form. For each x ∈ C\{ti},
the Hecke operator Hx is given by

(1.1) (Hxψ)(y1, . . . , ym) =

!
m"

i=0

|ti − x|
#

·
$

C
ψ

%
t1s− xy1
s− y1

, · · · , tms− xym
s− ym

&
|s|m−2dsds'm
i=1 |s− yi|2

.

It is shown in [2], section 3 that Hx indeed extend to compact, self-adjoint, mutually commuting operators
on H, with zero common kernel. Importantly, this relies on the fact that Hx is given by integrating certain
unitary operators Us,x over s ∈ C.

On the other hand, there are certain commuting global holomorphic differential operators on H, in this
case Gaudin operators Gi (0 ≤ i ≤ m), which also act on H. The key insight is that although these Gi are
unbounded operators, they commute with Hx in a certain well-defined sense, so that we get a good spectral
problem for both Hecke and differential operators (since Hecke operators are compact self-adjoint). In this
case (PGL2 and P1 over C), the joint eigenvalues βk(x) (real-valued and continuous in x, labeled by k ∈ N)
satisfy a differential equation ([2], corollary 4.14):

(1.2)

!
∂2
x +

1

4

m(

i=0

1

(x− ti)2
−

m(

i=0

µi,k

x− ti

#
βk(x) = 0,

which is an SL2(C)-oper (i.e. no ∂x term); SL2 is Langlands dual to PGL2. Here µi,k ∈ C are eigenvalues
of Gi on the eigenfunction ψk corresponding to βk (in particular it is shown that the joint spectrum of
Hx is simple). Moreover, the monodromy representation of such a differential equation (where µi,k are
now variables in C) lands in SL2(R) up to conjugation if (and, partially, only if) they come from a joint
eigenfunction of Hecke operators ([2], theorem 4.15), thus establishing analytic Langlands correspondence.

1.2. Summary of our paper. In this paper we investigate what happens when we collide several points
among ti, i.e. when S is no longer a reduced divisor. For example, suppose we merge only t0 and t1. One
obvious way of obtaining a limit of Hecke operators is to simply set t0 = t1 in eq. (1.1); this corresponds
to choosing two lines in the fiber of the quasiparabolic bundle above the closed point t0 = t1. However, the
resulting Hecke operators will have no eigenvectors.

Instead, we should make t0 = t1 a non-reduced point, in this case a C[ε]/(ε2)-point. A generic line in its
fiber is given by (1, u0 + u1ε), so that in eq. (1.1) one should change variables y0, y1 by u0 = y0, u1 = y1−y0

t1−t0
.

In order to have a well-defined limit as t1 → t0, we should also use a twisted version of Hecke operators,
whose twisting parameters are sent to infinity in an appropriate way.

We carry this out in section 2, giving us limits of Hecke operators Hx that are again given by integrating
some unitary representation Us,x over s ∈ C (proposition 2.4). Moreover, we show that these Hx extend to
bounded, compact, self-adjoint, and mutually commuting operators on H, with zero common kernel, and
therefore they have a joint discrete spectrum (corollary 2.10). In other words, we recover the main properties
of Hecke operators required for establishing analytic Langlands correspondence in our case.

In section 3 we consider limits of differential operators Gi. To get a well-defined limit, we should also
use their twisted counterparts, with twisting parameters sent to infinity. We show that just like the original
tamely ramified case, the limits of Hecke operators satisfy a differential equation together with limits of
Gaudin operators (theorem 3.1), and their joint eigenvalues βk(x) satisfy a differential equation similar to
eq. (1.2). However, the important difference is that this equation will no longer have regular singularities
at ti, but also irregular singularities at the merged points (wild ramification). So the condition of real
monodromy is not enough, and there should be a condition on the Stokes data or asymptotic expansion of
solutions at irregular singularities. This is currently under investigation.
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2. Limits of Hecke operators

2.1. Twisted Hecke operators. Let t0, . . . , tm+1 ∈ P1
C be closed points. Without loss of generality, let us

fix tm+1 = ∞. Let x ∈ P1
C, x ∕= ti,∞. Let λ = (λ0, . . . ,λm+1) be twisting parameters, which are purely

imaginary.
For any purely imaginary number c, let Hc = L2(Pm−1

C , |K|1+c), whose elements we view as complex-
valued functions ψ(y1, . . . , ym) on Cm\{0}, homogeneous of degree −m(1 + c). They may also be viewed
as functions ψ(y0, y1, . . . , ym) which are both translation-invariant and homogeneous of degree −m(1 + c),
where geometrically yi parametrize the quasiparabolic lines above ti; this interpretation has more symmetry
and makes formulas nicer. Let H := H0.

The twisted Hecke operators Hλ
x are given by

(2.1) (Hλ
xψ)(y0, . . . , ym) =

!
m"

i=0

|ti − x|
#

·
$

C
ψ

%
t0 − x

s− y0
, · · · , tm − x

s− ym

&
dsds'm

i=0 |s− yi|2(1+λi)
.

It is easy to check that Hλ
x is a linear map which maps functions homogeneous of degree −m(1 + λm+1) to

functions homogeneous of degree −m(1 + 2
m (

)m
i=0 λi) − λm+1). We will limit ourselves to the case when

λm+1 = 0 and
)m

i=0 λi = 0, so that functions in the domain and codomain of Hλ
x have the same homogeneity

degree −m.
If we omit the constant term

'
|ti − x| in eq. (2.1), the formula gives so-called modified Hecke operators,

denoted by Hλ
x.

2.2. The formula. Suppose we wish to merge points t0, . . . , tn, where n ≤ m. For simplicity, we let the
other points remain distinct, but one can merge more than one group of points by the same procedure. For
0 ≤ i ≤ n, take twisting parameters

(2.2) λi =
a'

0≤k≤n
k ∕=i

(ti − tk)
,

and set the rest to 0, where a is imaginary. In the limiting process, we will make ti − ti−1 (1 ≤ i ≤ n) all
equal, real numbers δ, as we take the limit δ → 0.

We will reparametrize (y0, . . . , yn) by new variables (u0, . . . , un), where

(2.3) ui =
(

0≤j≤i

yj'
0≤k≤i
k ∕=j

(tj − tk)
.

In fact, define variables ui,j , 0 ≤ j ≤ i ≤ n recursively, as follows: ui,0 = yi, ui,j =
ui,j−1−ui−1,j−1

ti−ti−j
. Then

it is easy to see ui = ui,i. We also let ui = yi for n + 1 ≤ i ≤ m for simplicity. Note that now an
element ψ = ψ(u0, . . . , um) ∈ H will still be homogeneous of degree −m, but translation invariant only in
the variables u0, un+1, . . . , um while u1, . . . , un remain fixed.

Definition 2.1. Consider the field C(s, x, t0, ui,j) generated formally by these symbols. Define a derivation
∂ on this field, defined by ∂s = ∂x = 0, ∂t0 = 1, and ∂ui,j = (j + 1)ui+1,j+1.

Proposition 2.2. The limit Hx of the modified Hecke operator Hλ
x, as δ → 0, is given by

(Hxψ)(u0, . . . , um)

=

$

C
ψ

%
t0 − x

s− u0
, ∂

%
t0 − x

s− u0

&
, . . . ,

1

n!
∂n

%
t0 − x

s− u0

&
,
tn+1 − x

s− un+1
, . . .

&
exp(− 2a

n!Re ∂
n log(s− u0))dsds

|s− u0|2n+2
'm

k=n+1 |s− uk|2
.

Proof. Let us show that the limit of the term |s − u0|2λ0 · · · |s − un|2λn is exp( 2an!Re ∂
n log(s − u0)). Use

induction on n. The base case n = 0 is clear. In general, we have for 0 < i < n,

λi =
a'

0≤k ∕=i≤n(ti − tk)
=

1

tn − t0

!
a'

0<k ∕=i≤n(ti − tk)
− a'

0≤k ∕=i<n(ti − tk)

#
,
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so

(2.4)

n"

i=0

|s− ui|2λi =

! 'n
i=1 |s− ui|2λi,[1,n]

'n−1
i=0 |s− ui|2λi,[0,n−1]

# 1
tn−t0

,

where λi,[0,n−1] =
a!

0≤k ∕=i≤n−1(ti−tk)
and λi,[1,n] =

a!
1≤k ∕=i≤n(ti−tk)

. By induction hypothesis, the limit of the

RHS of eq. (2.4) as δ → 0 is

lim
δ→0

exp

%
2a

(n− 1)!
Re ∂n−1 1

nδ
(log(s− u1,0)− log(s− u0,0))

&
= exp

%
2a

n!
Re ∂n log(s− u0)

&
,

by using u1,0 = u0,0 + δu1,1.
Let us also consider the terms ti−x

s−ui
. Use induction on n again. The base case n = 0 is clear. The

induction step is given by

lim
δ→0

1

(n− 1)!
∂n−1 1

nδ

%
t1 − x

s− u1,0
− t0 − x

s− u0,0

&
=

1

n!
∂n

%
t0 − x

s− u0

&
,

where we used t1 = t0 + δ and u1,0 = u0,0 + δu1,1. □

2.3. Non-reduced point with parabolic structure. Write C[ε] = C[ε]/(εn+1). As mentioned in the
introduction, let us consider a C[ε]-point t0 on P1 with parabolic structure, i.e. there is a chosen rank-1 free
C[ε]-submodule of C[ε]⊕2, the fiber of the quasiparabolic bundle O⊕2 above t0. Generically, say it is the line
spanned by (1,

)n
k=0 ukε

k).
Let x ∕= t0 be a closed point, and s a line in the fiber above x. After Hecke modification at (x, s) (and

rewriting in terms of the original parametrization, see [2], sections 3.1, 3.2), the line (1,
)n

k=0 ukε
k) becomes

!
n(

k=0

ukε
k − s, t0 − x+ ε

#
.

This is the same line as (1,−
)n

k=0
1
k!∂

k( t0−x
s−u0

)εk), by part (a) of the following:

Proposition 2.3. We have the following identities:

(a) t0 − x+ ε =
*)n

k=0
1
k!∂

k( t0−x
s−u0

)εk
+ ,

s−
)n

k=0 ukε
k
-
;

(b) 1
n!∂

n(log(s− u0)) = [εn] log(s−
)n

k=0 ukε
k).

Proof. For any X ∈ C(s, x, t0, ui,j), consider its Taylor series T (X) =
)n

k=0
1
k!∂

k(X)εk. It is easily checked
by direct calculation that T (X1X2) = T (X1)T (X2) and T (log(C − X)) = log(T (C − X)), for any C such
that ∂C = 0. Part (a) is simply

T (t0 − x) = T

%
t0 − x

s− u0

&
T (s− u0).

Part (b) follows from T (log(s− u0)) = log(T (s− u0)). □

2.4. The unitary representation. LetHx = (
'm

i=0 |ti − x|)Hx. We will now show thatHx =
.
C Us,xdν(s),

where Us,x are certain unitary operators on H = L2(Pm−1
C ) and ν is some measure on C.

To do this, we first get rid of translation and dilation invariance. Suppose for simplicity n ≤ m−2 so that
we do not have to fix the glued point, though in general we still expect the conclusions of this subsection
to hold. Set the unglued points um−1 = tm−1 = 0 and um = tm = 1. A short computation gives that the
resulting modified Hecke operator is

(Hxψ)(u0, . . . , um−2) =

$

C
ψ

%
s(s− 1)

s− x

%
x

s
+

t0 − x

s− u0
, ∂

%
t0 − x

s− u0

&
, . . . ,

1

n!
∂n

%
t0 − x

s− u0

&
,
x

s
+

tn+1 − x

s− un+1
, . . .

&&

·
|s(s− 1)|m−2 exp(− 2a

n!Re ∂
n log(s− u0))dsds

|s− x|m|s− u0|2n+2
'm−2

k=n+1 |s− uk|2
.

The unitary operators Us,x will be given by the action of a group element

gs,x = (gs,x,0, gs,x,n+1, . . . , gs,x,m−2) ∈ PGL2(C[ε])× PGL2(C)m−n−2.
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For the coordinates un+1, . . . , um−2 parametrizing closed points, each individual action of PGL2(C) on
L2(C) is just the principal series representation

%
a b
c d

&
f(z) =

|ad− bc|
|cz + d|2 f

%
az + b

cz + d

&
.

We now describe the action of PGL2(C[ε]) for the coordinates u0, . . . , un parametrizing the fiber above
the non-reduced point. The group PGL2(C[ε]) acts naturally on P1(C[ε]) by

%
a b
c d

&−1

(z) =
az + b

cz + d
.

Suppose we identify z = u0 + · · ·+ unε
n with (u0, . . . , un) ∈ Cn+1, with the usual measure. Let us define a

unitary representation of PGL2(C[ε]) on L2(Cn+1), by

gf(z) = f(g−1z) ·
////

det g0
(c0u0 + d0)2

////
n+1

· exp(−2aRe ([εn] log(cz + d))),

where g =

%
a b
c d

&
, and g0 =

%
a0 b0
c0 d0

&
is the constant part of g.

Then, using proposition 2.3, it is easy to check the following:

Proposition 2.4. We have Hx =
.
C Us,xdν(s), where Us,x is the unitary operator given by the action of the

group element gs,x = (gs,x,0, gs,x,n+1, . . . , gs,x,m−2), where

gs,x,0 =

%
−(s− 1)x (t0 + ε)s(s− 1)
−(s− x) s(s− x)

&
, gs,x,k =

%
−(s− 1)x tks(s− 1)
−(s− x) s(s− x)

&

for n+ 1 ≤ k ≤ m− 2, and ν(s) = | x(x−1)
s(s−1)(s−x) |dsds. □

2.5. Boundedness. Initially, the Hecke operators are only partially defined. Let V ⊂ H be the (dense)
subset of continuous functions ψ, translation-invariant and homogeneous of degree −m. Let U ⊂ Cm+1 be
the subset of points where no two coordinates are equal to each other.

Proposition 2.5. For ψ ∈ V , the integral (Hxψ)(u0, . . . , um) converges and is continuous on U , and can
be extended to an element of H.

Proof. We have to first show the integral converges, i.e. to check the behavior of the formula in proposition 2.2
at s = u0, un+1, . . . , um,∞. Let us use translation invariance to set the last coordinate um = 0, and also
without loss of generality set tm = 0. We obtain

Hxψ(u0, . . . , um−1) =

$

C
ψ

%
t0s− xu0

s− u0
, ∂

%
t0 − x

s− u0

&
, . . . ,

1

n!
∂n

%
t0 − x

s− u0

&
,
tn+1s− xun+1

s− un+1
, . . .

&

·
|s|m−2 exp(− 2a

n!Re ∂
n log(s− u0))dsds

|s− u0|2n+2
'm−1

k=n+1 |s− uk|2
.

From this, it is clear that as s → ∞, Hxψ(u0, . . . , um−1) decays as |s|−m−2, hence integrable. To check the
behavior as s → u0, we use homogeneity and scale all arguments up by (s − u0)

n+1; then there will be an
additional |s−u0|(n+1)m term in the measure, so that as s → u0 the integral behaves as |s−u0|(n+1)m−(2n+2)

which is also integrable. A similar calculation addresses the behaviors at s = un+1, . . . , um.
Continuity of Hxψ in U follows from continuity of ψ. Finally, Hxψ is L2-integrable by Cauchy-Schwarz

and the fact that ‖Hx‖ ≤
.
C | x(x−1)

s(s−1)(s−x) |dsds < ∞, which is a consequence of proposition 2.4. □

Proposition 2.6. The Hecke operators Hx extend to bounded, self-adjoint, mutually commuting operators
on H, for x ∕= ti,∞.

Proof. Boundedness follows from the previous proposition and ‖Hx‖ < ∞.

It is easy to check that g−1
s,x = gσ(s),x, where σ(s) =

x(s−1)
s−x . This implies U∗

s,x = Uσ(s),x. Also, the measure

dν(s) is invariant under the involution s +→ σ(s). This implies that Hx are self-adjoint.
Let x1, x2 be two distinct points distinct from ti,∞. The fact that operators Hx1 , Hx2 commute is

a consequence of the general fact that Hecke modifications at distinct points (x1, s1), (x2, s2) commute.
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Concretely, it can also be checked directly using proposition 2.4; it can be reduced to the routine calculation
that dνx1

(s1)dνx2
(s′2) = dνx1

(s′1)dνx2
(s2), where

dνxi(s) =

////
xi(xi − 1)

s(s− 1)(s− xi)

//// dsds

and s′1 = s2−1
s2−x2

· x1s2−x2s1
s2−s1

and symmetric for s′2. Here, s′1 is the coordinate of the parabolic line s1 after

Hecke modification at (x2, s2), and vice versa. □

2.6. Compactness.

Proposition 2.7. The Hecke operators Hx are compact and norm-continuous in x, for x ∕= ti,∞.

Proof. Using proposition 2.4, the exact same argument as in ([2], proposition 3.13) goes through, except that
we have to show that the rational map φN : AN

C +→ Gn,m = PGL2(C[ε]/(εn+1)) × PGL2(C)m−n−2, given
by (s1, . . . , sN ) +→ gs1,x · · · gsN ,x, where, say, N = 4m, satisfies that the preimage of a measure zero set is
measure zero. We supply a proof of this below. Denote G = PGL2.

Step 1: We show that for any x ∕= t ∈ C, the elements

g(s) = gt,x(s) =

%
−(s− 1)x ts(s− 1)
−(s− x) s(s− x)

&
∈ G(C)

generate a dense subgroup of G(C), as s ranges in C\{0, 1, x}. As g(s)−1 = g(x(s−1)
s−x ), this set is closed under

inverses and contains the identity. Let g = sl2(C) be the Lie algebra of G(C), and let H be the closure of
the subgroup that these elements generate. Then H is a Lie group, so that we may consider its Lie algebra
h. It suffices to show that h = g. By definition, h contains the elements

g(s)−1g′(s) =
1

s(s− 1)(s− x)

!
sx(t−1)

t−x − 1
2 (s

2 + x) s2t(1−x)
t−x

x(x−1)
t−x

1
2 (s

2 + x)− sx(t−1)
t−x

#
,

which linearly spans the 3-dimensional space g = sl2(C).
Step 2: Denote C[ε] = C[ε]/(εn+1). We show that the elements g(s) = gt+ε,x(s) generate a dense subgroup

of G(C[ε]). Let H be the closure of the subgroup they generate, and let h be its Lie algebra, which lies in
g = sl2(C[ε]). It suffices to show h = g. We know h contains the elements A(s) = s(s−1)(s−x)g(s)−1g′(s) =
A0(s) +A1(s)ε+ . . . , where

A0(s) =

!
sx(t−1)

t−x − 1
2 (s

2 + x) s2t(1−x)
t−x

x(x−1)
t−x

1
2 (s

2 + x)− sx(t−1)
t−x

#
, A1(s) =

x(1− x)

(t− x)2

%
s −s2

1 −s

&
.

Let us first produce an element X ∈ h whose constant term is 0. Suppose we write A0(s) =

%
a b
c −a

&
,

then

A1(s) =

!
1−x

(t−x)(t−1)a+ 1
2t(t−1)b+

1
2(1−t)c − x

t(t−x)b

− 1
t−xc −( 1−x

(t−x)(t−1)a+ 1
2t(t−1)b+

1
2(1−t)c)

#
.

It is not hard to verify that the commutator [A(s1 + 1)−A(s1), A(s2 + 1)−A(s2)] is given by

4(s1 − s2)t(t− 1)x(x− 1)

(t− x)2

%
0 1
0 0

&
+

4(s1 − s2)x(x− 1)(2tx− t− x)

(x− t)3

%
0 1
0 0

&
ε+ . . .

which is linearly independent from the elements of the above form. Thus some linear combination of them
would give X ∈ h whose constant term is 0 and ε term is nonzero.

Now that we have found one element X ∈ h, X = B1ε+ . . . with B1 ∕= 0, consider its commutator with
all the elements A(s) = A0 + A1ε + . . . . Since [A(s), X] = [A0, B1]ε + . . . , and sl2(C) is simple, by Step 1,
we may now generate all elements of form B1ε + . . . , where B1 ∈ sl2(C). Now, taking commutators once
again, we can generate all elements of form B2ε

2 + . . . , where B2 ∈ sl2(C), and so on. Thus we have shown
that h = sl2(C[ε]) = g as desired.

Step 3: We show that the elements gs,x = (gt0+ε,x(s), gtn+1,x(s), . . . , gtm−2,x(s)), where s ∈ C\{0, 1, x},
generate a dense subgroup of Gn,m = G(C[ε])×G(C)m−n−2. Use induction on m− n. The induction basis
m = n + 2 is already shown in Step 2. For the induction step, let H be the closure of the subgroup that
gs,x generate. By induction hypothesis, H surjects onto Gn,m−1 = G(C[ε]) × G(C)m−n−3 (the first m − n



ON THE ANALYTIC LANGLANDS CORRRESPONDENCE FOR PGL2 IN GENUS 0 WITH WILD RAMIFICATION 7

factors) and G(C) (the last factor). By lemma 2.8 below, it follows that H ⊂ Gn,m−1×G(C) is the preimage
of the graph of some smooth map f : Gn,m−1 → G(C)/L, where L ⊳ G(C) is the kernel of H → Gn,m−1.
Since G(C) is simple, L = 1 or L = G(C). In the latter case H = Gn,m and we are done; in the former case,
since the center of G(C) is trivial, f is given by projection of Gn,m−1 onto one of its factors, composed with
a map to G(C). Such a map would send gti,x(s) (for some n+ 1 ≤ i ≤ m− 2) or gt0+ε,x(s) to gtm−2,x(s). If
this is a map G(C) → G(C), then it must be an automorphism, hence given by conjugation. But since the

points t0, tn+1, . . . , tm−2 are all distinct, the numbers tr2

det of gti,x(s) are all distinct, which is a contradiction.
If this is a map G(C[ε]) → G(C), by lemma 2.9 below, we get a contradiction for the same reason.

Step 4: We show the rational map φN : AN
C → Gn,m is dominant, where N = 4m. Define φk similarly.

Let Uk be the Zariski-closure of the image of φk, then it is a closed irreducible set in Gn,m of dimension at

most k. Since gs,xgσ(s),x = 1, where σ(s) = x(s−1)
s−x , we have a chain U0 ⊂ U2 ⊂ U4 ⊂ . . . , and let 2k be the

smallest index such that U2k = U2k+2. Then U2k = U2k+2 = . . . , so U2k ⊃ H, so by Step 3, U2k = Gn,m.
Since Gn,m has dimension 3(m− 1) < 4m, U4m = Gn,m as desired. □

In the proof above, we made use of the following two lemmas about Lie groups:

Lemma 2.8. Let G1, G2 be Lie groups, and K a closed subgroup of G1 ×G2 that surjects onto both G1 and
G2. Let L ⊂ G2 be the kernel of K ↩→ G1 ×G2 → G1. Then L⊳G2, and K is the preimage in G1 ×G2 of
the graph of a smooth homomorphism f : G1 → G2/L.

Proof. In the case L = 1, K → G1 is an isomorphism, so f is given by its inverse composed with the map
K ↩→ G1 × G2 → G2. In general, suppose (1, ℓ) ∈ L ⊂ K. For any g2 ∈ G2, there exists (g1, g2) ∈ K, so
(g1, g2)

−1(1, ℓ)(g1, g2) = (1, g−1
2 ℓg2) ∈ K, so L is normal. Let K ′ be the image of K in G1 × (G2/L). Then

we may apply the L = 1 case to K ′, and K is the preimage in G1×G2 of the graph of a f : G1 → G2/L. □

Lemma 2.9. The surjective Lie group homomorphisms f : G(C[ε]) → G(C) are all of the form ψ ◦π, where
π : G(C[ε]) → G(C) is projection to constant term, and ψ ∈ Aut(G(C)).

Proof. Pass to Lie algebra homomorphism df : sl2(C[ε]) → sl2(C). The restriction of df on sl2(C) ⊂ sl2(C[ε])
is an inner automorphism, since sl2(C) is simple and df is surjective. Since every element in sl2(C[ε]) with
zero constant term is ad-nilpotent, we conclude that they lie in the kernel of df . So f is an automorphism
precomposed with projection as well. □

2.7. Spectral decomposition. By the spectral theorem for commuting compact self-adjoint operators, we
conclude the following.

Corollary 2.10. There is an orthogonal decomposition H =
0∞

k=0 Hk, where Hk are finite dimensional
joint eigenspaces: for any ψk ∈ Hk, Hxψk = βk(x)ψk where βk(x) are real-valued and continuous in x.

Proof. We expect the operators Hx

2|x| log |x| to strongly converge to the identity, as x → ∞; consequently the

operators Hx have trivial common kernel, so all Hk are finite dimensional. Continuity of βk(x) follows from
norm-continuity of Hx. □

3. Limits of differential operators

3.1. Twisted Gaudin operators. In ([2], section 4), a system of commuting, second-order differential
operators Gi on variables y0, . . . , ym, the Gaudin operators, were considered, which act on H as well. For
us, we will use a twisted version, given by

(3.1) 1Gi =
(

0≤j ∕=i≤m

1

ti − tj

,
−(yi − yj)

2∂i∂j + (yi − yj)((1 + λj)∂i − (1 + λi)∂j)
-
,

where λ0, . . . ,λm are twisting parameters. The usual Gi are given by setting twisting parameters to 0 and
adding the constant 1

2

)
j ∕=i

1
ti−tj

.
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3.2. Differential equation for Hecke operators. Let us again glue t0, . . . , tn, among the m + 1 points
t0, . . . , tm. We wish to take the limit of the twisted Gaudin operators eq. (3.1), and show that they satisfy
a differential equation together with limits of Hecke operators.

Take the same twisting parameters (eq. (2.2)), and reparametrize y0, . . . , ym with u0, . . . , um in the same
way (eq. (2.3)), as we take the same limiting procedure δ → 0.

Theorem 3.1. For any ψ = ψ(u0, . . . , um) ∈ H, smooth on U with compact support modulo translation and
dilation, the map x +→ Hxψ is smooth for x ∕= ti,∞, and satisfies

(3.2)

%
∂2
x +

%
n+ 1

x− t0
+

a

(x− t0)n+1
+

1

x− tn+1
+ · · ·+ 1

x− tm

&
∂x

&
Hxψ = Hx( 1Gψ),

where 1G is the limit of
)m

i=0

"Gi

x−ti
as δ → 0.

At this point, the proof of theorem 3.1 is only on the formal (algebraic) level, i.e. the two sides are equal
when when viewed as elements of the dual space. But we expect this issue to be solved by some analytic
tricks.

Example 3.2. Consider the simplest nontrivial case, which is n = 1, m = 2. In this case the right hand
side of eq. (3.2) is

1G =
1G00

(x− t0)2
+

1G02

(x− t0)(x− t2)
+

1G002

(x− t0)2(x− t2)
,

where 2
34

35

1G00 = u2
1∂

2
1 + u1(2∂1 − a∂0)

1G02 = −(u2 − u0)
2∂0∂2 + u1(u2 − u0)∂1∂2 + u1(∂1 − a∂2)− (u2 − u0)(∂0 − 2∂2)

1G002 = −(u2 − u0)
2∂1∂2 + (u2 − u0)(a∂2 − ∂1).

We are still attempting to find a simple, closed-form formula for 1G.

3.3. Proof of theorem 3.1.

3.3.1. Preparations. We first recall a combinatorial identity used in the proof of theorem 3.1.

Lemma 3.3. Let d be a nonnegative integer. Let p, q1, . . . , qd, a be nonnegative integers. Then

(

i∈Z
(−1)iia

%
p

i

&%
i

q1

&
. . .

%
i

qd

&
=

6
0, if a < p− q1 − · · ·− qd;

(−1)p p!
q1!...qd!

if a = p− q1 − · · ·− qd.

Proof. Consider the generating function

F (X,Y1, . . . , Yd) =
(

p,q1,...,qd∈Z≥0

7

8
(

i∈Z≥0

(−1)iia
%
p

i

&%
i

q1

&
. . .

%
i

qd

&9

:XpY q1
1 . . . Y qd

d

=
(

i∈Z≥0

(−1)iia

7

8
(

p∈Z≥0

%
p

i

&
Xp

9

:
d"

j=1

7

8
(

qj∈Z≥0

%
i

qj

&
Y

qj
j

9

:

=
(

i∈Z≥0

(−1)iia
Xi

(1−X)i+1

d"

j=1

(1 + Yj)
i

=
1

1−X

(

i∈Z≥0

ia
%
X(1 + Y1) . . . (1 + Yd)

X − 1

&i

.

It is well-known that (
)

i≥0 i
aT i)(1 − T )a+1 =

)a
i=0 i!

;
a
i

<
T i(1 − T )a−i is a polynomial in T of degree a,

where
;
a
i

<
are Stirling numbers of the second kind. Here, let us take T = X(1+Y1)...(1+Yd)

X−1 . Then if we define
the polynomial

P =

a(

i=0

i!

=
a

i

>
(−1)i(X(1 + Y1) . . . (1 + Yd))

i(X(1 + Y1) . . . (1 + Yd)−X + 1)a−i,
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we then have

(3.3) F = P · (1− (X(1 + Y1) . . . (1 + Yd)−X) + (X(1 + Y1) . . . (1 + Yd)−X)2 + . . . )a+1.

We want to extract the coefficient of XpY q1
1 . . . Y qd

d . Let us view the variable X as in degree 1, and each
Yi as in degree −1. Then it is clear that the expression on the right hand side has degree at most a. So, if
a < p− q1 − · · ·− qd, we have [XpY q1

1 . . . Y qd
d ]F = 0.

Let us now compute the coefficient when a = p− q1 − · · ·− qd. Since the latter expression in eq. (3.3) has
negative degree, we have to take the leading term (−1)aa!Xa in P . In the rest, we need [Y q1

1 . . . Y qd
d ] in

1

(1 + Y1 + · · ·+ Yd)a+1
=

(

i

%
a+ i

a

&
(−1)i(Y1 + · · ·+ Yd)

i,

which is (−1)p−a
,
p
a

-,
p−a

q1,...,qd

-
. So, combined together, the desired coefficient is (−1)p p!

q1!...qd!
. □

The idea of the proof of theorem 3.1 is to first use an integration-by-parts formula, then directly compare
the coefficients of each term on both sides. For simplicity in the proof, we introduce the following notations.

Definition 3.4. Let

dµ(s) =
exp(− 2a

n!Re ∂
n log(s− u0))dsds

|s− u0|2(n+1)|s− un+1|2 · · · |s− um|2
,

ck =

6
1
k!∂

k( −1
s−u0

) if 0 ≤ k ≤ n

− 1
s−uk

if n+ 1 ≤ k ≤ m,

and let

vk =

6
1
k!∂

k( t0−x
s−u0

) if 0 ≤ k ≤ n
tk−x
s−uk

if n+ 1 ≤ k ≤ m

be the variables after coordinate change.

Then ck = ∂xvk, and they satisfy

ck =
vk

x− t0
+ · · ·+ v0

(x− t0)k+1
, vk = (x− t0)ck − ck−1

for 0 ≤ k ≤ n, and ck = vk

x−tk
otherwise. Then the (modified) Hecke operators are given by

(Hxψ)(u0, . . . , um) =

$

C
ψ(v0, . . . , vm)dµ(s).

We have the integration-by-parts formula:

(3.4) −
$

C
∂sψdµ(s) =

$

C
((n+ 1)c0 + acn + cn+1 + · · ·+ cm)ψdµ(s),

where the acn term comes from the fact that ∂
∂sRe ∂

n(log(s − u0)) = 1
2∂

n( 1
s−u0

), from Cauchy-Riemann
equations.

Now assume ψ = ψ(v0, . . . , vm). Then

− ∂

∂s
ψ =

%
∂

∂u0
+

∂

∂un+1
+ · · ·+ ∂

∂um

&
ψ

=

n(

k=0

1

k!
∂k

%
t0 − x

(s− u0)2

&
ψk +

m(

k=n+1

tk − x

(s− uk)2
ψk.

We have 1
k!∂

k 1
(s−u0)2

=
)k

i=0 cick−i, and therefore

1

k!
∂k t0 − x

(s− u0)2
= (t0 − x)

k(

i=0

cick−i +

k−1(

i=0

cick−1−i.

So,

(3.5) − ∂

∂s
ψ =

n(

k=0

!
(t0 − x)

k(

i=0

cick−i +

k−1(

i=0

cick−1−i

#
ψk +

m(

k=n+1

(tk − x)c2kψk.
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Putting eq. (3.4) and eq. (3.5) together gives the integration-by-parts formula which we use in the proof.

3.3.2. The quadratic part. Let ψ(u0, . . . , um) be smooth with compact support in U . Let ψi,ψij be the first
and second derivatives of ψ, evaluated at the new variables vi. The following calculations are purely formal
(since we don’t know Hxψ is differentiable in x yet).

Let us expand the left hand side of eq. (3.2). From here on, everything is inside
.
C •dµ(s). First, because

∂2
xψ(u0, . . . , um) =

$

C

(

0≤i,j≤m

cicjψijdµ(s),

we put in cpcq for the coefficient of ψpq. Then add the contribution of the integration-by-parts formula,
applied to each ψi in

((n+ 1)c0 + acn + cn+1 + · · ·+ cm)

!
ψ0

x− t0
+ · · ·+ ψn

(x− t0)n+1
+

m(

k=n+1

ψk

x− tk

#
.

This gives that the coefficient of ψpq (we temporarily view ψpq and ψqp as distinct) is
2
333334

333335

cpcq +
1

(x−t0)q+1

*)p−1
i=0 cicp−1−i + (t0 − x)

)p
i=0 cicp−i

+
if 0 ≤ p, q ≤ n

cpcq +
1

x−tq

*)p−1
i=0 cicp−1−i + (t0 − x)

)p
i=0 cicp−i

+
if 0 ≤ p ≤ n < q

cpcq +
1

(x−t0)q+1 (tp − x)c2p if 0 ≤ q ≤ n < p

cpcq +
1

x−tq
(tp − x)c2p if n+ 1 ≤ p, q ≤ m.

Now, let us express ci in terms of vi. We have, for 0 ≤ p ≤ n,

p−1(

i=0

cicp−1−i + (t0 − x)

p(

i=0

cicp−i = −
p(

i=0

civp−i = −
(

i+j≤p

vivj
(x− t0)p−i−j+1

.

The coefficient of vkvℓψpq (as above, treat vkvℓ and vℓvk differently) is (here 1P is the indicator function):
2
33334

33335

1
(x−t0)p+q−k−ℓ+2 (1(k≤p)∧(ℓ≤q) − 1(k+ℓ≤p)) if 0 ≤ p ≤ q ≤ n

1
(x−tq)(x−t0)p+1 (1(k≤p)∧(ℓ=q)(x− t0)

k − 1(k+ℓ≤p)(x− t0)
k+ℓ) if 0 ≤ p ≤ n < q

1
(x−tp)(x−t0)q+1 (1(k=p)∧(ℓ≤q)(x− t0)

ℓ − 1(k=ℓ=p)) if 0 ≤ q ≤ n < p
1

(x−tp)(x−tq)
(1(k=p)∧(ℓ=q) − 1(k=ℓ=p)) if n+ 1 ≤ p ≤ q ≤ m.

For comparison, let us take the limit of the right hand side of eq. (3.2),

(

0≤i≤m

1Gi

x− ti
=

1

2

(

i ∕=j

Dij

ti − tj

%
1

x− ti
− 1

x− tj

&
.

As a reminder, the ui are related to yi by

yi =
(

0≤j≤i

uj

"

0≤k≤j−1

(ti − tk),
∂

∂yi
=

(

i≤j≤n

∂

∂uj

"

0≤k≤j,k ∕=i

1

ti − tk

for 0 ≤ i ≤ n, and ui = yi for n+ 1 ≤ i ≤ m.

Consider the quadratic term
)

i ∕=j
(yi−yj)

2∂i∂j

ti−tj
( 1
x−ti

− 1
x−tj

). Suppose we sum over 0 ≤ i ∕= j ≤ n for now.

In the limit, taking ε = ti − ti−1, the coefficient of ukuℓ∂up∂uq (in that order) is

δk+ℓ−p−q−1 k!ℓ!

p!q!

(

i ∕=j

(−1)p+q+i+j
,
p
i

-,
q
j

-

i− j

%
1

x− t0 − iε
− 1

x− t0 − jε

&%%
i

k

&%
i

ℓ

&
+

%
j

k

&%
j

ℓ

&
− 2

%
i

k

&%
j

ℓ

&&
.

Use the expansion

1

x− t0 − iδ
=

1

x− t0

!
1 +

iδ

x− t0
+ · · ·+

%
iδ

x− t0

&p+q−k−ℓ+1
#

+ (multiple of δp+q−k−ℓ+2),
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it suffices to show the following combinatorial identity: for r = 1, . . . , p+ q − k − ℓ,
(

i,j

(−1)i+j(ir−1 + ir−2j + · · ·+ jr−1)

%
p

i

&%
q

j

&%%
i

k

&
−
%
j

k

&&%%
i

ℓ

&
−
%
j

ℓ

&&
= 0,

and to evaluate this at r = p+ q − k − ℓ+ 1. In fact, every term is zero: for a+ b ≤ p+ q − k − ℓ− 1,
(

i,j

(−1)i+jiajb
%
p

i

&%
q

j

&%
i

k

&%
i

ℓ

&
= 0.

Since a+ b ≤ p+ q− k− ℓ− 1, either a ≤ p− k− ℓ− 1 or b ≤ q− 1. This then follows from lemma 3.3. The
result should be

[ukuℓ∂p∂q] = −1

2
(1(k+ℓ≤p) + 1(k+ℓ≤q) − 1(k≤p)∧(ℓ≤q) − 1(k≤q)∧(ℓ≤p))

which, when we allow switching k, ℓ and p, q, is exactly the same as the left hand side.
The cases where one or two of i, j are larger than n do not involve any new ideas. This shows that the

quadratic parts of both sides of eq. (3.2) are indeed equal.

3.3.3. The linear part. In the remaining, “linear” part of the left hand side, the coefficient of ψj is ( n+1
x−t0

+
a

(x−t0)n+1 +
)m

k=n+1
1

x−tk
)cj minus

6
1

(x−t0)j+1 ((n+ 1)c0 + acn +
)m

k=n+1 ck) if 0 ≤ j ≤ n
1

x−tj
((n+ 1)c0 + acn +

)m
k=n+1 ck) if n+ 1 ≤ j ≤ m.

The coefficient of viψj is then
6
( n+1
x−t0

+ a
(x−t0)n+1 +

)m
k=n+1

1
x−tk

)
1(i≤j)

(x−t0)j−i+1 − 1
(x−t0)j+1 (

(n+1)1(i=0)

x−t0
+

a·1(i≤n)

(x−t0)n−i+1 +
1(i≥n+1)

x−ti
) if 0 ≤ j ≤ n

( n+1
x−t0

+ a
(x−t0)n+1 +

)m
k=n+1

1
x−tk

)
1i=j

x−tj
− 1

x−tj
(
(n+1)1(i=0)

x−t0
+

a·1(i≤n)

(x−t0)n−i+1 +
1(i≥n+1)

x−ti
) if n+ 1 ≤ j ≤ m.

Let’s consider the linear part of the right hand side,
)

i ∕=j
(yi−yj)((1+λj)∂i−(1+λi)∂j)

ti−tj
( 1
x−ti

− 1
x−tj

). The

coefficient of uk∂uℓ
, from the contribution of 0 ≤ i, j ≤ n, is

δk−ℓ−1(−1)ℓ
k!

ℓ!

(

i ∕=j

(−1)i+j(
,
i
k

-
−
,
j
k

-
)

(x− t0 − iε)(i− j)

%%
ℓ

i

&%
(−1)j +

a

n!

%
n

j

&
(−1)n

&
−
%
ℓ

j

&%
(−1)i +

a

n!

%
n

i

&
(−1)n

&&
.

So we have to show
(

0≤i,j≤n

(ir − jr)(−1)i+j(
,
i
k

-
−
,
j
k

-
)

i− j

%%
ℓ

i

&%
(−1)j +

a

n!

%
n

j

&
(−1)n

&
−
%
ℓ

j

&%
(−1)i +

a

n!

%
n

i

&
(−1)n

&&
= 0

for r ≤ ℓ− k, and evaluate this at r = ℓ− k + 1. Applying lemma 3.3, the result is 2(n+1)
(x−t0)ℓ−k+2 when k ∕= 0,

and 0 when k = 0. If we count in the contributions of 0 ≤ i ≤ n < j or 0 ≤ j ≤ n < i, we get exactly the
same answer as the above formula for the left hand side. Similar routine calculations show that the linear
parts of eq. (3.2) are equal; this completes the proof.
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