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Abstract

We prove a positive mass theorem for asymptotically Euclidean smooth metric measure spaces, which
are generalizations of weighted manifolds. In a special case, we recover the weighted positive mass theorem
proven by Baldauf and Ozuch. Our result is proven in two different ways: by applying spinorial techniques
on certain warped products and by making a conformal change of metric. Our proof methods yield results
of independent interest, including eigenvalue bounds for the Dirac operator on closed manifolds and a
characterization of the Dirac operator on warped products with manifolds admitting parallel spinors.

Contents
0 Introduction 2
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0 Introduction
This paper is concerned with generalizations of the positive mass theorem (PMT). Originating as a conjecture in
general relativity, the PMT asserts that an isolated gravitational system with nonnegative local matter density
must have nonnegative total mass, measured at spatial infinity. A precise mathematical formulation takes
place on asymptotically Euclidean manifolds. An asymptotically Euclidean manifold is a Riemannian manifold
(Mn, g), n ≥ 3, that decomposes as M = Mcpct ∪ M∞, where Mcpct is compact and M∞ is diffeomorphic to
Rn\BR(0) for some R > 0. Moreover, in the asymptotic coordinates, the metric g satisfies

gij = δij + O(r−τ ), ∂kgij = O(r−τ−1), ∂k∂lgij = O(r−τ−2) (0.1)

for some τ > n−2
2 , where r denotes distance to the origin in Rn. The (ADM) mass of (M, g), introduced in

[ADM60a], [ADM60b], and [ADM61], is then defined by

m(g) := lim
ρ→∞

∫
Sρ

µ⌟dVolg,

where ⌟ denotes the interior product and µ is the mass-density vector field

µ = (∂igij − ∂jgii)∂j .

While m(g) ostensibly depends on the diffeomorphism M∞ ∼= Rn \BR(0) in which (0.1) holds, Bartnik showed
that it is in fact a geometric invariant [Bar86] (see also [LP87, Section 9]). Under this setup, the Riemannian
positive mass theorem reads as follows.

Theorem 0.1 (PMT). Let (Mn, g), n ≥ 3 be an asymptotically Euclidean manifold of order τ > n−2
2 . Also

assume that 3 ≤ n ≤ 7 or that (M, g) is spin. If the scalar curvature Rg is non-negative and integrable, then
m(g) ≥ 0, with equality if and only if (Mn, g) is isometric to (Rn, δij).

Physical motivations aside, the positive mass theorem played a critical role in solving the Yamabe problem: given
a closed, smooth Riemannian manifold (Mn, g), is there a metric g̃ conformal to g such that Rg̃ is constant?
The problem is trivial for n = 1, and is equivalent to the uniformization theorem when n = 2. For dimensions 3
and up, the combined efforts of Yamabe, Trudinger, Aubin, Schoen and Yau eventually provided an affirmative
answer to this question in 1984, the final step being a proof of Theorem 0.1. For a cohesive account of the
Yamabe problem (including its resolution), see [LP87].

Schoen and Yau’s proof of the positive mass theorem for the case where 3 ≤ n ≤ 7 uses minimal surfaces.
Shortly after, Witten ([Wit81]) discovered another proof in arbitrary dimension when M is spin. Witten’s proof
relies on finding a so-called Witten spinor ψ, a spinor in the kernel of the Dirac operator with norm 1 at infinity,
for which the following formula for the mass holds:

m(g) = 4
∫

M

[
|∇ψ|2 + 1

4R|ψ|2
]
dVolg. (0.2)

In [BO22], Baldauf and Ozuch extend the positive mass theorem to weighted manifolds of the form (Mn, g, f),
where f ∈ C∞(M) is in an appropriately decaying Hölder space (see Appendix A.3 for the relevant definitions)
and defines the measure e−fdVolg. In particular, they define the weighted mass

mf (g) := m(g) + 2 lim
ρ→∞

∫
Sρ

⟨∇f, n⃗⟩e−fdAg

and instead assume the weighted scalar curvature Rf = R+ 2∆f − |∇f |2 is non-negative:

Theorem 0.2 (Weighted PMT [BO22, Theorem 2.13]). Let (Mn, g), n ≥ 3, be an asymptotically Euclidean spin
manifold of order τ > n−2

2 , and assume f ∈ C2,α
−τ (M) ∩ C∞(M) for some α ∈ (0, 1). If Rf is integrable and non-

negative, then mf (g) ≥ 0, with equality if and only if (Mn, g) is isometric to (Rn, δij) and
∫
Rn(∆ff)e−fdx = 0.
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Baldauf and Ozuch’s proof is based on constructing weighted Witten spinors associated to the weighted Dirac
operator Df = D − 1

2 ∇f and then proving an analogue of Witten’s formula (0.2) for the weighted mass.

Further widening the class of spaces under study, one arrives at smooth metric measure spaces (SMMS). A
SMMS is a four-tuple (Mn, g, vmdVolg,m), where m ∈ R and v ∈ C∞(M) is a positive function. When m ̸= 0,
we can define the function f ∈ C∞(M) by vm = e−f , making (M, g, f) a weighted manifold. Conversely, a
weighted manifold (M, g, f) becomes an SMMS when one arbitrarily selects m ∈ R \ {0} and sets v = e− f

m ,
though we are typically interested in taking m → +∞ when adopting this perspective. The impetus for studying
SMMSs came from their ability to recover Perelman’s entropy by taking m → ∞; see [Cas12] for more details.
The curvature associated to SMMSs is described by the Bakry-Émery Ricci tensor, which is defined by

Ricm
f := Ric + ∇2f − 1

m
df ⊗ df.

Similarly, the Bakry-Émery scalar curvature is defined by

Rm
f := Rf − 1

m
|∇f |2 = R+ 2∆f − m+ 1

m
|∇f |2.

Observe that Rm
f → Rf as m → ∞. When m is a positive integer, the Bakry-Émery Ricci and scalar curvatures

arise naturally from certain warped products involving the base manifold (M, g). In particular, if (Fm, gF ) is
an m-dimensional scalar-flat manifold, then the warped product (M × F, g = g ⊕ v2gF ) has scalar curvature
Rg equal to the Bakry-Émery scalar curvature Rm

f of M , and the Ricci tensor Ricg of the metric g satisfies
Ricg(X,X) = Ricm

f (X,X) on horizontal vector fields X ∈ Γ(TM) (see [Cas12, section 4.1]).

For an asymptotically Euclidean SMMS (Mn, g, vmdVolg,m) (meaning (M, g) is asymptotically Euclidean), we
define its Bakry-Émery mass mf,m(g) to be the weighted mass of (M, g, f), where f is chosen so that vm = e−f :

mf,m(g) = m(g) + 2 lim
ρ→∞

∫
Sρ

⟨∇f, n⃗⟩e− m+2
m fdAg.

In this paper, we investigate how constraints on the Bakry-Émery scalar curvature affect the Bakry-Émery mass
of an asymptotically Euclidean SMMS. Our main result is the following positive mass theorem.

Theorem 0.3. Let (Mn, g, vmdVolg,m) be a complete, asymptotically Euclidean SMMS of order τ > n−2
2 .

Assume that 3 ≤ n ≤ 7, or that M is a spin manifold. Also assume m ∈ R\ [1−n, 0]. Write vm = e−f for some
f ∈ C2,α

−τ (M) ∩ C∞(M), and suppose that Rm
f is integrable and non-negative. Then mf,m(g) ≥ 0, with equality

if and only if (Mn, g) is isometric to (Rn, δij) and f is identically 0.

When m ∈ [1 −n, 0), the Bakry-Émery mass is also shown to be non-negative assuming a stronger lower bound
on Rm

f ; see Theorem 2.9 for the full statement, which contains Theorem 0.3. Note that when m > 0, we have
Rf ≥ Rm

f , so Theorem 0.3 recovers Theorem 0.2 and also shows the stronger result that masslessness and
Rm

f ≥ 0 imply the vanishing of f .

Theorem 0.3 and its extension Theorem 2.9 will be proved via a conformal change of metric; we elaborate
further below. We also prove, using a different method which we call the warped product method, a special case
of Theorem 0.3:

Theorem 0.4. Let (Mn, g, vmdVolg,m) be a complete, asymptotically Euclidean SMMS of order τ > n−2
2 .

Assume that M is a spin manifold and m ∈ N. Write vm = e−f for some f ∈ C2,α
−τ (M) ∩ C∞(M), and suppose

that Rm
f is integrable and non-negative. Then mf,m(g) ≥ 0, with equality if and only if (Mn, g) is isometric to

(Rn, δij) and f is identically 0.

The warped product method. Here, we take m ∈ N and M to be spin. Let Tm be the flat m-dimensional
torus of unit volume. From the preceding discussion, the warped product metric ḡ = g ⊕ v2gT m on M × Tm

has scalar curvature Rḡ equal to Rm
f . One can define a mass for the warped product (M ×F, g) analogously to

the ordinary mass, and we prove the following intriguing fact in Section 2.1:
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Theorem 0.5. The mass of (M × Tm, g) is precisely the weighted mass of (Mn, g) with respect to f , i.e. the
Bakry-Émery mass of (Mn, g, vmdVolg,m).

To prove Theorem 0.4, it suffices to prove that Rḡ being integrable and non-negative implies (M × Tm, ḡ) has
non-negative mass. Similar remarks apply for the rigidity statement. This is, of course, a positive mass theorem
on M × Tm, but Theorem 0.1 does not apply because M × Tm is not asymptotically Euclidean. Our approach
is to adapt Witten’s proof to get a PMT on M ×Tm, which at its core comes down to understanding the Dirac
operator on M × Tm.

For a warped product (M×F, g) of spin manifolds with M even-dimensional, the spinor bundle Σ(M×F ) splits
as the tensor product π∗

1(ΣM) ⊗ ΣV between the pullback spinor bundle of M , and the spinor bundle ΣV on
the vertical distribution V = ker(dπ2). When F admits parallel spinors, we prove the following result, based on
the discussion in [Roo20].

Theorem 0.6. Let (Mn ×Fm, g) be the warped product manifold with metric g = g⊕ v2gF , and let vm = e−f .
Assume (F, gF ) admits parallel spinors and M has even dimension. Let ϕ be a section of ΣM and ν a parallel
section of ΣV . We have DM×F (ϕ⊗ ν) = (Dfϕ) ⊗ ν, where DM×F is the Dirac operator of (M × F, g) and Df

is the weighted Dirac operator on M .

An analogous result holds when n is odd; see Theorem 1.2 for details. We will use Theorem 0.6 and the
construction of weighted Witten spinors on M from [BO22] to construct Witten spinors on M × Tm, leading
to the desired positive mass theorem on M × Tm. In fact, this construction of Witten spinors applies more
generally to warped products (M×F, g) where (F, gF ) admits parallel spinors, and allows simplified proofs of the
positive mass theorems in [Dai04] for warped product manifolds (M × F, g) that are asymptotically unwarped
on the end M∞ × F .

The presence of the weighted Dirac operator in Theorem 0.6 also sparks independent interest. Since all manifolds
with special holonomy except quaternionic Kähler manifolds admit parallel spinors (see [Dai04, Section 1]),
Theorem 0.6 provides many situations in which the weighted Dirac operator arises naturally. Moreover, Theorem
0.6 enables one to reprove some formulas from [BO22], namely the weighted Ricci identity, weighted Lichnerowicz
formula, and weighted Witten’s formula, by working directly on the warped product M × F . We also give a
bound on the eigenvalues of the Dirac operator on M in terms of Rm

f when M is compact. These results are
organized in Table 1.

The conformal metric method. This method proves Theorem 0.3, and its extension Theorem 2.9, in their
stated forms. To this end, we introduce the Bakry-Émery conformal metric gf,m := v

2m
n−1 g, and show that

the ordinary mass with respect to gf,m equals the Bakry-Émery mass with respect to g (Lemma 2.12). We
then show that the non-negativity (vanishing) of Rgf,m

is equivalent to the non-negativity (vanishing) of Rm
f

(Lemma 2.14), and we use this to deduce Theorem 2.9 from the ordinary PMT applied to (Mn, gf,m). The
quantity Fm

f = m+n−1
m(1−n) |∇f |2 appears naturally in the computations. We refer to Fm

f as the Bakry-Émery
barrier function, and its behavior leads to the exclusion of the interval [1 − n, 0] in Theorem 0.3 (formulated as
a ‘dichotomy’ in Theorem 2.9).

We also generalize Baldauf and Ozuch’s weighted PMT (Theorem 0.2) by showing that non-negativity of
weighted mass still holds if Rf ≥ − 1

n−ε |∇f |2 for some ε < 1 (cf. Corollary 2.10). We subsequently show that
there exists a one-parameter family {fm}m∈(−∞,1−n) of appropriately decaying functions satisfying 1

m |∇f |2 ≤
Rfm

< 0 (cf. Theorem 2.18), proving it is indeed possible for the weighted mass to be strictly positive when the
weighted scalar curvature is strictly negative.

The Bakry-Émery conformal metric is also related to the weighted Dirac operator. In particular, it corresponds
to the conformal change which recovers the weighted Dirac operator in an appropiate sense (see Remark 1.4).
From our analysis of the scalar curvature of the Bakry-Émery conformal metric, we use this to prove the following
generalization of the classical fact that on a compact spin manifold with positive scalar curvature, the Dirac
operator has trivial kernel (see Corollary 2.20 for details):
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Riemannian Weighted Bakry-Émery
Ricci curvature Ric Ricf = Ric + Hess(f) Ricm

f = Ric + Hess(f) − 1
m
df ⊗ df

Scalar curvature R Rf = R+ 2∆f − |∇f |2 Rm
f = R+ 2∆f − m+1

m
|∇f |2

Dirac operator* D Df = D − 1
2 ∇f DM×F *

Lichnerowicz formula* D2 = −∆ + 1
4R D2

f = −∆f + 1
4Rf D2

M×F = −∆M×F + 1
4R

m
f *

Ricci identity* [D,∇X ] = 1
2 Ric(X) [Df ,∇X ] = 1

2 Ricf (X) [DM×F ,∇X ] = 1
2 Ricm

f (X)*
Eigenvalue bound* λ(D)2 ≥ n

4(n−1) minR λ(D)2 = λ(Df )2 ≥ n
4(n−1) minRf λ(DM×F )2 ≥ n+m

4(n+m−1) minRm
f *

ADM Mass* m = limρ→∞
∫

Sρ
µ⌟dVolg mf := m + 2 limρ→∞

∫
Sρ

⟨∇f, n⃗⟩e−fdAg mf,m := m + 2 limρ→∞
∫

Sρ
⟨∇f, n⃗⟩e− m+2

m
fdAg*

Witten formula* m = 4
∫

M
(|∇ψ|2 + 1

4R|ψ|2)dV mf = 4
∫

M
(|∇ψ|2 + 1

4Rf |ψ|2)e−fdV mf,m = 4
∫

M×F

[
|∇M×Fψ|2g + 1

4R
m
f |ψ|2g

]
dVolM×F *

Table 1: Classical vs. weighted vs. Bakry-Émery quantities. Contributions from this paper are labeled with an
asterisk (*).

Corollary 0.7. Let M be a closed spin manifold. If Rm
f ≥ Fm

f , and Rm
f > Fm

f at some point for some m ∈ R
and some f ∈ C∞(M), then M admits no nontrivial harmonic spinors. In particular, if m ∈ R \ [1 − n, 0], M
admits no harmonic spinors if Rm

f ≥ 0 and Rm
f > 0 at some point.

Corollary 0.7 leads to a discussion of the question of solving for f so that Rm
f is constant.

Structure of the paper. In Section 1, we describe the product spin structure, Dirac operator, and spinor
norm on warped products (M × F, g) with manifolds (F, gF ) admitting parallel spinors. We prove Theorem
0.6 and discuss applications. In Section 2.1, we use the warped product method to prove Theorem 0.4 and
recover the weighted Witten’s formula in [BO22]. In Section 2.2, we use the conformal metric method to prove
Theorem 0.3 and provide some examples of functions with negative (weighted) scalar curvature and positive
(weighted) mass. A number of routine computations are relegated to Appendices A.1 and A.2. In Appendix
A.3, we provide the relevant definitions and rudimentary results on weighted Hölder spaces assumed throughout
the paper.

Notation and conventions. We use Einstein summation notation throughout the paper. Given a Riemannian
manifold (Mn, g), ∇ denotes the Levi-Civita connection of (Mn, g). Our convention for the Laplacian is

∆ = 1√
det(gij)

∂

∂xi

[√
det(gij)gij ∂

∂xj

]
,

which agrees with the convention used in [BO22]. For a fixed radius ρ > 0, we shall denote by dVolg and dAg the
volume forms of (Mn, g) and (SM

ρ , g̃), respectively, where g̃ is the metric induced on SM
ρ by M . Additionally,

n⃗ denotes the outward normal of Sρ.

Acknowledgements. We are indebted to Tristan Ozuch for his continuous support, providing us with in-
valuable suggestions and the idea of extending the weighted positive mass theorem to smooth metric measure
spaces. At the time of writing this paper, all authors were funded by the MIT Department of Mathematics
through its Summer Program in Undergraduate Research (SPUR).
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1 The Bakry-Émery Dirac operator
Let (Mn, g, vmdVolg,m), m ∈ N, be a smooth metric measure space with e−f = vm and f ∈ C2,α

−τ (M) ∩ C∞(M),
so that M is a complete spin manifold. Let (F, gF ) be an m-dimensional Riemannian manifold admitting parallel
spinors with respect to some spin structure, and consider the warped product (M × F, g ⊕ v2h) = (M × F, g)
of M and F . By the Ricci identity, F is Ricci flat, hence by the discussion in [Cas12] the scalar curvature of
(M × F, g) is given by the Bakry-Emery scalar curvature Rm

f .

In this section, we show in Theorem 1.2 that in an appropriate sense the Dirac operator of (M×F, g) associated
to the product spin structure on M × F is given by the weighted Dirac operator discussed in [BO22]. This
result will be applied in the Positive Mass Theorems proven in section 2, and allows us to show the weighted
Ricci Identity and weighted Lichnerowicz formulas in [BO22] from the ordinary Ricci Identity and Lichnerowicz
formulas on the warped product M × F . In Corollary 1.7, we discuss applications to eigenvalue bounds for the
Dirac operator on M . Examples of manifolds with parallel spinors include all manifolds with special holonomy
except quaternionic Kähler manifolds. In particular, a complete, simply connected, irreducible Riemannian
spin manifold admits parallel spinors if and only if its holonomy group is one of SU(m), Sp(m), Spin(7), G2 by
results in [Wan89]. The results in this section thus show that the weighted Dirac operator Df arises in many
geometric contexts. We assume the reader is familiar with basic notions from spin geometry; for a thorough
treatment of these matters we defer to [LM89, BHM+15].

1.1 The spin structure on the warped product M × F

Fix a spin structure on M , and fix the spin structure on F for which parallel spinors exist. Denote by π1, π2
the projection maps π1 : M × F → M,π2 : M × F → F . The spin structures on M,F induce spin structures
on the bundles ker(dπ1) ∼= π∗

1(TM), V = ker(dπ2) as follows. Note that ker(π1) is isometric to π∗
1(TM) with

the pullback metric, since the metric on each copy M × {q}, q ∈ F is identical to the metric on M , thus
the spin structure on ker(π1) is given by the covering map π∗

1(Pspin(TM)) → π∗
1(PSO(TM)). In contrast,

the metric on each copy {m0} × F,m0 ∈ M is different from that on F , but there is a bundle isometry
T : π∗

2(TF ) → V given by scaling by v−1 = e
f
m , which induces an isomorphism T : π∗

2(PSO(TF )) → PSO(V ),
where PSO(TF ) ∼= F × SO(m). The spin structure on V is then given by the composition π∗

2(Pspin(TF )) →
π∗

2(PSO(TF )) T−→ PSO(V ).

Since T (M × F ) = ker(dπ1) ⊕ ker(dπ2) ∼= π∗
1(TM) ⊕ V , the spin structures on π∗

1(TM), V induce a unique
spin structure on T (M × F ) by Proposition 1.15 in [LM89], which can be constructed as follows. If a ∈
H1(PSO(π∗

1(TM)),Z/2), a′ ∈ H1(PSO(V ),Z/2) correspond to the spin structures on M,V respectively, then
the spin structure on T (M × F ) is the pullback ∆∗b along the diagonal map

∆ : PSO(π∗
1(TM) ⊕ V ) → PSO(π∗

1(TM) × V )

of the unique class b ∈ H1(PSO(π∗
1(TM)×V ),Z/2) which pulls back to the class a′×1+1×a′′ ∈ H1(PSO(π∗

1(TM))×
PSO(V ),Z/2) under the inclusion PSO(π∗

1(TM))×PSO(V ) ⊂ PSO(π∗
1(TM)×V ). This is a general phenomenon,

spin structures on two vector bundles E,E′ always induce a unique spin structure on their sum E ⊕ E′ in this
way.

In the case where Mn is an asymptotically flat manifold with n > 2 and F = Tm is a flat torus, the asymptotic
end Mn\Mcpct

∼= Rn\BR(0) is simply connected, hence the spin structure on M restricts on M \K to the unique
trivial spin structure, which induces a trivialization of the associated spinor bundle. By uniqueness, it follows
that the chosen spin structure on M × T restricts to the trivial spin structure over the end (M \ Mcpct) × T ,
hence its spinor bundle is also trivialized on the asymptotic end. We next describe this spinor bundle explicitly
using some general facts about Riemannian submersions.

1.2 General facts about spin geometry on Riemannian submersions
The following discussion is based on [Roo20, §3.2]. We first recall some facts from the representation theory
of the complex Clifford algebras Cln = Cl(Rn). Let Σn be a complex vector space of dimension 2⌊ n

2 ⌋. When
n is even, there is a unique irreducible complex representation χn : Cln → End(Σn), and when n is odd there

6



exist two non-isomorphic irreducible representations χ±
n : Cln → End(Σn). In the latter we case we label the

representations by Σ±
n , though the underlying vector spaces are just Σn.

Denote by (ei)n
i=1 the standard basis for Rn and let ωC

n = i⌊
n+1

2 ⌋e1 · · · en ∈ Cln be the complex volume
element. When n is even we have (ωC

n)2 = 1, so there is a splitting Σn = Σ̂+
n ⊕ Σ̂−

n into the ±1 eigenspaces.
From this decomposition we construct a complex conjugation map

Σn → Σn, ϕ = ϕ+ + ϕ− 7→ ϕ = ϕ+ − ϕ−.

The representations Σ̂+
n , Σ̂−

n restrict to irreducible, non-isomorphic representations of the spin group Spin(n) ⊂
Cln. When n is odd, both representations χ+

n , χ
−
n become isomorphic when restricted to Spin(n), and ωC

n acts
by ±1 on Σ±

n respectively. The spin representations are defined by

θn =
{
χn|Spin(n) n even
χ+

n |Spin(n) n odd,
θ−

n = χ−
n |Spin(n) for odd n.

For odd n, Clifford multiplication by x ∈ Rn in the representation χ−
n is given by −x·, where · denotes the

Clifford action for χ+
n . This distinction is important for describing how the Clifford multiplication behaves on

a product. The following isomorphisms hold as Clifford representations of Cln+k:

Σn+k
∼=
{

Σn ⊗ Σk one of n, k even
(Σ+

n ⊕ Σ−
n ) ⊗ Σk n, k odd.

(1.1)

For (x, v) ∈ Rn × Rk, the Clifford multiplication on elementary tensors is given by

(x, v) · (ϕ⊗ ν) =


(x · ϕ) ⊗ ν + ϕ⊗ (v · ν) n even
(x · ϕ) ⊗ ν + ϕ⊗ (v · ν) k even
(x · ϕ+ ⊕ −x · ϕ−) ⊗ ν + (ϕ− ⊕ ϕ+) ⊗ (v · ν) n, k odd.

(1.2)

When n, k are both even, both possibilities for Clifford Multiplication are isomorphic. In this case, we use
the first multiplication in 1.2 by convention. Using these facts we are in a position to describe the spinor
bundle and spin connection for a general Riemannian submersion, following the discussion in [Roo20]. Let
f : (Nn+k, g) → (Bk, h) be a Riemannian submersion. Recall this means that df : ker(df)⊥ → TB is an
isometry; we henceforth identify these two bundles. We will refer to V := ker(df) as the vertical distribution.
This is a rank-k vector bundle over N . For a vector w ∈ TN , we denote by wH , wV the projections of v to
TB, V respectively. From the Riemannian connection ∇ of N we obtain the following connections and tensors
which describe the decomposition TN = TB ⊕ V .

T (X,Y ) := (∇XV Y V )H + (∇XV Y H)V

A(X,Y ) := (∇XHY V )H + (∇XHY H)V

∇Z
XY := (∇XV Y V )V

∇V
XY := (∇XHY V )V .

We view ∇V ,∇Z as connections on V . Assume now that N is a spin manifold with a fixed spin structure. The
submersion f induces local spin structures on B and V , so we have locally defined spinor bundles ΣB,ΣV . By
(1.1), the spinor bundle on N is

ΣN = f∗(ΣB) ⊗ ΣV, where ΣB =
{

ΣB, one of n, k even
Σ+B ⊕ Σ−B n, k odd,

(1.3)

with the Clifford multiplication as in (1.2). In particular, any section of ΣN is locally a C∞(N)-linear combi-
nation of sections of the form f∗(ϕ) ⊗ ν, where ν is a section of ΣV and ϕ is a section of ΣB or Σ+B ⊕ Σ−B
depending on the parity of n, k. The connections ∇V ,∇Z on V induce connections on ΣV , also denoted ∇V ,∇Z .
We let ∇B denote the connection on ΣB.
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From now on we work in an orthonormal frame ξ1, . . . , ξn, ζ1, . . . , ζk so that the ζa are sections of V and
the ξα are the horizontal lifts of an orthonormal frame for B. We will also identify sections of ΣB, f∗(ΣB)
for simplicity. The following identities are from [Roo20, Lemma 3.9], and they completely describe the spin
connection and Dirac operator on N , when applied to φ = ϕ⊗ ν.

Lemma 1.1. Let f : N → B be a Riemannian Submersion with N a spin manifold and let ∇V ,∇Z ,∇B denote
the associated connections. The following identities hold:

∇N
ξα
φ = (∇B

ξα
ϕ) ⊗ ν + ϕ⊗ (∇V

ξα
ν) + 1

2

n∑
β=1

ξβ ·A(ξα, ξβ) · φ

:= ∇τ
ξα
φ+ 1

2

n∑
β=1

ξβ ·A(ξα, ξβ) · φ,

∇N
ζa
φ = ϕ⊗ ∇Z

ζa
ν + 1

2

m∑
b=1

ζb · T (ζa, ζb) · φ+ 1
4

n∑
α=1

ξα ·A(ξα, ζa) · φ

:= ∇Z
ζa
φ+ 1

2

m∑
b=1

ζb · T (ζa, ζb) · φ+ 1
4

n∑
α=1

ξα ·A(ξα, ζa) · φ,

DNφ =
n∑

α=1
ξα · ∇τ

ξα
φ+

m∑
a=1

ζa · ∇Z
ζa
φ− 1

2

m∑
a=1

T (ζa, ζa) · φ+ 1
2

n∑
α,β=1,α<β

A(ξα, ξβ) · ξα · ξβ · φ

+ 1
2
∑
a,α

ζa · ξα ·A(ξα, ζa) · φ

:= Dτφ+DZφ− 1
2

k∑
a=1

T (ζa, ζa) · φ+ 1
2A · φ+ 1

2
∑
a,α

ζa · ξα ·A(ξα, ζa) · φ.

(1.4)

1.3 The Dirac operator on the warped product M × F

In this subsection we use the identities (1.4) to describe the Dirac operator on the warped product (Mn ×
Fm, g) = (Mn × Fm, v2h) introduced at the beginning of §1. Using the notation of §1.2, we take N = M × F ,
B = M and f = π1 : M × F → M . The spinor bundles ΣM,ΣV , which are now globally defined, induced
from the spin structure on M × F are then precisely those associated to the fixed spin structure on M and the
fixed trivial spin structure on F . For simplicity, we will work with the case when n is even. By (1.3), we have
Σ(M × F ) ∼= π∗

1(ΣM) ⊗ ΣV . We identify sections ϕ of ΣM with their pullbacks π∗
1(ϕ) to sections of π∗

1(ΣM).
We will refer to sections of ΣV which are identified with the pullbacks of parallel sections of ΣF under the
isomorphism T : ΣV → π∗

2(ΣF ) as parallel sections of ΣV .
Recall that vm = e−f . In [BO22], the weighted Dirac operator DM

f = DM − 1
2 ∇f on a manifold M with the

weighted volume e−fdVolg, introduced by Perelman, was discussed as a natural generalization of the standard
Dirac operator DM on M . The following result establishes a relationship between the weighted Dirac operator
DM

f and the standard Dirac operator DM×F of the warped product. We denote by ∇M the spin connection on
M .

Theorem 1.2. Let ϕ be a section of ΣM and ν a parallel section of ΣV , with M of even dimension. We have
DM×F (ϕ⊗ ν) = (DM

f ϕ) ⊗ ν.

We will prove Theorem 1.2 by first computing the connection and spin connection on M × F in an appropiate
coordinate system. We work near a point (m0, f0), and choose coordinates ξ1, . . . , ξn, ζ1, . . . , ζm for M × F

so that ξ1, . . . , ξn are geodesic normal coordinates at a point m0 ∈ M and ζ1 = e
f
m ∂1, . . . , ζm = e

f
m ∂m are

orthonormal at f0 ∈ F , with ∂i geodesic normal coordinates at f0 ∈ F . The following lemma is proved in
Appendix A.1:

Lemma 1.3. The connection of M × F is given in the coordinates ξα, ζa by
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∇ξαξβ = 0
∇ξαζa = 0

∇ζaξα = − 1
m
ξα(f)ζa

∇ζa
ζb = 1

m
δab∇f

Let ψ be a section of the spinor bundle Σ(M × F ). The spin connection of M × F is given by

∇ξa
ψ = ξα(ψ)

∇ζa
ψ = ζa(ψ) + 1

2mζa · ∇f · ψ

Proof of Theorem 1.2. Fix ψ = ϕ ⊗ ν for a section ϕ of ΣM and a constant section ν of ΣV . Note that the
assumption on ν implies that ζa(ν) = 0 for all a. By Lemma 1.3,

DM×Fψ =
n∑

α=1
ξα(ϕ) ⊗ ν − 1

2(∇f · ϕ) ⊗ ν

= DM
f (ϕ) ⊗ ν,

where the Clifford multiplications are implemented according to (1.2). When Mn has odd dimension, there are
some minor differences with the Clifford multiplication when applying Lemma 1.3 as described in Equation 1.2.
When m is even and n is odd, we still have Σ(M × F ) ∼= π∗

1(ΣM) ⊗ ΣV , but the Clifford multiplication yields
the following modified expression for DM×Fφ = DM×F (ϕ⊗ ν)

DM×Fφ =
n∑

α=1
ξα · ∇τ

ξα
φ− 1

2∇f · φ

=
n∑

α=1
(ξα · ∇M

ξα
ϕ) ⊗ ν − 1

2(∇f · ϕ) ⊗ ν

= DM
f (ϕ) ⊗ ν

This is identified with the expression in the even case when ν is a section of the positive subbundle Σ̂V +. When
both n,m are odd, we have Σ(M × F ) ∼= π∗

1(ΣM+ ⊕ ΣM−) ⊗ ΣV . For a section φ = Φ ⊗ ν with Φ = ϕ+ ⊕ ϕ−

and ν constant, the Clifford multiplication yields the following expression for DM×Fφ

DM×Fφ =
n∑

α=1
ξα · ∇τ

ξα
φ− 1

2∇f · φ

=
n∑

α=1
(ξα · ∇M

ξα
Φ) ⊗ ν − 1

2(∇f · Φ) ⊗ ν

= (DM
f (ϕ+) ⊕ −DM

f (ϕ−)) ⊗ ν

This also becomes identified with the expression in the even case when ϕ is a section of the bundle ΣM+.

Remark 1.4. Theorem 1.2 shows that in a sense, the Dirac operator on the spinor bundle for a metric conformal
to (M, g) ‘is’ the Dirac operator on a warped product M × F with a manifold F admitting parallel spinors.
To make this precise, consider a conformal change of metric g = e2ug. Let ΣM,ΣM be the spinor bundles
associated to g, g respectively, and denote their Dirac operators by D,D. The conformal change induces a
natural isometry of spinor bundles σ : ΣM → ΣM (see [BHM+15, §2.3.5], and the Dirac operators are related
by

(euσ−1Dσ)(ψ) = Dψ + (n− 1)
2 ∇u · ψ, ψ ∈ Γ(ΣM). (1.5)

9



The operator euσ−1Dσ may then be seen as a perturbed Dirac operator D, with the perturbation depending
on the conformal factor u. Now suppose F is m-dimensional and admits parallel spinors. Construct the warped
product (M × F, g ⊕ v2gF ) with warping factor v = e

(n−1)u
m . Applying Theorem 1.2 and (1.5) to this warped

product (recall that vm = e−f ), we see that on spinors of the form ϕ⊗ ν where ν is parallel,

DM×F (ϕ⊗ ν) = ((euσ−1Dσ)ϕ) ⊗ ν.

This shows that the effect of a conformal change, insofar as spinors are concerned, can be detected in two ways:
(i) a perturbation of the Dirac operator as in (1.5), and (ii) a change in spinor bundle, namely by considering
that of a warped product where the degree of the warping depends on the conformal factor.

We note down a consequence of (1.5) for later: if (M, g, f) is a weighted manifold, then setting u = − f
n−1 ,

we have
Dfψ = (e− f

n−1σ−1D̄σ)(ψ). (1.6)
There is also a relationship with spinC Dirac operators. If M is given the trivial spinC structure, then the spinC

Dirac operator for the connection (n−1)
2 du is given by the same expression as (1.5). More generally, if M is a

spinC manifold with a closed spinC connection, such a connection is locally the differential of some function,
hence the spinC Dirac operator locally agrees with the Dirac operator on a warped product in the sense of
Theorem 1.2.

Since both F and the weight vm depend on m, one might find it surprising that there is no dependence on
m in DM×Fφ. It turns out that all such dependence is accounted for by the spinor Laplacian −∆M×F as we
will now show. Recall that the scalar curvature of (M × F, g) is given by the Bakry-Emery scalar curvature
Rm

f = R+ 2∆f − (m+1)
m |∇f |2. Using that ν is constant and Lemma 1.3, we have

∆M×Fφ =
∑

α

(∇ξα
∇ξα

φ− ∇∇ξα ξα
φ) +

∑
a

(∇ζa
∇ζa

φ− ∇∇ζa ζa
φ)

=
∑

α

∇ξα
∇ξα

φ+
∑

a

(∇ζa
∇ζa

φ− ∇A(ζa,ζa)φ)

=
∑

α

(∇M
ξα

∇M
ξα
ϕ) ⊗ ν +

∑
a

ϕ⊗ (∇Z
ζa

∇Z
ζb
ν) + 1

4m2

∑
a,b

ζaζb|∇f |2 − ∇∇fφ

=
∑

α

(∇M
ξα

∇M
ξα
ϕ) ⊗ ν − 1

4m |∇f |2 − ∇∇fφ

By Proposition 1.8 in [BO22], one has (DM
f )2ϕ = −∆fϕ+ 1

4Rfϕ, where Rf = R+ 2∆f − |∇f |2 is the m → ∞
limit of the Bakry-Emery scalar curvature, and ∆f is the weighted Laplacian ∆fϕ = ∆Mϕ− ∇∇fϕ. Using this
we have

−∆M×Fφ+ 1
4R

m
f φ = −

∑
α

(∇M
ξα

∇M
ξα
ϕ) ⊗ ν + 1

4m |∇f |2 + ∇∇fφ+ 1
4(R+ 2∆f − (m+ 1)

m
|∇f |2)φ

= (−∆M
f ϕ+Rfϕ) ⊗ ν

= D2
M×Fφ

This verifies the Lichnerowicz Formula for M×F . Alternatively, this gives a proof of the weighted Lichnerowicz
formula (DM

f )2ϕ = −∆fϕ+ 1
4Rfϕ in [BO22] using the standard Lichnerowicz formula for DM×F . We will apply

this same method to give a proof of the weighted Ricci identity [BO22, Proposition 1.15]:

[Df ,∇X ]ϕ = 1
2Ricf (X) · ϕ (1.7)

for X ∈ TM,ϕ ∈ Γ(ΣM). Here Ricf is the P-scalar curvature Ric + Hessf . In fact, we will prove the following
m-dependent version of the weighted Ricci identity, from which (1.7) is recovered by taking m → ∞. Note that
we are viewing Ricm

f (X) as a tangent vector to M .

Proposition 1.5. Let X ∈ TM and φ ∈ Γ(Σ(M × F )) be of the form φ = ϕ ⊗ ν, where ϕ ∈ Γ(ΣM) and
ν ∈ Γ(V ) is parallel. Then

([DM
f ,∇X ]ϕ) ⊗ ν = [(Ricm

f (X) + 1
m
X(f)∇f) · ϕ)] ⊗ ν.
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Proof. The usual Ricci identity (see e.g. [BHM+15, Corollary 2.8]) applied to M × F yields

1
2RicM×F (X) · (ϕ⊗ ν) =

∑
α

ξα · (∇ξα
∇X − ∇X∇ξα

− ∇[ξα,X])(ϕ⊗ ν)

+
∑

a

ζa · (∇ζa
∇X − ∇X∇ζa

− ∇[ζa,X])(ϕ⊗ ν).

From the calculations in the last section, we have ∇ξα
ξβ = ∇ξα

ζa = ∇ζa
ζb = 0, ∇ζa

ξα = − 1
mξα(f)ζa. and the

following identities

∇X(ϕ⊗ ν) = (∇Xϕ) ⊗ ν

∇ζa(ϕ⊗ ν) = 1
2m (∇f · ϕ) ⊗ (ζa · ν)

These imply that
1
2RicM×F (X) · (ϕ⊗ ν) = [DM ,∇X ](ϕ⊗ ν) +

∑
a

(ζa∇ζa
∇X − ∇X(ζa∇ζa

))(ϕ⊗ ν)

+
∑

a

1
m
X(f)∇ζa

(ϕ⊗ ν)

= [DM
f ,∇X ](ϕ⊗ ν) − 1

2mX(f)∇f · (ϕ⊗ ν)

= ([DM
f ,∇X ]ϕ) ⊗ ν − 1

2m (X(f)∇f · ϕ) ⊗ ν.

Note that RicM×F (X) is a horizontal vector, since RicM×F (X,Y ) = 0 for all vertical vectors Y ∈ V (see, e.g.
[Bes07, Proposition 9.106]). Thus the above becomes

([DM
f ,∇X ]ϕ) ⊗ ν = [(RicM×F (X) + 1

m
X(f)∇f) · ϕ)] ⊗ ν.

The proposition follows from this once it is proved that RicM×F (X) = Ricm
f (X). Using that g = ḡ and

RicM×F = Ricm
f on horizontal vectors, as well as the definitions of RicM×F ,Ricm

f , we see that

g(RicM×F (X), X ′) = ḡ(RicM×F (X), X ′) = RicM×F (X,X ′) = Ricm
f (X,X ′) = g(Ricm

f (X), X ′)

for all horizontal vectors X ′ ∈ TM . Thus RicM×F (X) = Ricm
f (X).

Theorem 1.2 also allows us to show an m-dependent bound on the eigenvalues of the Dirac Operator of M
when M is compact. Recall that a SMMS (Mn, g, vmdV olg,m) is Quasi-Einstein if there exists λ ∈ R such that
Ricm

f = λg (see [Cas12, Definition 4.6]). In [BO22], the following weighted Frederich Inequality was shown.

Lemma 1.6. (Theorem 1.23 in [BO22]) Suppose (Mn, g) is closed, let f ∈ C∞(M) and λ an eigenvalue of the
Dirac Operator D of M . Then λ2 ≥ n

4(n−1) minRf , with equality if and only if f is constant and (M, g) admits
a Killing spinor φ for which ∇Xφ = − λ

nX · φ, in which case (M, g) is Einstein.

We have the following result

Corollary 1.7. Let D,DM×F be the Dirac Operators on (Mn, g), (Mn × Fm, g) respectively.

(a) Any eigenvalue of D is an eigenvalue of DM×F .

(b) When M,F are closed, any eigenvalue λ(DM×F ) of DM×F satisfies λ(DM×F )2 ≥ n+m
4(n+m−1) minRm

f . If
equality is reached, then M is Quasi-Einstein.

(c) If M,F are closed, and λ(D)2 = n+m
4(n+m−1) minRm

f for an eigenvalue λ(D) of D, then λ(D) = 0, f is
constant and M is Ricci Flat and admits a parallel spinor. Conversely, if f is constant and M is Ricci
Flat admitting a harmonic spinor, then equality holds with 0 = λ(D)2 = Rm

f and the harmonic spinor is
parallel.
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(d) If M is closed and Rm
f ≥ 0 with Rm

f > 0 at some point in M , then M admits no nonzero harmonic
spinors.

Proof. (a) By unitary equivalence of the weighted Dirac Operator Df on M and the ordinary Dirac operator D
(see [BO22, Proposition 1.20]), it is sufficient to show that any eigenvalue of Df is an eigenvalue of M×F . Let φ
be an eigenspinor of Df for the eigenvalue λ, and let ν be a parallel section of ΣV . Suppose first that n is even.
We have DM×F (φ ⊗ ν) = Df (φ) ⊗ ν = λ(φ ⊗ ν) by Theorem 1.2. Suppose next that n is odd and m is even.
We can assume that the parallel spinor ν is in the positive subbundle Σ̂V + by taking the positive part of the
decomposition ν = ν+ ⊕ν−, which we can assume is nonzero , since the splitting ΣF = Σ̂F+ ⊕Σ̂F− is preserved
by the spin connection on F ([LM89, Corollary 4.12]). We then have DM×F (φ ⊗ ν) = λ(φ ⊗ ν) = λ(φ ⊗ ν).
When n,m are both odd, we also have DM×F (φ⊗ ν) = λ(φ⊗ ν) after pulling back φ to a section of the bundle
ΣM+ ⊂ ΣM .

(b) When M,F are closed, M × F is also closed, thus since Rg = Rm
f , Friedrich’s Inequality ([BHM+15,

Theorem 5.3]) for (M × F, g) implies that λ(DM×F ) ≥ n+m
4(n+m−1) minRm

f , and equality implies that (M × F, g)
is Einstein with Einstein constant some λ ∈ R. For tangent vector fields X,X ′ ∈ Γ(TM), one has Ricg(X,X ′) =
Ricm

f (X,X ′), thus in the equality case we have

λg(X,X ′) = λg(X,X ′) = Ricg(X,X ′) = Ricm
f (X,X ′)

hence M is Quasi-Einstein.

(c) Suppose λ(D)2 = n+m
4(n+m−1) minRm

f . Since m ∈ N, we have Rf ≥ Rm
f and n

4(n−1) > n+m
4(n+m−1) , thus

n
4(n−1) minRf ≥ n+m

4(n+m−1) minRm
f with equality if and only if minRf = minRm

f = 0. Lemma 1.6 implies

n+m

4(n+m− 1) minRm
f = λ(D)2 ≥ n

4(n− 1) minRf ≥ n+m

4(n+m− 1) minRm
f

Thus λ(D) = 0,minRf = 0. By Lemma 1.6, it follows that f is constant and M admits a parallel spinor. For
the converse, note that when f is constant and M is Ricci Flat, we have minRm

f = minR = 0. On a scalar flat
closed manifold, any harmonic spinor is automatically parallel by [LM89, Corollary 8.10].

(d) If M had some nonzero harmonic spinor, then by (c), we must have Rm
f = 0, a contradiction. This can also

be proven directly by integrating the Lichnerowicz formula for DM×F as in [LM89, Corollary 8.9].

The bound from part b of Corollary 1.7 is weaker than the bound in Lemma 1.6 even in the limit m → ∞, but
has an interesting proof based on the geometry of warped products. In Section 2.2.4, we discuss stronger results
for m < 0.

1.4 The spinor norm on Σ(M × F )
We end this section with a description of the spinor norm on Σ(M × F ), which will be used in the proof of
the Bakry–Emery positive mass theorem in Section 2. Recall that an irreducible complex representation Σn of
the complex Clifford algebra Cln can be given a Hermitian inner product ⟨·, ·⟩Cln

for which ⟨v · φ1, v · φ2⟩Cln
=

⟨φ1, φ2⟩Cln for all v ∈ Rn with |v| = 1. Such an inner product is constructed by choosing an orthonormal frame
e1, . . . , en for Rn and averaging an arbitrary inner product over the multiplicative group generated by e1, . . . , en

in Cln; see [LM89, Proposition 5.16] for details. The inner product ⟨·, ·⟩Cln
is unique up to a positive constant,

as any such inner product yields an isomorphism of irreducible representations Σn → Σ∗
n between Σn and its

conjugate dual representation, and any two such isomorphisms differ by a constant by the Schur Lemma.
Applying this fact globally, any spin manifold (N, g) admits an inner product ⟨·, ·⟩N on its complex spinor

bundle ΣN for which multiplication by unit tangent vectors is unitary. Over a local trivialization of TN ,
this inner product can be obtained by averaging the restriction of an arbitrary inner product on ΣN over
an orthonormal frame and then scaling by some positive function. Consider now the warped product manifold
(M×F, g) with the spin structure described at the beginning of Section 1. Recall that Σ(M×F ) ∼= π∗

1(ΣM)⊗ΣV ,
where ΣM is given by

ΣM =
{

ΣM one of n, k even
Σ+M ⊕ Σ−M n, k odd
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We will identify sections of ΣM with their pullbacks to π∗
1(ΣM). We fix an inner product ⟨, ⟩M×F on Σ(M×F )

for which Clifford multiplication by unit vectors in T (M × F ) is unitary, and describe this inner product in
a trivialization of Σ(M × F ). We work now over a trivialization of T (M × F ) in an orthonormal frame
ξ1, . . . ξn, ζ1, . . . , ζn following the conventions in subsection 1.2.

Suppose first that one of n, k is even. Let ⟨, ⟩M , ⟨, ⟩V be inner products on ΣM = ΣM,ΣV for which Clifford
multiplication by unit vectors in TM, V is unitary respectively. We construct ⟨, ⟩M by pulling back an invariant
metric on M , and ⟨, ⟩V by averaging a constant inner product (this makes sense since ΣV is trivial) over the
group generated by the orthonormal frame ζi which are each constant along the F directions, so that ⟨, ⟩V is
also constant along the F directions. Define an inner product ⟨, ⟩ on Σ(M ×F ) on elementary tensors ϕ⊗ ν by

⟨ϕ⊗ ν, ϕ′ ⊗ ν′⟩ = ⟨ϕ, ϕ′⟩M ⟨ν, ν′⟩V

and extending bilinearly. Averaging ⟨, ⟩ over the orthonormal frame yields an inner product ⟨, ⟩2
M×F for which

clifford multiplication by unit vectors in T (M × F ) is unitary. We claim that ⟨, ⟩2
M×F agrees with ⟨, ⟩ on

elementary tensors. Recall the expressions for the Clifford multiplication on Σ(M ×F ) in 1.2. When n is even,
we have

⟨ξα · ϕ⊗ w, ξα · ϕ′ ⊗ w′⟩ = ⟨ξα · ϕ, ξα · ϕ′⟩⟨w,w′⟩ = ⟨ϕ, ϕ′⟩⟨w,w′⟩
⟨ζa · ϕ⊗ w, ζa · ϕ′ ⊗ w′⟩ = ⟨ϕ, ϕ′⟩⟨ζa · w, ζa · w′⟩ = ⟨ϕ, ϕ′⟩⟨w,w′⟩

where we use that complex conjugation preserves inner products, which can be seen by working in an orthonormal
basis of ΣM which respects the ⟨, ⟩M -orthogonal splitting Σn = Σ̂−

n ⊕Σ̂+
n into eigenspaces of the complex volume

element. The computation for when k is even is entirely analogous, except that w,w′ are conjugated instead of
ϕ, ϕ′. Thus up to scaling ⟨, ⟩M×F , we can assume it is given on elementary tensors by Equation 1.4.

Suppose next that n, k are both odd. Let ⟨, ⟩V , ⟨, ⟩M be as in the last case, and let ⟨, ⟩ΣM be a Hermitian inner
product on ΣM given by taking the direct sum of ⟨, ⟩M with itself. For sections Φ = ϕ+ ⊕ϕ−,Φ′ = (ϕ+)′ ⊕(ϕ−)′

of ΣM = Σ+M⊕Σ−M , we have ⟨Φ,Φ′⟩ΣM = ⟨ϕ+, ϕ+⟩M +⟨ϕ−, ϕ−⟩M . Define an inner product ⟨, ⟩ on Σ(M×F )
on elementary tensors Φ ⊗ ν by

⟨Φ ⊗ ν,Φ′ ⊗ ν′⟩ = ⟨Φ,Φ′⟩ΣM ⟨ν, ν′⟩V

Let ⟨, ⟩3
M×F denote the inner product obtained by averaging ⟨, ⟩ over the chosen orthonormal frame. Note that

⟨ξα · Φ, ξα · Φ′⟩ΣM = ⟨ξα · ϕ+, ξα · (ϕ+)′⟩M + ⟨−ξα · ϕ−,−ξα · (ϕ−)′⟩M

= ⟨ϕ+, (ϕ+)′⟩M + ⟨ϕ−, (ϕ−)′⟩M

= ⟨Φ,Φ′⟩ΣM

We have

⟨ξα · Φ ⊗ w, ξα · Φ′ ⊗ w′⟩ = ⟨ξα · Φ, ξα · Φ′⟩⟨w,w′⟩ = ⟨Φ,Φ′⟩⟨w,w′⟩
⟨ζa · Φ ⊗ w, ζa · Φ′ ⊗ w′⟩ = ⟨Φ,Φ′⟩⟨ζa · w, ζa · w′⟩ = ⟨Φ,Φ′⟩⟨w,w′⟩

Thus ⟨, ⟩3
M×F agrees with ⟨, ⟩ on elementary tensors, and up to scaling ⟨, ⟩M×F we can assume it is given on

elementary tensors by Equation 1.4.
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2 The Bakry-Émery Positive Mass Theorems
2.1 The warped product method
2.1.1 Some consequences of the results in [Dai04]

In [Dai04], a positive mass theorem is shown for manifolds Nn+m which outside of a compact set Ncpct are
diffeomorphic to the product (Rn \ BR(0)) × F for (Fm, gF ) a compact simply connected manifold admitting
parallel spinors, so that the metric over the end (Rn\BR(0))×F is asymptotic to the product metric g̊ = gRn ⊕gF

on Rn × Fm. In particular, the metric on M∞ is required to satisfy the following asymptotic conditions, where
∇̊ is the Levi-Civita connection of the product metric g̊, and r is the distance on the Rn factor induced from
the asymptotic coordinates:

g = g̊ + h, h = O(r−τ ), ∇̊h = O(r−τ−1), ∇̊∇̊h = O(r−τ−2)

The mass ofN is defined by the following integral in the coordinates induced from the diffeomorphismN\Ncpct
∼=

(Rn \BR(0)) × F :
m(g) =

∫
Sr×F

(∂αgαβ − ∂βgii)∂β⌟dVolg

We refer to the vector field (∂αgαβ − ∂βgii)∂β as the mass density field µ of N . Note that we use a different
convention for the mass than that in [Dai04], but it is the same mass up to a positive constant. Following the
conventions in Section 1, the indexes α, β run over the Euclidean factor, while the i index runs over the full
range of N . The following analogue of the positive mass theorem holds for N satisfying these conditions.

Lemma 2.1. (Theorem 0.2 in [Dai04]). Let N be a complete spin manifold as above with order τ > n−2
2 and

n ≥ 3. If N has non-negative scalar curvature, then m(g) ≥ 0 with equality if and only if M = Rn × F .

Lemma 2.1 applies in the following setting, where the results of Section 1 are especially relevant.

Definition 2.2. Let (Mn, g, vmdVolg,m), m ∈ N, be an asymptotically flat smooth metric measure space of
order τ with e−f = vm and f ∈ C2,α

−τ (M) ∩ C∞(M), and let F be a closed manifold. A metric g̃ on M × F
is asymptotically warped if on the end (M \ Mcpct) × F it is of the form g + h, where g is the warped product
metric g ⊕ v2gF and h satisfies the following asymptotic conditions

h = O(r−τ ), ∇̊h = O(r−τ−1), ∇̊∇̊h = O(r−τ−2)

where ∇̊ is the Levi-Civita connection on the product Rn × F . We refer to (M × F, g̃) as an asymptotically
warped manifold.

An immediate consequence of Lemma 2.1 is the following result:

Theorem 2.3. Let (M × F, g̃) be an asymptotically warped manifold, with M,F complete spin manifolds and
F a closed manifold admitting parallel spinors with respect to some spin structure. If the scalar curvature Rg̃ is
non-negative, then m(g̃) ≥ 0 with equality if and only if (M × F, g̃) is isometric to Rn × F .

Proof. We first show that the warped product manifold (M × F, g) satisfies the conditions required to apply
Lemma 2.1. Since the metric g itself already satisfies each asymptotic condition in, it suffices to show that
v2gF,ij satisfies these conditions. Since vm = e−f and f ∈ C2,α

−τ (M), f = O(r−τ ), so there is a constant C1 such
that −f ≤ C1r

−τ , where r = |x|. Then

v2 = e−2f/m

= (e−f )2/m

≤ e(2/m)C1r−τ

.

Using the Taylor series expansion for ex, it follows that

e(2/m)C1r−τ

= 1 + 2C1

m
r−τ + 2C2

1
m2 r

−2τ + · · ·

= 1 + O(r−τ ).
14



Similarly, there is a constant C2 such that C2r
−τ ≤ −f and e(2/m)C2r−τ = 1 + O(r−τ ). Then

v2 = 1 + O(r−τ ),

hence
v2gF,ij = gF,ij + O(r−τ ),

from which the first asymptotic property of 2.1.1 follows. As for the second property, we have

∂k(v2gF,ij) = (2v)vkgF,ij .

Since v = 1 + O(r−τ ), vk = O(r−τ−1). Then

∂k(v2gF,ij) = (2 + O(r−τ ))O(r−τ−1)gF,ij

= O(r−τ−1) + O(r−2τ−1)
= O(r−τ−1).

The verification of the third property is analogous. This shows that the asymptotically warped manifold satisfies
the correct decay conditions outside of the compact set Mcpct × F , but we can not yet apply Lemma [Dai04]
because we are not assuming the factor F is simply connected. However, the simply connected assumption on
F is only necessary in the proof in [Dai04] to ensure that the spin structure on N restricts to the product spin
structure on the asymptotic end (Rn \BR(0)) ×F . Since in our case N = M ×F is globally a product, we may
give it the product spin structure as in subsection 1.1 to guarantee this is the case.

Theorem 2.3 is of interest because the warped product (M × Fm, g) has scalar curvature equal to the Bakry-
Emery scalar curvature Rm

f of the SMMS M . Moreover, by Theorem 1.2, as long as the projection onto the first
factor π1 : M × F → M remains a Riemannian submersion, the Dirac Operator of (M × F, g̃) can be described
as a perturbation of the weighted Dirac Operator on M using the formulas in 1.4.

2.1.2 The Warped Bakry-Émery Positive Mass Theorem

In the case of manifolds that are actually warped, the results of Section 1 apply directly to give a simplified
proof of Theorem 2.3, and the Weighted Positive Mass Theorem ([BO22, Theorem 2.13]) can then be seen as
a special case of Theorem 2.3. In particular, when the manifold with parallel spinors F is a flat torus Tm

normalized so that Vol(Tm) = 1, one recovers the Bakry-Émery mass, equal to the weighted mass introduced in
[BO22], and the weighted Witten’s formula from the mass and Witten’s formula for the warped product M ×F .
Motivated by this, we will refer to the following special case of Theorem 2.3 as the warped Bakry-Émery positive
mass theorem.

Theorem 2.4 (Warped Bakry-Émery positive mass theorem). Suppose (Mn, g, vmdVolg,m), m ∈ N, is an
asymptotically Euclidean smooth metric measure space of order τ > n−2

2 , where (M, g) is a complete spin
manifold. Let (Fm, gF ) be a complete, closed spin manifold admitting parallel spinors with respect to some
spin structure, and let g = g ⊕ v2gF be the warped product metric on M × F . Assume vm = e−f for some
f ∈ C2,α

−τ (M) ∩ C∞(M), Rm
f ≥ 0, and Rm

f ∈ L1(M, g). Then m(g) ≥ 0, with equality if and only if (M ×F, g) is
isometric to Rn × F and f is identically 0.

We first show that, when F is a flat torus with gF = δij , the following surprising relationship holds between the
mass of the warped product and the weighted mass with respect to f .

Theorem 2.5. The mass of (M × F, g) is precisely the weighted mass of (Mn, g) with respect to f , i.e. the
Bakry-Émery mass of (Mn, g, vmdVolg,m).

Proof. Note that

gij =


gij i, j ≤ n

0 i ≤ n, n+ 1 ≤ j ≤ n+m or n+ 1 ≤ i ≤ n+m, j ≤ n

v2hij n+ 1 ≤ i, j ≤ n+m

. (2.1)
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Then since gij and v only depend on the M coordinates, we have by (2.1)

(∂igij − ∂jgii)∂j =


(∂igij − ∂jgii)∂j if i, j ≤ n,

−∂j(v2)∂j if i > n, j ≤ n,

0 otherwise.

Then

µ̄ =
n+m∑
i,j=1

(∂igij − ∂jgii)∂j

=
n∑

i,j=1
(∂igij − ∂jgii)∂j −m

n∑
j=1

∂j(v2)∂j

= µ− 2mv
n∑

j=1
vj∂j . (2.2)

This last expression is constant along each fiber. Using (2.2) and the relation vm = ef , µ can be written as

µ = µ+ 2e− 2f
m

∑
j≤n

(∂jf)∂j

= µ+ 2e− 2f
m ∇f,

where µ is the mass-density vector field of (Mn, g). Consequently, the mass of (M × F, g) may be written as

m(g) = lim
ρ→∞

∫
SM

ρ ×F

(µ+ 2e− 2f
m ∇f)⌟dVolg

= lim
ρ→∞

∫
SM

ρ ×F

µ⌟dVolg︸ ︷︷ ︸
=I1

+ 2 lim
ρ→∞

∫
SM

ρ ×F

e− 2f
m ∇f⌟dVolg︸ ︷︷ ︸

=I2

(2.3)

We compute

dVolv2h =
√

det(v2h)dxn+1 ∧ · · · ∧ dxn+m

=
√
v2m det(h)dxn+1 ∧ · · · ∧ dxn+m

= vmdVolh.

We may now use Fubini’s theorem to write I1 as

I1 = lim
ρ→∞

∫
F

(∫
SM

ρ

µ⌟vmdVolg

)
dVolh

= lim
ρ→∞

∫
SM

ρ

µ⌟vmdVolg,

where we used the fact that Vol(F ) = 1. Since vm = e−f = 1 + O(r−τ ) and µ = O(r−τ−1), it follows that

I1 = lim
ρ→∞

∫
SM

ρ

µ[1 + O(r−τ )]⌟dVolg

= lim
ρ→∞

∫
SM

ρ

µ⌟dVolg. (2.4)
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Similarly, since ∇f = O(r−τ−1),

I2 = lim
ρ→∞

∫
F

(∫
SM

ρ

e− 2f
m ∇f⌟e−fdVolg

)
dVolh

= lim
ρ→∞

∫
Sρ

∇f [1 + O(r−τ )]⌟e−fdVolg

= lim
ρ→∞

∫
SM

ρ

∇f⌟e−fdVolg

= lim
ρ→∞

∫
SM

ρ

⟨∇f, n⃗⟩e−fdAg (2.5)

Plugging (2.4) and (2.5) into (2.3), we obtain

m(g) = m(g) + lim
ρ→∞

∫
SM

ρ

⟨∇f, n⃗⟩e−fdAg

= mf (g).

Theorem 2.5 shows that the weighted positive mass theorem in [BO22] can be seen as a positive mass theorem
for a warped product when Rm

f ≥ 0. In fact, our proof of theorem 2.4 will show that m(g) ≥ 0 given only that
Rf ≥ 0, though the conclusion that f vanishes identically only follows if Rm

f ≥ 0 for some m ∈ N.

2.1.3 Proof of the Warped Bakry-Émery Positive Mass Theorem

We now give a self contained proof of Theorem 2.4 in the case when F is a flat torus, based on arguments that
also simplify the proof in [Dai04] in the general case. In particular, our proof relies on Theorem 1.2 and Lemma
A.3 in [BO22] for the construction of harmonic spinors that tend to a constant spinor of norm 1 at infinity, as
opposed to the fibered boundary calculus of Mazzeo and Melrose used for the more general case in [Dai04]. We
let (M×F, g) be as in the hypothesis of Theorem 2.4. We work with the spin structure on M×F constructed in
subsection 1.1 and will use the description of the spinor norm on Σ(M ×F ) in subsection 1.4. In particular, let
⟨, ⟩M , ⟨, ⟩V be Clifford invariant and connection compatible inner products on ΣM,ΣV respectively. The inner
product ⟨, ⟩ defined on elementary tensors as in 1.4 by ⟨ϕ ⊗ ν, ϕ′ ⊗ ν′⟩ = ⟨ϕ, ϕ′⟩M ⟨ν, ν′⟩V is Clifford Invariant,
and compatible with the spin connection.

Lemma 2.6. Suppose Rf ≥ 0. There exists a DM×F -harmonic spinor ψ on (M ×F, g) which is asymptotic to
a constant spinor ψ0 at infinity in the sense that ψ − ψ0 ∈ O(r−τ ), where r = |x|.

Proof. Choose a constant section φ0 with |φ0| → 1 of ΣM defined over the trivialization of ΣM on the asymptotic
end M \K and extend φ0 smoothly over all of M . Since Rm

f ∈ L1(M, g) |∇f |2 = O(r−2τ−2), and −2τ−2 < −n,
it follows that Rf ∈ L1(M, g) as well. Theorem 2.5 in [BO22] then provides a DM

f harmonic spinor φ on M

with φ0 − φ ∈ C2,α
−τ (M). Let ν be a parallel section of ΣV with |ν|V = 1, where |ν|V denotes the norm of

ν with respect to a fixed invariant metric on ΣV as in subsection 1.4. Note such a ν exists by hypothesis on
F . Consider the sections ψ = π∗

1(φ) ⊗ ν, ψ0 = π∗
1(φ0) ⊗ ν of Σ(M × F ), where we view φ,φ0 as sections of

ΣM = ΣM when one of n,m is even, and Σ+M when n,m are both odd. From the results of Section 1, we have
DM×Fψ = (DM

f φ) ⊗ ν = 0 in the case when n is even or both n,m are odd, and DM×Fψ = (DM
f φ) ⊗ ν = 0

when n is odd and m is even. From the discussion of the spinor norm in subsection 1.4 we have

|ψ − ψ0| = |π∗
1(φ− φ0) ⊗ ν| = |φ− φ0|M |ν|V = |φ− φ0|

It follows that ψ − ψ0 = O(r−τ ), as desired.

In the case when F is a flat torus, we now show explicitly that the harmonic spinor constructed in the previous
lemma is in fact a Witten spinor for M × F . This is proven for general F in [Dai04, Lemmas 2.1,4.2].
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Lemma 2.7 (Bakry–Émery Witten formula). Let Tm be the m-dimensional flat torus of unit volume. The
harmonic spinor ψ constructed in Lemma 2.6 satisfies Witten’s formula for the mass of (M × T, g):

m(g) = 4
∫

M×F

[
|∇gψ|2g + 1

4R
m
f |ψ|2g

]
dVolg. (2.6)

Proof. By the choice of spin structure on M ×F , the spinor bundle Σ(M ×F ) is trivialized over the asymptotic
end (M \K) × F . With respect to this trivialization, the Dirac operator is given by

DM×Fψ = ei · ∂iψ − 1
8(∂kgij)ei · [ej , ek]ψ + O(r−2τ−1)ψ. (2.7)

With ψ,ψ0 as in Lemma 2.6, we define ξ := ψ0 − ψ. Integrating by parts, we obtain

0 =
∫

BM
ρ ×F

|DM×Fψ|2gdVolg

=
∫

BM
ρ ×F

|∇gψ|2 − Re
∫

SM
ρ ×F

⟨ψ,∇ei
ψ⟩gιei

dVolg + 1
4

∫
BM

ρ ×F

Rm
f |ψ|2gdVolg,

hence ∫
BM

ρ ×F

[
|∇gψ|2g + 1

4R
m
f |ψ|2g

]
dVolg = Re

∫
SM

ρ ×F

⟨ψ,∇eiψ⟩gιeidVolg. (2.8)

By the definition of ψ,

⟨ψ,∇ei
ψ⟩g = ⟨ψ0 − ξ,∇ei

(ψ0 − ξ)⟩g

= ⟨ψ0,∇ei
ψ0⟩g − ⟨ψ0,∇ei

ξ⟩g − ⟨ξ,∇ei
ψ0⟩g + ⟨ξ,∇ei

ξ⟩g. (2.9)

We note that [ej , ek] is skew-Hermitian. To see this, since ⟨eiϕ, eiϕ′⟩g = ⟨ϕ, ϕ′⟩g for any two spinors ϕ and ϕ′,
it follows that

−⟨eiϕ, ϕ′⟩g = ⟨eiϕ, ei · ei · ϕ′⟩g = ⟨ϕ, eiϕ′⟩g.

Then

⟨ϕ, [ej , ek]ϕ′⟩g = ⟨ϕ, 2ejekϕ′⟩g

= −2⟨ejϕ, ekϕ′⟩g

= 2⟨ekejϕ, ϕ′⟩g

= −⟨[ej , ek]ϕ, ϕ′⟩g,

(2.10)

as claimed. Letting ϕ = ϕ′ = ψ0, it follows that

⟨ψ0, [ej , ek]ψ0⟩g = −⟨[ej , ek]ψ0, ψ0⟩g

= −⟨ψ0, [ej , ek]ψ0⟩g,

hence ⟨ψ0, [ej , ek]ψ0⟩g is purely imaginary. Since ψ0 is a constant spinor, ∂iψ0 = 0, hence

Re⟨ψ0,∇ei
ψ0⟩g =

〈
ψ0,−

1
8Re(∂kgij)Re([ej , ek]ψ0) + O(r−2τ−1)

〉
g

= −1
8Re(∂kgij)Re⟨ψ0, [ej , ek]ψ0⟩g + O(r−2τ−1)|ψ0|2g

= O(r−2τ−1)|ψ0|2g.

Since ∂kgij = O(r−τ−1) and |ψ0|g → 1 as r = |x| → ∞, it follows that Re⟨ψ0,∇ei
ψ0⟩g = O(r−τ−1). Similarly,

Re⟨ξ,∇ei
ψ0⟩g = Re⟨∂iξ,∇ei

ψ0⟩g − 1
8Re(∂kgij)⟨ξ, [ej , ek]∇ei

ψ0⟩g + O(r−2τ−1)⟨ξ,∇ei
ψ0⟩g. (2.11)
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Since ∇ei
ψ0 is a linear combination of ∂iψ0 = 0 for each i ≤ n + m and the Christoffel symbols with respect

to the orthonormal frame, which are O(r−τ−1), it follows that ∇ei
ψ0 = O(r−τ−1). Since ξ = O(r−τ ), we have

∂iξ = O(r−τ−1). Thus the first term of (2.11) is O(r−2τ−2), the second term is O(r−3τ−2), and the third term
is O(r−2τ−1), so overall, Re⟨ξ,∇eiψ0⟩g = O(r−2τ−1). Similarly, Re⟨ξ,∇eiξ⟩g = O(r−2τ−1), so the first, third,
and fourth terms of (2.9) vanish as r = |x| → ∞.

It remains to analyze the second term of (2.9). To do this, for each i ≤ n+m, we define the operator Li by

Li := ∇ei
+ ei ·DM×F .

We note that
δij + ei · ej = 1

2[ei, ej ]. (2.12)

Indeed, if i = j, then the left-hand side is 0 and [ei, ej ] = 0 as well. If i ̸= j, then the left-hand side is ei · ej

and the right-hand side is 1
2 (2ei · ej) = ei · ej . Thus

Li = ∇ei +
∑

j≤n+m

ei · ej · ∇ej

=
∑

j≤n+m

(δij∇ej
+ ei · ej · ∇ej

)

=
∑

j≤n+m

(δij + ei · ej)∇ej

= 1
2
∑

j≤n+m

[ei, ej ]∇ej .

(2.13)

We now define the (n− 2)-form
α :=

∑
j≤n+m

⟨[ei, ej ]ψ0, ξ⟩gei⌟ej⌟dVolg.

Then

dα = −2
∑

j≤n+m

(⟨[ei, ej ]∇ej
ψ0, ξ⟩g + ⟨[ei, ej ]ψ0,∇ej

ξ⟩g)ei⌟dVolg. (2.14)

We defer the proof of (2.14) to Appendix A.2. It now follows from (2.13) that∑
j≤n+m

⟨[ei, ej ]∇ej
ψ0, ξ⟩g = 2⟨Liψ0, ξ⟩g, (2.15)

and by (2.10), ∑
j≤n+m

⟨[ei, ej ]ψ0,∇ejξ⟩g = −
∑

j≤n+m

⟨ψ0, [ei, ej ]∇ejξ⟩g

= −2⟨ψ0, Liξ⟩g.

(2.16)

Plugging (2.15) and (2.16) into (2.14), we obtain

dα = −4[⟨Liψ0, ξ⟩g − ⟨ψ0, Liξ⟩g]ei⌟dVolg.

It now follows from Stokes’ theorem that∫
SM

ρ ×F

[⟨Liψ0, ξ⟩g − ⟨ψ0, Liξ⟩g]ei⌟dVolg = −1
4

∫
SM

ρ ×F

dα

= −1
4

∫
∂SM

ρ ×F

α

= 0,
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hence ∫
Sρ×F

⟨Liψ0, ξ⟩gei⌟dVolg =
∫

Sρ×F

⟨ψ0, Liξ⟩gei⌟dVolg. (2.17)

Using the fact that ei ·DM×F − Li = −∇ei and DM×F (ψ0 − ξ) = 0, (2.17) implies

−Re
∫

SM
ρ ×F

⟨ψ0,∇eiξ⟩gei⌟dVolg = Re
∫

SM
ρ ×F

⟨ψ0, (ei ·DM×F − Li)ξ⟩gei⌟dVolg

= Re
∫

SM
ρ ×F

[⟨ψ0, e
i ·DM×F ξ⟩g − ⟨ψ0, Liξ⟩g]ei⌟dVolg

= Re
∫

SM
ρ ×F

[⟨ψ0, e
i ·DM×Fψ0⟩g − ⟨ψ0, Liξ⟩g]ei⌟dVolg

= Re
∫

SM
ρ ×F

[⟨ψ0, e
i ·DM×Fψ0⟩g − ⟨Liψ0, ξ⟩g]ei⌟dVolg. (2.18)

Since ∇ei
ψ0 = O(r−τ−1), DM×Fψ0 = O(r−τ−1), and ξ = O(r−τ ), it follows that ⟨Liψ0, ξ⟩g = O(r−2τ−1). As

for the first term, by (2.7) and the fact that ∂iψ0 = 0, we have

ei ·Dψ0 = −1
8

∑
j,k,ℓ≤n+m

(∂kgℓj + O(r−2τ−1))ei · eℓ · [ej , ek]ψ0

= −1
4

∑
j,k,ℓ≤n+m

(∂kgℓj + O(r−2τ−1))ei · eℓ · (δjk + ej · ek)ψ0 (2.19)

Moreover, it follows from relabeling indices that∑
j,k,ℓ≤n+m

∂kgℓje
i · eℓ · δjkψ0 =

∑
k,ℓ≤n+m

∂kgℓke
i · eℓψ0

=
∑

k,ℓ≤n+m

∂ℓgkℓe
i · ekψ0

=
∑

j,k≤n+m

∂jgkje
i · ekψ0.

(2.20)

Similarly, ∑
j ̸=ℓ,k≤n+m

∂kgℓje
i · eℓ · ej · ekψ0 = −

∑
j ̸=ℓ,k≤n+m

∂kgℓje
i · ej · eℓ · ekψ0

= −
∑

j ̸=ℓ,k≤n+m

∂kgjℓe
i · eℓ · ej · ekψ0

= −
∑

j ̸=ℓ,k≤n+m

∂kgℓje
i · eℓ · ej · ekψ0,

hence ∑
j ̸=ℓ,k≤n+m

∂kgℓje
i · eℓ · ej · ekψ0 = 0. (2.21)

Analogously, ∑
j ̸=ℓ,k≤n+m

O(r−2τ−1)ei · eℓ · ej · ekψ0 = 0. (2.22)
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It follows from (2.21) and (2.22), respectively, that∑
j,k,ℓ≤n+m

∂kgℓje
i · eℓ · ej · ekψ0 =

∑
j=ℓ,k≤n+m

∂kgℓje
i · eℓ · ej · ekψ0 +

∑
j ̸=ℓ,k≤n+m

∂kgℓje
i · eℓ · ej · ekψ0

=
∑

j=ℓ,k≤n+m

∂kgℓje
i · eℓ · ej · ekψ0

=
∑

j,k≤n+m

∂kgjje
i · ej · ej · ekψ0

= −
∑

j,k≤n+m

∂kgjje
i · ekψ0

(2.23)

and ∑
j,k,ℓ≤n+m

O(r−2τ−1)ei · eℓ · ej · ekψ0 =
∑

j=ℓ,k≤n+m

O(r−2τ−1)ei · eℓ · ej · ekψ0

= −
∑

k≤n+m

O(r−2τ−1)ei · ekψ0.
(2.24)

Plugging (2.20), (2.23), and (2.24) into (2.19), we obtain

ei ·DM×Fψ0

= −1
4

∑
j,k,ℓ≤n+m

∂kgℓje
i · eℓ · δjkψ0 + 1

4
∑

j,k,ℓ≤n+m

∂kgℓje
i · eℓ · ej · ekψ0

− 1
4O(r−2τ−1)ei

∑
k≤n+m

O(r−2τ−1)ei · ekψ0

= −1
4

∑
j,k≤n+m

(∂jgkj − ∂kgjj + O(r−2τ−1))ei · ekψ0.

It now follows from (2.12) that

ei ·DM×Fψ0 = −1
4

∑
j,k≤n+m

(∂jgkj − ∂kgjj + O(r−2τ−1))ei · ekψ0

= −1
4

∑
j,k≤n+m

(∂jgkj − ∂kgjj + O(r−2τ−1))
(

1
2 [ei, ek] − δik

)
ψ0

= −1
8

∑
j,k≤n+m

(∂jgkj − ∂kgjj + O(r−2τ−1))[ei, ek]ψ0

+ 1
4
∑

j≤n+m

(∂jgij − ∂igjj + O(r−2τ−1))ψ0. (2.25)

Plugging (2.25) into (2.18) and using the fact that [ei, ek] is skew, we obtain

−Re
∫

SM
ρ ×F

⟨ψ0,∇ei
ξ⟩gei⌟dVolg = 1

4
∑
j≤n

∫
SM

ρ ×F

(∂jgij − ∂igjj + O(r−2τ−1))|ψ0|2gei⌟dVolg.

Summing over i ≤ n+m, it follows that

−Re
∫

SM
ρ ×F

⟨ψ0,∇ei
ξ⟩gei⌟dVolg = 1

4

∫
SM

ρ ×F

µ|ψ0|2g⌟dVolg + O(r−2τ−1). (2.26)

Plugging (2.26) into (2.8) and being conscious of the asymptotically decaying terms (i.e. only the second term
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of (2.9) contributes to the limit), we obtain∫
M×F

[
|∇gψ|2g + 1

4R
m
f |ψ|2g

]
dVolg = lim

ρ→∞

∫
BM

ρ ×F

[
|∇gψ|2g + 1

4R
m
f |ψ|2g

]
dVolg

= − lim
ρ→∞

Re
∫

SM
ρ ×F

⟨ψ0,∇ei
ξ⟩gei⌟dVolg

= 1
4 lim

ρ→∞

∫
SM

ρ ×F

µ|ψ0|2g⌟dVolg.

Since |ψ0|g → 1 as r → ∞, it follows that∫
M×F

[
|∇gψ|2g + 1

4R
m
f |ψ|2g

]
dVolg = 1

4 lim
ρ→∞

∫
SM

ρ ×F

µ⌟dVolg

= 1
4m(g),

from which the Bakry-Émery Witten formula (2.6) follows.

Using the discussion in subsection 1.4, we can describe Witten’s formula for the mass m(g) more explicitly. Let
ψ = π∗

1(φ) ⊗ ν be the harmonic spinor constructed in Lemma 2.6. The formula for the Bakry-Émery mass in
Lemma 2.7 yields

mf,m(g) = 4
∫

M×F

[
|∇M×F (φ⊗ ν)|2g + 1

4R
m
f |φ⊗ ν|2g

]
dVolM×F .

The norms here are all with respect to the spinor norm on M × F , and we identify sections of ΣM with their
pullbacks to sections on π∗

1(ΣM). From the calculation of the spin connection on M × F , we have

|∇M×F (φ⊗ ν)|2 = |(∇Mφ) ⊗ ν|2 +
∑

a

〈
1

2mζa · ∇f · (φ⊗ ν), 1
2mζa · ∇f · (φ⊗ ν)

〉
= |(∇Mφ) ⊗ ν|2 +

∑
a

1
4m2 |(∇f · φ) ⊗ ν|2

= |(∇Mφ) ⊗ ν|2 + 1
4m |(∇f · φ) ⊗ ν|2.

This lets us cancel terms when |∇f | ≠ 0. We have

1
4m |(∇f · φ) ⊗ ν|2 = |∇f |2

4m

〈
∇f
|∇f |

· φ⊗ ν,
∇f
|∇f |

· φ⊗ ν

〉
= |∇f |2

4m |φ⊗ ν|2

This cancels the extra term in 1
4Rm,f |ψ ⊗ ν|2, hence we obtain

mf,m(g) = 4
∫

M×F

[
|(∇Mφ) ⊗ ν|2 + 1

4Rf |φ⊗ ν|2
]
dVolM×F

From the discussion in subsection 1.4,

mf,m(g) = 4
∫

M×F

[
|(∇Mφ) ⊗ ν|2 + 1

4Rf |φ⊗ ν|2
]
dVolM×F

= 4
∫

M×F

[
|∇Mφ|2M + 1

4Rf |φ|2M
]
dVolM×F .

We will show next that the general Witten’s formula 2.1.3 reduces to the weighted Witten’s formula in the
case when F = Tm is a flat torus of unit volume. The norm | · |M is the pullback norm on the spinor bundle
π∗(ΣM) of an invariant norm on ΣM , hence it is constant along the T directions. Similarly, the norm | · |V is
also constant along the T directions, hence we can write mf,m(g) as

mf,m(g) = 4
∫

M

[
|∇Mφ|2M + 1

4Rf |φ|2M
]
e−fdVolM .
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Recall from Theorem 2.5 in [BO22] that the weighted mass mf of (M, g, f) is given by

mf (g) = 4
∫

M

[
|∇Mφ|2M + 1

4Rf |φ|2M
]
e−fdVolM .

Thus we recover the weighted Witten’s formula from the Witten’s formula for M × T . Under the additional
assumptions that R ≥ 0, R ∈ L1(M, g) (see [BO22, pp.11] and [LP87, pp.87–90]), one can take φ = e

f
2 φ, where

φ is an unweighted Witten spinor satisfying the following standard Witten’s formula for the ordinary mass:

m(g) = 4
∫

M

[
|∇Mφ|2M + 1

4Rf |φ|2M
]
dVolM .

Thus, under these additional assumptions, one can obtain the spinor ψ using the harmonic spinors on M
constructed for the standard proof of the positive mass theorem.

Proof of Theorem 2.4. It follows from Lemma 2.7 that m(g) ≥ 0. When m(g) = 0, formula 2.1.3 implies that
φ⊗ ν is parallel, and the identity

|∇M×F (φ⊗ ν)|2 = |(∇Mφ) ⊗ ν|2 + 1
4m |(∇f · φ) ⊗ ν|2

then implies that φ is a parallel spinor on M and ∇f = 0. In particular, it follows that f is constant and M
is Ricci flat by the Ricci identity. Since f = O(r−τ ), it follows that f = 0 identically. We conclude by noting
that any Ricci flat, asympotically flat, complete Riemannian manifold is isometric to Euclidean space by the
Bishop-Gromov volume comparison theorem (see [CLN06, Corollary 1.134]).

Remark 2.8. One can alternatively prove Lemma 2.4 using the reasoning from [Dai04] as follows. It follows
from Witten’s formula that m(g) ≥ 0. If m(g) = 0, then ∇gψ = 0, so ψ is a parallel spinor. By the Ricci
identity,

ei ·R(ei, X)ψ = −1
2Ric(X)ψ,

it follows that M × F is Ricci flat. As in [Dai04], one can construct n-independent geodesic lines in M × F by
choosing pairs of points pi, qi in the asymptotic end (M \ K) × F with distance comparable to the Euclidean
distance. The Cheeger-Gromoll splitting theorem then implies that M × F is isometric to the Riemannian
product Rn × F . In particular, M is isometric to Rn and M × F is a Riemannian product, so the warping
function v2 = e− 2f

m is constant. This gives some geometric intuition for why f must be constant in the case of
equality.
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2.2 The conformal metric method
The warped product method only allows us to show that the Bakry-Émery mass is non-negative for m ∈ N. In
this section, we show that conformally changing the original metric g on our asymptotically Euclidean manifold
M allows us to prove the Bakry-Emery positive mass theorem for m ̸∈ [1 − n, 0]. Comparing to the warped
product method, this method is less geometrically intuitive, yet more intrinsic in the sense that we are only
concerned with the original manifold. Our goal is to prove the following continuous (up to a set of finite measure)
version of the Bakry-Émery positive mass theorem:

Theorem 2.9 (Conformal Bakry-Émery positive mass theorem). Suppose (Mn, g, vmdVolg,m) is an asymp-
totically Euclidean smooth metric measure space of order τ > n−2

2 , where 3 ≤ n ≤ 7 or M is spin. Assume
vm = e−f for some f ∈ C2,α

−τ (M) ∩ C∞(M).

(a) If m ∈ Sn = R \ [1 − n, 0], Rm
f ∈ L1(M, g), and Rm

f ≥ 0, then mf,m(g) ≥ 0, with equality if and only if
(Mn, g) is isometric to (Rn, δij) and f is identically 0.

(b) If m ∈ [1 − n, 0), Rm
f ∈ L1(M, g), Rm

f ≥ Fm
f , and Rε−n

f ≥ 0 for some ε ∈ [0, 1), then mf,m(g) ≥ 0, with
equality if and only if (Mn, g) is isometric to (Rn, δij) and f is identically 0.

Since N ⊂ Sn, Theorem 2.9 is a strict improvement of Theorem 2.4. Additionally, since (0,∞) ⊂ Sn, the
condition Rm

f ≥ 0 converges to Rf ≥ 0 as m → ∞, which is assumed in the weighted positive mass theorem
proven in [BO22].

Besides conformally changing the metric, the proof also involves analyzing the following Bakry-Émery barrier
function:

Fm
f := m+ n− 1

m(1 − n) |∇f |2. (2.27)

Observe that Fm
f ≤ 0 if m ∈ Sn.

In Section 2.2.3, we generalize Baldauf and Ozuch’s positive mass theorem to allow for some negative weighted
scalar curvature:

Corollary 2.10 (Generalized weighted positive mass theorem). Suppose (Mn, g, f), f ∈ C2,α
−τ (M), is a weighted

asymptotically Euclidean spin manifold of order τ > n−2
2 , and assume Rf ∈ L1(M, g) and Rf ≥ − 1

n−ε |∇f |2 for
some ε < 1. Then mf (g) ≥ 0, with equality if and only if (Mn, g) is isometric to (Rn, δij).

To show that this is indeed a nontrivial extension of the weighted positive mass theorem, we proceed to
construct the Bakry-Émery logarithmic functions, with respect to which the weighted mass is positive and the
weighted scalar curvature is negative.

2.2.1 The Bakry-Émery conformal metric

As before, we let (Mn, g, vmdVolg,m) be an asymptotically Euclidean smooth metric measure space of order
τ > n−2

2 with vm = e−f for some f ∈ C2,α
−τ (M)∩C∞(M). This time, however, we allow m to be any real number

outside the interval [1 − n, 0] in lieu of restricting it to be a natural number.

Definition 2.11. We define the Bakry-Émery conformal metric gf,m of (Mn, g, vmdVolg,m) by

gf,m := e
2f

1−n g = v
2m

n−1 g.

Since v 2m
n−1 = 1 + O(r−τ ) and gij = δij + O(r−τ ) in asymptotic coordinates for g, it follows that (gf,m)ij =

δij +O(r−τ ) in the same coordinates. Analogous asymptotic conditions hold for the first and second derivatives
of gf,m as well. Thus, (Mn, gf,m) is also asymptotically Euclidean of order τ , and any asymptotic coordinate
system for g is also an asymptotic coordinate system for gf,m.
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We thus fix a coordinate system for M∞ that is simultaneously asymptotic for g and gf,m. The mass-density
vector field of (Mn, gf,m) is then given by

µf,m = [∂i(gf,m)ij − ∂j(gf,m)ii] ∂j

=
[
∂i(v

2m
n−1 gij) − ∂j(v 2m

n−1 gii)
]
∂j

= v
2m

n−1 (∂igij − ∂jgii)∂j + 2m
n− 1v

2m−n+1
n−1 (vigij − vjgii)∂j

= v
2m

n−1µ+ 2m
n− 1v

2m−n+1
n−1 (vigij − vjgii)∂j ,

(2.28)

where µ is the mass-density vector field of (Mn, g). Since v = 1 + O(r−τ ), ∇v = O(r−τ−1). Since (Mn, g) is
asymptotically Euclidean, it follows that

vigij = vi[δij + O(r−τ )]
= viδij + O(r−2τ−1).

It now follows from (2.28) and relabeling indices that

µf,m = v
2m

n−1µ+ 2m
n− 1v

2m−n+1
n−1 (viδij − vjδii)∂j + O(r−2τ−1)

= v
2m

n−1µ+ 2m
n− 1v

2m−n+1
n−1 (vjδij − viδjj)∂i + O(r−2τ−1)

= v
2m

n−1µ+ 2m
n− 1v

2m−n+1
n−1 (1 − n)

n∑
i=1

vi∂i + O(r−2τ−1)

= v
2m

n−1µ− 2mv
2m−n+1

n−1

n∑
i=1

vi∂i + O(r−2τ−1).

(2.29)

Additionally, the volume element with respect to gf,m is given by

dVolgf,m
=
√

det(gf,m) dx1 ∧ · · · ∧ dxn

= v
2mn

2(n−1)
√

det(g) dx1 ∧ · · · ∧ dxn

= v
mn
n−1 dVolg.

(2.30)

Ultimately, we want to show that the Bakry-Émery mass is related to the ordinary mass of (Mn, gf,m), which
is non-negative provided Rgf,m

≥ 0 by the ordinary positive mass theorem. The first step is to use (2.29) and
(2.30) to compute the mass with respect to gf,m:

m(gf,m) = lim
ρ→∞

∫
Sρ

µf,m⌟dVolgf,m

= lim
ρ→∞

∫
Sρ

v
2m

n−1µ⌟v
mn
n−1 dVolg︸ ︷︷ ︸

=I1(m)

+ lim
ρ→∞

∫
Sρ

−2mv
2m−n+1

n−1 vi∂i⌟v
mn
n−1 dVolg︸ ︷︷ ︸

=I2(m)

.
(2.31)

We now prove the following surprising relationship between the mass of (Mn, gf,m) and the Bakry-Émery mass
of (Mn, g, vmdVolg,m):

Lemma 2.12. For any m ∈ Sn,
mf,m(g) = m(gf,m).
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Proof. Since vk = 1 + O(r−τ ) for any k ∈ R and µ = O(r−τ−1), we can write I1(m) as

I1(m) = lim
ρ→∞

∫
Sρ

v
3m

n−1µ⌟vmdVolg

= lim
ρ→∞

∫
Sρ

[1 + O(r−τ )]µ⌟vmdVolg

= lim
ρ→∞

∫
Sρ

µ⌟vmdVolg + lim
ρ→∞

∫
Sρ

O(r−2τ−1)⌟vmdVolg

= lim
ρ→∞

∫
Sρ

µ⌟vmdVolg. (2.32)

Similarly, since vi = O(r−τ−1), vk · vi = O(r−τ−1). Then we can write I2(m) as

I2(m) = lim
ρ→∞

∫
Sρ

v
m(n+2)−(n−1)(m+1)

n−1 · (−2mv · vi∂i)⌟vmdVolg

= lim
ρ→∞

∫
Sρ

[1 + O(r−τ )](−2mv · vi)∂i⌟v
mdVolg

= lim
ρ→∞

∫
Sρ

(−2mv · vi∂i)⌟vmdVolg + lim
ρ→∞

∫
Sρ

O(r−2τ−1)⌟vmdVolg

= lim
ρ→∞

∫
Sρ

(−2mv · vi∂i)⌟vmdVolg. (2.33)

Substituting (2.32) and (2.33) into (2.31), it follows that

m(gf,m) = I1(m) + I2(m)

= lim
ρ→∞

∫
Sρ

(µ− 2mv · vi∂i)⌟vmdVolg

= lim
ρ→∞

∫
Sρ

µ⌟vmdVolg

= mf,m(g),

where µ is as in (2.2).

As an immediate consequence of Lemma 2.12 and the ordinary positive mass theorem, we have:

Corollary 2.13. Suppose (Mn, g, vmdVolg,m), m ∈ Sn, is an asymptotically Euclidean smooth metric measure
space of order τ > n−2

2 , where 3 ≤ n ≤ 7 or M is spin. Assume vm = e−f for some f ∈ C2,α
−τ (M) ∩ C∞(M),

Rgf,m
∈ L1(M, g), and Rgf,m

≥ 0. Then mf,m(g) ≥ 0, with equality if and only if (Mn, gf,m) is isometric to
(Rn, δij).

2.2.2 Proof of the Conformal Bakry-Émery Positive Mass Theorem

Using the Bakry-Émery conformal metric, we now prove that the Bakry-Émery mass of (Mn, g, vmdVolg,m) is
non-negative assuming Rm

f is bounded below by (2.27).

Lemma 2.14. The Bakry-Émery scalar curvature Rm
f of (Mn, g) satisfies Rm

f ≥ Fm
f if and only if Rgf,m

≥ 0,
with equality if and only if Rgf,m

= 0.

Before proving this result, it is worthwhile to provide some nontrivial examples of functions satisfying Rm
f ≥ Fm

f .
Observe that this bound may be written as

Rg ≥ −2∆f + n− 2
n− 1 |∇f |2. (2.34)
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Let k ∈ R. By the second theorem on page 16 of [CSCB79], ∆ : C2,α
−τ (M) → C0,α

−τ−2(M) is an isomorphism.
Assume hk ∈ C2,α

−τ−2(M) satisfies (2.34) on Mcpct and hk = k∆−1r−τ−2 on ∂M∞ ∼= BR. Define the function
fk ∈ C2,α

−τ−2(M) by

fk(x) =
{

∆−1φk(x) x ∈ M∞

hk(x) x ∈ Mcpct
,

where φk = kr−τ−2 on M\Mcpct. Observe that f is well-defined since ∆−1φ agrees with h on ∂M∞. Since Rg ∈
C0,α

−τ−2(M), there is a constant C1 > 0 such that Rg ≥ −C1|x|−τ−2 on M∞. Since ∇fk ∈ C1,α
−τ−1(M), |∇fk|2 =

O(r−2τ−2), so |∇fk|2 = O(r−τ−2). Then there is a constant C2(k) > 0 such that |∇fk|2 ≤ C2(k)|x|−τ−2.
Additionally, ∆fk = kr−τ−2 on M∞.

Proposition 2.15. If k ≥ 1
2C1 + n−2

2(n−1)C2(k), then Rm
fk

≥ Fm
fk

on all of M .

Proof. We have (
−C1 − n− 2

(n− 1)C2(k)
)

|x|−τ−2 = −2
(

1
2C1 + n− 2

2(n− 1)C2(k)
)

|x|−τ−2

≥ −2k|x|−τ−2

= −2∆fk

on M∞. Then

Rg ≥ −C1|x|−τ−2

≥ −2∆fk + n− 2
n− 1C2(k)|x|−τ−2

≥ −2∆fk + n− 2
n− 1 |∇fk|2

on M∞. By definition, Rm
fk

≥ Fm
fk

on Mcpct as well, so the proposition follows.

Informally speaking, functions whose Laplacians fit within certain ‘asymptotic slices’ satisfy our lower bound
for Rm

f , where the lower bound of the slice is determined by Rg and ∇f .

Proof of Lemma 2.14. We first recall that if gf,m = φ
4

n−2 g, then

Rgf,m
= φ− n+2

n−2

(
−4(n− 1)
n− 2 ∆φ+Rgφ

)
.

This formula can be found in [Bes07, Corollary 1.161(a)], albeit the opposite convention for the Laplacian is
used there. In our case, φ 4

n−2 = v
2m

n−1 , so φ = v
m(n−2)
2(n−1) . Then

Rgf,m
=
(
v

m(n−2)
2(n−1)

)− n+2
n−2

(
−4(n− 1)
n− 2 ∆v

m(n−2)
2(n−1) +Rgv

m(n−2)
2(n−1)

)
= v− m(n+2)

2(n−1)

(
−4(n− 1)
n− 2 ∆(e− f

m )
m(n−2)
2(n−1) +Rgv

m(n−2)
2(n−1)

)
= −4(n− 1)

n− 2 v− m(n+2)
2(n−1) ∆e− (n−2)f

2(n−1) + v− 2m
n−1Rg

= −4(n− 1)
n− 2 e

(n+2)f
2(n−1) ∆e− (n−2)f

2(n−1) + e
2f

n−1Rg.
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Letting k = − n−2
2(n−1) , we compute

∆ekf = div(∇ekf )
= k div((∇f)ekf )
= kekf ∆f + k⟨∇f,∇(ekf )⟩
= kekf ∆f + k2ekf |∇f |2

= ekf (k∆f + k2|∇f |2).

Then

Rgf,m
= −4(n− 1)

n− 2 e
(n+2)f
2(n−1) e− (n−2)f

2(n−1)

[
− n− 2

2(n− 1)∆f +
(

n− 2
2(n− 1)

)2
|∇f |2

]
+ e

2f
n−1Rg

= e
2f

n−1

[
4(n− 1)
n− 2 · n− 2

2(n− 1)∆f − 4(n− 1)
n− 2 · (n− 2)2

4(n− 1)2 |∇f |2 +Rg

]
= e

2f
n−1

(
2∆f − n− 2

n− 1 |∇f |2 +Rg

)
= e

2f
n−1

(
2∆f − n− 2

n− 1 |∇f |2 +Rm
f − 2∆f + m+ 1

m
|∇f |2

)
= e

2f
n−1

[
Rm

f +
(
m+ 1
m

− n− 2
n− 1

)
|∇f |2

]
= e

2f
n−1

(
Rm

f + m+ n− 1
m(n− 1) |∇f |2

)
= e

2f
n−1

(
Rm

f − Fm
f

)
. (2.35)

Since e
2f

n−1 is strictly positive, it follows from (2.35) that Rgf,m
≥ 0 if and only if Rm

f ≥ Fm
f , with equality if

and only if Rm
f = Fm

f .

Proof of Theorem 2.9.

Part (a) We first note that Fm
f ∈ L1(M, g). Indeed, |∇f |2 = O(r−2τ−2) and −2τ − 2 < −n. Moreover, recall

that Rm
f ∈ C0,α

−τ−2(M). Then (2.35) and the assumption that Rm
f ∈ L1(M, g) implies

Rgf,m
= e

2f
n−1 (Rm

f − Fm
f )

= [1 + O(r−τ )](Rm
f − Fm

f )
= (Rm

f − Fm
f ) + O(r−τ )O(r−τ−2)

= (Rm
f − Fm

f ) + O(r−2τ−2) ∈ L1(M, g).

(2.36)

Since Fm
f ≤ 0 for m ∈ Sn, it follows that Rm

f ≥ 0 ≥ Fm
f . Then Lemma 2.14 implies Rgf,m

≥ 0, hence
mf,m(g) ≥ 0 by Corollary 2.13.

It remains to prove the sharpness condition. By Lemma 2.12, mf,m(g) = 0 if and only if m(gf,m) = 0, which is
equivalent to Rgf,m

= 0 since (Mn, gf,m) is isometric to (Rn, δij) by Corollary 2.13. By (2.35), this is equivalent
to

0 ≤ Rm
f = m+ n− 1

m(1 − n) |∇f |2 = Fm
f ≤ 0,

which holds if and only if
m+ n− 1
m(1 − n) |∇f |2 = 0.

Since m ̸= 1 − n, this is equivalent to |∇f |2 = 0, i.e. f is constant. Since f ∈ C2,α
−τ (M), f is constant if and

only if f = 0, or equivalently, gf,m = g. Therefore, Corollary 2.13 implies mf,m(g) = 0 if and only if (Mn, g) is
isometric to (Rn, δij), as desired.
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Part (b) The non-negativity of mf,m(g) follows from (2.36) and Lemma 2.14. If mf,m(g) = 0, choose k > 0 such
that km ∈ [ε− n, 1 − n). Since Rgf,m

= 0, it follows from (2.35) that Rm
f = Fm

f . Consequently,

Rkm
f = Rm

f +
(
m+ 1
m

− km+ 1
km

)
|∇f |2

=
(
m+ n− 1
m(1 − n) + m+ 1

m
− km+ 1

km

)
|∇f |2

= km+ n− 1
km(1 − n) |∇f |2

≤ 0,

for km < 1 − n. Since Rε−n
f ≥ 0, it follows that

0 ≤ Rε−n
f ≤ Rkm

f = km+ n− 1
km(1 − n) |∇f |2 ≤ 0.

Since km ̸= 1 − n, it follows that |∇f |2 = 0, hence f = 0. Then as before, Corollary 2.13 implies mf,m(g) = 0
if and only if (Mn, g) is isometric to (Rn, δij), as desired.

Proof of Corollary 2.10. If Rf ≥ − 1
n−ε |∇f |2, then Rε−n

f = Rf + 1
n−ε |∇f |2 ≥ 0. Moreover, since |∇f |2 =

O(r−2τ−2) and −2τ − 2 < −n, it follows that 1
n−ε |∇f |2 ∈ L1(M, g). This along with the assumption that

Rf ∈ L1(M, g) implies Rε−n
f ∈ L1(M, g). Since ε − n < 1 − n, Theorem 2.9(a) with m = ε − n now implies

mf (g) ≥ 0, with equality if and only if (Mn, g) is isometric to (Rn, δij).

Remark 2.16. Theorem 2.9(a) may be modified to extend to all m ∈ R\{0} at the expense of the sharpness
condition. In particular, Rm

f ≥ Fm
f implies mf,m(g) ≥ 0, with equality if and only if (Mn, g) is isometric to

(Rn, e
2f

n−1 δij). In general, if f = 0, then mf,m(g) = m(g), in which case the Bakry-Émery positive mass theorems
reduce to the ordinary positive mass theorem.

Remark 2.17. In the case when M is spin, Theorem 2.9 provides a different Witten’s formula for the Bakry-
Émery mass than that in Theorem 2.4. From the standard Witten’s formula for (M, gf,m), we obtain the
following Witten’s formula for the Bakry-Émery mass when Rm

f ≥ 0. Here ψ is a section of the spinor bundle
ΣM on M associated to the metric gf,m. It may be identified with a weighted Witten spinor as introduced in
[BO22]:

mf,m(g) = 4
∫

M

[
|∇gf,m

ψ|2 + 1
4Rgf,m

|ψ|2
]
dVolgf,m

.

Recall the bundle isometry Gu : ΣM → ΣM induced by the isometry (TM, g) → (TM, gf,m), X 7→ e
f

n−1X.
Setting ψ = Gu(ψ), for ψ a section of the spinor bundle on M associated to the metric g, the formulas for the
spin connection of a conformal change [BHM+15, Proposition 2.33] yield the following in an orthonormal frame:

(∇gf,m
)ei
ψ = (∇g)ei

ψ + 1
2(n− 1)ei · ∇f · ψ + 1

2(n− 1)ei(f)ψ.

Using that Gu is a bundle isometry, the expression for Rgf,m
, and the identity dVolgf,m

= e− nf
n−1 dVolg, the

Witten’s formula for mf,m(g) can be written entirely in terms of f,m, and a weighted Witten spinor on M .

2.2.3 The Bakry-Émery logarithmic functions

We now present some interesting consequences of Corollary 2.10. In particular, we prove the following surprising
result:

Theorem 2.18. Suppose (Mn, g) is asymptotically Euclidean of order τ ∈
(

n−2
2 , n− 2

)
. Assume the scalar

curvature R of (M, g) is non-negative, positive somewhere, and belongs to C0,α
−τ−2(M). There is a one-parameter

family {fm}m∈(−∞,1−n) of non-constant functions in C2,α
−τ (M) ∩ C∞(M) satisfying Rfm

< 0 and mfm
(g) > 0.

In particular, there exist non-constant functions f ∈ C2,α
−τ (M) for which Rf < 0 and mf (g) > 0.
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Informally speaking, positive mass is a property that is not limited to positively (weighted) curved manifolds,
and Bakry-Émery theory allows us to find continuous families of functions that exemplify this phenomenon. We
call the members of the one-parameter family {fm} in Theorem 2.18 the Bakry-Émery logarithmic functions.
These functions also serve as counterexamples to the converse of [BO22, Theorem 2.13]. To prove Theorem
2.18, we first solve the equation Rm

f = 0 for any arbitrary m ∈ R \ [−1, 0]:

Proposition 2.19. Suppose (Mn, g) satisfies the hypotheses of Theorem 2.18. Then for each m ∈ R \ [−1, 0],
there exists nonzero f ∈ C2,α

−τ (M) such that Rm
f = 0.

Proof. We want to solve the equation

R+ 2∆f − m+ 1
m

|∇f |2 = 0, f ∈ C2,α
−τ (M). (2.37)

Let us first transform this into a linear problem. In asymptotic coordinates on M , set

K =
√
m+ 1
m

, λ = 2
K
,

fλ(x) = 1
λ
f(λx), Rλ(x) = R(λx),

w(x) = e−Kfλ(x) − 1.

With these substitutions, (2.37) becomes

Rλ +K∆fλ −K2|∇fλ|2 = 0. (2.38)

We also compute
−∆w = e−Kfλ(K∆fλ −K2|∇fλ|2).

Combining this with (2.38) yields
Rλe

−Kfλ − ∆w = 0,

that is
−∆w +Rλw = −Rλ. (2.39)

This is a linear elliptic equation. Keeping in mind the definition of w, solving (2.37) is therefore equivalent to
finding a function w such that

−∆w +Rλw = −Rλ,

w > −1,

f(x) = − λ

K
log
(

1 + w
(x
λ

))
∈ C2,α

−τ (M).
(2.40)

We argue that the operator
−∆ +Rλ : C2,α

−τ (M) → C0,α
−τ−2(M) (2.41)

is injective. Suppose −∆u + Rλu = 0 for some u ∈ C2,α
−τ (M). Since u(x) → 0 as |x| → ∞ and Rλ ≥ 0, the

maximum principle applied to −∆ + Rλ and progressively larger balls in M implies that u is identically zero.
So (2.41) is indeed injective; it is then surjective by [LP87, Theorem 9.2(d)] and the fact that τ ∈

(
n−2

2 , n− 2
)
.

This, together with the hypothesis Rλ ∈ C0,α
−τ−2(M), guarantees the existence of a unique w ∈ C2,α

−τ (M) satisfying
(2.39). Since Rλ is not identically zero, neither is w. By (2.39), the function w̃ = w+1 satisfies (−∆+Rλ)w̃ = 0,
is nonconstant and is asymptotically 1. By the maximum principle, w̃ attains a strictly positive minimum, so
w ≥ −1 + ϵ on M for some ϵ > 0.

It remains to verify the last property in (2.40). Since w(x/λ) = O(|x|−τ ) as |x| → ∞, it eventually falls into
the radius of convergence of the Taylor expansion of log(1 + •). Thus for large |x| we have

f(x) = − λ

K

∞∑
k=1

(−1)k

k

[
w
(x
λ

)]k

= O(|x|−τ ).

30



Differentiating f in the ith direction, we get

∂if(x) = − 1
K(1 + w(x/λ))∂iw

(x
λ

)
.

Since 1 + w(x/λ) ≥ ϵ > 0 and ∂iw = O(|x|−τ−1), it follows that

|∇f(x)| = O(|x|−τ−1).

Similarly, one computes and estimates

∂i∂jf(x) = 1
λK(1 + w(x/λ))2 ∂iw

(x
λ

)
∂jw

(x
λ

)
− 1
λK(1 + w(x/λ))∂i∂jw

(x
λ

)
(2.42)

≤ O(|x|−2τ−2) + O(|x|−τ−2).

where the decay ∂i∂jw(x) = O(|x|−τ−2) is used. Thus

|∇2f(x)| = O(|x|−τ−2).

Finally, we will show that
[∇2f ]Cα(B|x|/2(x)) = O(|x|−τ−2−α). (2.43)

Let x ∈ M be arbitrary and let y, z ∈ B|x|/2(x). By (2.42), we have

|∂i∂jf(y) − ∂i∂jf(z)| ≤
∣∣∣∣ C

(1 + w(y/λ))2 ∂iw
( y
λ

)
∂jw

( y
λ

)
− C

(1 + w(z/λ))2 ∂iw
( z
λ

)
∂jw

( z
λ

)∣∣∣∣
+
∣∣∣∣ C

(1 + w(y/λ))∂i∂jw
( y
λ

)
− C

(1 + w(z/λ))∂i∂jw
( z
λ

)∣∣∣∣
=: A+B. (2.44)

Using that w ∈ C2,α
−τ (M) and 1 + w ≥ ϵ > 0, we can bound

B ≤
∣∣∣∣ C

(1 + w(y/λ))

(
∂i∂jw

( y
λ

)
− ∂i∂jw

( z
λ

))∣∣∣∣+
∣∣∣∣( C

1 + w(y/λ) − C

1 + w(z/λ)

)
∂i∂jw

( z
λ

)∣∣∣∣
≤ C[∂i∂jw]Cα(B|x|/2λ( x

λ ))
∣∣∣ y
λ

− z

λ

∣∣∣α + C
∣∣∣w ( z

λ

)
− w

( y
λ

)∣∣∣ ∣∣∣ z
λ

∣∣∣−τ−2

≤ C
(

|x|−τ−2−α|y − z|α +
∣∣∣w ( z

λ

)
− w

( y
λ

)∣∣∣ |x|−τ−2
)
. (2.45)

Since y and z are connected by a path in B|x|/2(x) ⊂ B2|x|(0), one has

|w(y) − w(z)| ≤ |y − z| sup
B2|x|(0)

|∇w| ≤ C|y − z||x|−τ−1 ≤ C|y − z|α|x|−τ−α

≤ C|y − z|α|x|−α,

and hence
[w]Cα(B|x|/2(x)) ≤ C|x|−α.

Substituting a rescaled version of this into (2.45) yields the bound

B ≤ C|y − z|α|x|−τ−2−α.

The same bound for A (given in (2.44)) can be obtained by entirely analogous means. Thus (2.43) follows, and
the proposition is proved.

Proof of Theorem 2.18. By Proposition 2.19, for each m ∈ (−∞, 1 − n), there exists a non-constant function
fm ∈ C2,α

−τ (M) satisfying Rm
fm

= 0. Then

Rfm
= Rm

fm
+ 1
m

|∇fm|2 = 1
m

|∇fm|2 < 0.

Since m < 1 −n, Rfm
≥ − 1

n−ε |∇f |2 with ε = m+n < 1, so Corollary 2.10 implies mfm
(g) ≥ 0. Moreover, since

Rm
fm

≥ 0 and fm is not identically zero, Theorem 2.9 applied to m implies mfm
(g) > 0.

31



2.2.4 A Bochner-type theorem for spin manifolds

In the case when M is spin, it is of interest to note that the Bakry-Émery conformal metric gf,m = e
2f

1−n g
corresponds to precisely the conformal change that recovers the weighted Dirac operator in the sense described
in Remark 1.4 (in particular (1.6)). From this observation, we obtain the following consequence of Lemma 2.14,
which is a generalization of Corollary 1.7(d).

Corollary 2.20. Let M be a closed spin manifold and f ∈ C∞(M).

(a) If m ∈ R, Rm
f ≥ Fm

f , and Rm
f > Fm

f at some point, then M admits no nontrivial harmonic spinors.

(b) If m ∈ R \ [1 −n, 0], Rm
f ≥ 0, and Rm

f > 0 at some point, then M admits no nontrivial harmonic spinors.

Proof. By Lemma 2.14, the condition that Rm
f ≥ Fm

f and Rm
f > Fm

f at some point implies that gf,m has scalar
curvature Rgf,m

≥ 0, yet Rgf,m
> 0 at some point. By integrating the Lichnerowicz formula on the spinor bundle

determined by gf,m as in [LM89, Corollary 8.9], one sees that there is no nontrivial harmonic spinor in that
spinor bundle. Then (1.6) shows there is also no nontrivial harmonic spinor in the spinor bundle determined
by the metric g, with respect to the weighted Dirac operator Df . Now (a) follows from the fact that D and
Df are unitarily equivalent, hence have the same eigenvalues [BO22, Proposition 1.20]. Assertion (b) follows
immediately from (a), because Fm

f ≤ 0 when m ∈ R \ [1 − n, 0].

When m is negative it holds that Rm
f ≥ Rf , so this corollary does not follow from the weighted Friedrich

inequality [BO22, Theorem 1.23]. Corollary 2.20 also raises interest in finding functions f so that Rm
f is

constant on closed manifolds. To study this, we first note the following fact about the Bakry-Émery scalar
curvatures, based on Theorem 2.1 in [DLD87].

Lemma 2.21. Let (M, g) be a Riemannian manifold, with f ∈ C∞(M). Let u = e− f(m+1)
2m . We have

− 4m
m+ 1∆gu+Ru = Rm

f u.

Proof. Set w = e− f
m , then u = w

m+1
2 = e− f(m+1)

2m . We omit the g subscript in the Laplacian. We have

∆u = (m+ 1)
2 w

m−1
2 ∆w + (m+ 1)

2
(m− 1)

2 w
m−3

2 |∇w|2

∆w = − 1
m
e− f

m ∆f + 1
m2 |∇f |2e− f

m

|∇w|2 = 1
m2 e

− 2f
m |∇f |2.

These imply that

− 4m
m+ 1∆u+Ru = − 4m

m+ 1w
m−1

2 ∆w + (m+ 1)
2

(m− 1)
2 w

m−3
2 |∇w|2 +Ru

= − 4m
m+ 1(− (m+ 1)

2m e− f(m+1)
2m ∆f + (m+ 1)

2m2 e− f(m+1)
2m |∇f |2)

− 4m
m+ 1((m+ 1)(m− 1)

4m2 e− f(m+1)
2m |∇f |2)

= 2e− f(m+1)
2m ∇f − 2

m
e− f(m+1)

2m − (m− 1)
m

e− f(m+1)
2m |∇f |2

= Rm
f u.

Corollary 2.22. Let (M, g) be a closed Riemannian manifold. For each m ∈ R\{0}, there is a unique constant
λm ∈ R and a smooth function f ∈ C∞(M) unique up to an additive constant, such that Rm

f = λm. If
additionally the scalar curvature R of g is non-negative, then λm ≥ 0.
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Proof. Assume m ∈ R \ [−1, 0]. By Lemma 2.21, solving Rm
f = λm is equivalent to finding a positive solution u

to the eigenvalue problem
Lu :=

(
− 4m
m+ 1∆g +R

)
u = λmu,

where u is related to f by u = e− (m+1)f
2m . Standard elliptic theory tells us that only the principal eigenfunctions

of L do not change sign; thus, λm must equal the principal eigenvalue, which has multiplicity one and is given
by the Rayleigh quotient

λm = inf
v∈H1(M),∥v∥L2(M)=1

[∫
M

(
4m
m+ 1 |∇v|2 +Rv2

)
dVolg

]
.

This is clearly non-negative when R ≥ 0. Finally, since the eigenspace of λm is one-dimensional, u is unique up
to scaling, so f is unique up to translation.

Note that, as m → ∞, the eigenvalue λm approaches the first eigenvalue λP (g) of the operator −4∆ + R,
while as m → 1 − n from the left, the eigenvalue λm approaches the first eigenvalue µ1(g) of the conformal
laplacian −4 n−1

n−2 ∆+R. The weighted Friedrich Inequality implies that any eigenvalue λ of the Dirac operator on
M satisfies λ2 ≥ n

4(n−1)λP (g), while the Hijazi inequality implies that any eigenvalue satisfies λ2 ≥ n
4(n−1)µ1(g).

In particular, the inequality λ2 ≥ n
4(n−1)λP (g) is equivalent to the weaker inequalities λ2 ≥ n

4(n−1)λm(g) holding
for all m > 0, while the inequality λ2 ≥ n

4(n−1)µ1(g) is equivalent to the weaker inequalities λ2 ≥ n
4(n−1)λm(g)

holding for all m < 1 − n.
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A Appendix
A.1 Proof of Lemma 1.3
Recall we work on Mn × Fm with the metric g = g ⊕ v2h, where (F, h) is a Riemannian manifold admitting
parallel spinors. We work near a point (m0, f0), and choose coordinates ξ1, . . . , ξn, ζ1, . . . , ζm for M ×F so that
ξ1, . . . , ξn are geodesic normal coordinates at a point m0 ∈ M and ζ1 = e

f
m ∂1, . . . , ζm = e

f
m ∂m are orthonormal

at f0 ∈ F , with ∂i geodesic normal coordinates at f0 ∈ F . We write ξα, ζa, and interchangeably treat the index
a as running from 1 to m or n + 1 to n + m. We will also interchangeably write ξα = ∂α. Note the metric on
M × F in the coordinate frame ξα, ∂a has the following form (up to first order) at (m0, f0)

ḡ =
[
In 0
0 e− 2f

m Im

]
.

We use the standard formulas for the Christoffel symbols of the Levi-Civita connection in the coordinate frame
ξα, ζa. We have

∇ξα
ξβ = 1

2g
ip(gpα,β + gpβ,α − gαβ,p)∂i

= 0

since gpα, gpβ , gαβ are equal to 1 or 0 up to first order,

∇ξα
ζa = ξα(ef/m)∂a + ef/m

2 gip(gpα,a + gpa,α − gαa,p)∂i

= 1
m
ξα(f)ef/m∂a + ef/m

2 gii(giα,a + gia,α − gαa,i)∂i

= 1
m
ξα(f)ef/m∂a + ef/m

2 gaagaa,α∂a

= 1
m
ξα(f)ef/m∂a + ef/m

2 e2f/mξα(e−2f/m)∂a

= 0

since g is diagonal, gαa = 0,giα = 1 or 0 up to first order,

∇ζa
ξα = ef/m

2 gip(gpa,α + gpα,a − gaα,p)∂i

= ef/m

2 gii(gia,α + giα,a − gaα,i)∂i

= ef/m

2 gaa(gaa,α)∂a

= ef/m

2 e2f/mξα(e−2f/m)∂a

= − 1
m
ξα(f)ζa

since g is diagonal, gaα = 0, giα = 1 or 0 up to first order,
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∇ζaζb = e2f/m

2 gip(gpa,b + gpb,a − gab,p)∂i

= e2f/m

2 gii(gia,b + gib,a − gab,i)∂i

= −e2f/m

2 gαα(gab,α)ξα

= −δab
e2f/m

2 ξα(e−2f/m)ξα

= 1
m
δab∇f

where we use that ∂a(f) = 0, g is diagonal, and all metric components are constant in the F directions. This
completes the calculation of the Levi-Civita connection on M ×F . We use 1.4 to compute the spin connection.
Recall the following connections and tensors

T (X,Y ) := (∇XV Y V )H + (∇XV Y H)V

A(X,Y ) := (∇XHY V )H + (∇XHY H)V

∇Z
XY := (∇XV Y V )V

∇V
XY := (∇XHY V )V .

By the above calculations, the connections ∇V ,∇Z on the vertical distributions are trivial, and A(ξα, ξβ) =
0, A(ξα, ζa) = 0, T (ζa, ζb) = 1

mδab∇f . It follows from 1.4 that for a section ψ ∈ Γ(Σ(M × F )) we have

∇ξα
ψ = ξα(ψ)

∇ζa
ψ = ζa(ψ) + 1

2mζa · ∇f · ψ

A.2 Proof of (2.14)
All the computations below are in a geodesic frame based at a fixed point p ∈ M . By Cartan’s magic formula,
we have

d(ei⌟ej⌟dVolg) = Lei(ej⌟dVolg) − ei⌟(d(ej⌟dVolg))
= Lei(ej⌟dVolg) − ei⌟(LejdVolg − ej⌟ddVolg)
= Lei(ej⌟dVolg) − ei⌟div(ej)dVolg
= Lei

(ej⌟dVolg). (A.1)

Observe that Lei
(ej⌟dVolg) is an (n−1)-form, determined by its values on (n−1)-tuples (eσ(1), ..., eσ(n−1)), where

σ is strictly increasing. If σ(k) = j for some j, it is easily checked that (Lei
(ej⌟dVolg))(eσ(1), ..., eσ(n−1)) = 0.

Meanwhile, by the Leibniz formula for the Lie derivative, we have

(Lei
(ej⌟dVolg))(e1, ..., êj , ..., en) = ei[dVolg(ej , e1, ..., êj , ..., en)] − (ej⌟dVolg)([ei, e1], ..., êj , ..., en)

− · · · − (ej⌟dVolg)(e1, ..., êj , ..., en−1, [ei, en])
= 0,

where we used the fact that the Lie brackets vanish at p. Then by (A.1), d(ei⌟ej⌟dVolg) = 0. Then

dα = d⟨[ei, ej ]ψ0, ξ⟩g ∧ (ei⌟ej⌟dVolg)
= [⟨[ei, ej ]∇ek

ψ0, ξ⟩g + ⟨[ei, ej ]ψ0,∇ek
ξ⟩g]]εk ∧ (ei⌟ej⌟dVolg). (A.2)
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Since interior contraction satisfies a graded Leibniz rule with respect to the wedge product of forms, it follows
that

εk ∧ (ei⌟ej⌟dVolg) = ei⌟(εk ∧ (ej⌟dVolg)) + (ei⌟ε
k) ∧ (ej⌟dVolg)

= −ei⌟(−ej⌟(εk ∧ dVolg) + (ej⌟ε
k)dVolg) + δk

i ej⌟dVolg
=

∑
k≤n+m

(−δk
j ei⌟dVolg + δk

i ej⌟dVolg). (A.3)

Plugging (A.3) into (A.2), we obtain

dα = −⟨[ei, ej ]∇ejψ0, ξ⟩gei⌟dVolg − ⟨[ei, ej ]ψ0,∇ejξ⟩gei⌟dVolg + ⟨[ei, ej ]∇eiψ0, ξ⟩gej⌟dVolg
+ ⟨[ei, ej ]ψ0,∇eiξ⟩gej⌟dVolg
= −2⟨[ei, ej ]∇ej

ψ0, ξ⟩ei⌟dVolg − 2⟨[ei, ej ]ψ0,∇ej
ξ⟩gei⌟dVolg,

as claimed.

A.3 Weighted function spaces
Here, we provide a brief discussion on weighted Lebesgue, Ck and Hölder spaces, which serve as the foundation
of the asymptotic analysis employed throughout the paper.

Let (Mn, g) be an asymptotically flat manifold with asymptotic coordinates {xi} on M∞, and let r(x) = |x| on
M∞.

Definition A.1 (Weighted Lebesgue space). Let q ≥ 1 and β ∈ R. The weighted Lebesgue space Lq
0,β(M) is

the set of all u ∈ L1
loc(M) for which the norm

||u||q,0,β :=
(∫

M

|r−βu|qρ−ndVolg
)1/q

is finite.

Definition A.2 (Weighted Sobolev space). For k ∈ N0, the weighted Sobolev space Lq
k,β(M) is the set of

functions u for which |∇iu| ∈ Lq
0,β−i(M) for all 0 ≤ i ≤ k equipped with the norm

||u||q,k,β : =
∑

0≤i≤k

||∇iu||q,0,β−i

=
∑

0≤i≤k

(∫
N

|ri−βu|qr−ndVolg
)1/q

.

We note that if u ∈ Lq
k,β(M), then ∇ju ∈ Lq

k−j,β−j(M) for any 0 ≤ j ≤ k since

||∇ju||q,k−j,β−j =
∑

0≤i≤k−j

||∇i+ju||q,0,β−i−j

= ||u||q,k,β −
∑

k−j<i≤k

||∇iu||q,0,β−i

≤ ||u||q,k,β < ∞.

Definition A.3 (Weighted Ck space). For k ∈ N0 and β ∈ R the weighted Ck space Ck
β(M) is the set of

u ∈ Ck(M) for which the norm

||u||Ck
β

(M) :=
∑

0≤i≤k

sup
x∈M

[
r(x)i−β |∇iu(x)|

]
is finite.
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We note that if u ∈ Ck
β(M), then ∇ju ∈ Ck−j

β−j(M) for 0 ≤ j ≤ k since

||∇ju||Ck−j
β−j

(N) =
∑

0≤i≤k−j

sup
x∈N

[
r(x)i+j−β |∇i+ju(x)|

]
= ||u||Ck

β
(M) −

∑
k−j<i≤k

sup
x∈N

[
r(x)i−β |∇iu(x)|

]
≤ ||u||Ck

β
(M) < ∞.

Definition A.4 (Weighted Hölder space). For 0 < α < 1, k ∈ N0, and β ∈ R, the weighted Hölder space
Ck,α

β (M) is the set of u ∈ Ck
β(M) for which the norm

||u||Ck,α
β

(M) := ||u||Ck
β

(M) + sup
x∈M

r(x)k+α−β [∇ku]Cα(Br(x)/2(x))

is finite, where Br(x)/2(x) is the metric ball of radius r(x)/2 centered at x and

[∇ku]Cα(Br(x)/2(x)) = sup
y,z∈Br(x)/2(x)

|∇ku(y) − ∇k(z)|
|y − z|α

.

We note that if u ∈ Ck,α
β (M), then ∇ju ∈ Ck−j,α

β−j (M) since ∇ju ∈ Ck−j
β−j(M) and

||∇ju||Ck−j,α
β−j

(M) = ||∇ju||Ck−j
β−j

(M) + sup
x∈M

r(x)k−j+α−β+j [∇k−j∇ju]Cα(Br(x)/2(x))

= ||∇ju||Ck−j
β−j

(M) + (||u||Ck,α
β

(M) − ||u||Ck
β

(M)) < ∞.

An important property of weighted spaces is that the index β reflects the order of growth. For instance, any
function in Ck,α

β (M) grows at most like rβ . To see this, if u ∈ Ck,α
β (M), there is a constant C > 0 such that

sup
x∈N

r−β(x)|u(x)| ≤
∑

0≤i≤k

sup
x∈N

[
r(x)i−β |∇iu(x)|

]
≤ C.

Another important property of weighted Holder spaces is the inclusion

Ck,α
β (M) ⊆ Ck,α

β′ (M) (A.4)

for any β′ > β. The proof uses the following Sobolev embedding lemma:

Lemma A.5 (Weighted Sobolev lemma). Suppose q > 1, k ∈ N0, and ℓ ∈ N0 satisfy

ℓ− k − α >
n

q
.

Then for each ε > 0, there are continuous embeddings

Cℓ,α
β−ε(M) ⊂ Lq

ℓ,β(M) ⊂ Ck,α
β (M).

Proof of (A.4). Choose q > 1 so that 1 − α = (3 − 2) − α > n
q (such a q exists since 0 < α < 1). Then by the

weighted Sobolev lemma, C3,α
β (M) ⊆ C2,α

β+(β′−β)(M) = C2,α
β′ (M), and since C2,α

β (M) ⊆ C3,α
β (M), it follows that

C2,α
β (M) ⊆ C2,α

β′ (M).

Lemma A.6. The square of the Dirac operator D2 : C2,α
−τ (M) → C0,α

−τ−2(M) is an isomorphism.

Proof. If 2 − n < −τ < 0, then Theorem 9.2(d) and the appendix of [LP87] imply D2 = −∆ + 1
4Rg is an

isomorphism. If instead −τ ≤ 2 − n, then C2,α
−τ (M) ⊆ C2,α

β (M) for any 2 − n < β < 0 by the inclusion property
(A.4). If φ ∈ C2,α

−τ (M) satisfies D2φ = 0, then φ = 0 since φ ∈ C2,α
β (M) and D2 : C2,α

β (M) → C0,α
β−2(M)

is an isomorphism. Then D2 : C2,α
−τ (M) → C0,α

−τ−2(M) is injective, so Theorem 9.2(d) of [LP87] now implies
D2 : C2,α

−τ (M) → C0,α
−τ−2(M) is an isomorphism.
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