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Abstract

International trade allows for countries to expand their markets, increase the efficiency
of their industries, and influence the countries with which they trade. Tariffs are a tax
levied on trade imports and have become the top strategy employed by countries to protect
domestic markets and exert their economic influence in response to a variety of political,
economic, and natural events. Although unrestricted free trade is supported by many economic
theories, targeted placements of tariffs are still used to protect new industries, regulate industry
practices, and discourage political actions of other countries. The impacts of properly-placed
tariffs have on the networks of international trades can be better understood with dynamical
models of trade and tariff interactions. However, the trade and tariff data needed to build
these models is frequently noisy and incomplete, and the size of the network is large, with
over 200 countries in the world, all posing additional challenge in studying this dynamical
relationship. In this work, we begin this analysis by studying how best to compress the
far-from-perfect trade and tariff network data into a coordinate space more amenable for
dynamical modeling. We study three classical variants of dimensionality reduction: PCA,
sparse PCA, and non-negative matrix factorization, as well as present a novel method called
the graphical Haar basis. We discuss the implications that these basis constructions have on
the dynamical modeling of trade and tariffs.

1 INTRODUCTION

The interplay between international trade and imposed tariffs is an essential component of the
global economy, with far ranging effects on economic globalization and internationalization,
spreading of crises, and economic shocks [Fag16; LM20]. International trade arises from
the differences in countries consumer demand and their ability to produce a set of products,
leading countries to specialize in particular product trades where they have a comparative
advantage [Ric05] over their neighbors. Trade has numerous benefits including increasing
efficiency of firms and industries, expanding product varieties on the market, and driving
research and product development through competition. This increase in competition between
domestic and international firms however can affect a country’s domestic market, particularly
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in areas where it is unable to compete due to lack of resources, labor, or history of development
in that field.

As a result, free trade between countries is often countered by protectionist policies [Faj+20],
through import constraints such as tariffs, quotas, and product standard regulation, as well as
subsidies for the production and export of domestic products [Kru87]. These policies aim to
control the import of foreign products and increase the use and export of domestic products.
Tariffs are one of the most important tools used to enforce trade barriers, levied as a tax on an
imported product either at a fixed fee (specific tariff) or as a percentage of the item’s value
(ad valorem tariff).

Promoting free trade and reducing tariffs have historically been viewed to have positive
long-term effects on the world economy [Ber96]. Various preferential trade agreements have
been created to lower or eliminate tariffs between countries including the establishment of
free trade areas such as the EU Economic and Monetary Union or the US NAFTA as well as
agreements between developed and developing countries like the US Generalized System of
Preferences. Outside of such preferential trade agreements, the World Trade Organization
(WTO), comprised of 159 world countries, imposes the most favored nation (MFN) policy
such that members must charge a fixed product tariff irrespective of the importing WTO
country.

The time-dependence of trade and tariffs present a rich set of dynamical behaviors. First,
tariffs can adapt depending on the exports in which a country specializes which change
depending on its level of development and various global trends. Furthermore, tariffs are
inherently tied to the politics of world countries. They can be used as a form of political
retaliation as in the case of the EU which levied tariffs on US exports of bourbon and Harley
Davidson’s in response to US tariffs on EU steel and aluminum imports [HAR18]. As a more
extreme example, the US-China trade war witnessed a back-and-forth increase in tariffs on
US agricultural products and Chinese steel, aluminium, and various technologies [FK22].
Lastly, various global trends and events such as climate change influence the dynamics of
trades and tariffs like the recent “carbon tariff” which taxes carbon-intensive imports from
developing countries [CA08]. Building mechanistic data-driven models of international trade
and tariff interaction are crucial for guiding the proper placement of tariffs to achieve desired
economic effects [Joh60] without leading to various political and economic instabilities.

In this paper, Section 2 surveys existing models of trade-tariff interaction. Section 3
investigates the sparsity and hierarchical structure our data sets and justifies our choices of
normalization methods. Section 4 investigates ways to capture trade and tariff signals with
Principal Component Analysis (PCA) and Sparse Principal Component Analysis (SPCA);
Section 5 likewise, with our proposed Haar basis construction. The resulting bases from
PCA, SPCA, and Haar wavelets are visualized in Section 6. Moreover, Section 7 studies
non-negative matrix factorization (NMF) as a remedy the lack of interpretability of some of
the aforementioned techniques on tariff data. Finally, we discuss next steps on how these
basis decompositions will be used to jointly model trade and tariff dynamics in Section 8 with
a brief conclusion in Section 9.
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2 BACKGROUND

A trade is a purchase and sale of goods from an exporting country to an importing country,
for our purposes, measured in its US dollars value. International trade, in particular, is subject
to the influences of political relations, which often show up in the form of tariffs. A tariff is
a tax imposed by one country on the goods and services imported from another country to
influence it, raise revenues, or protect competitive advantages. One notable tariff in history
is the multi-decade dairy tax imposed by Canada on the United States that lasted until early
2022. The tariff charged an astounding 271% on liquid milk and 298% on butter.

2.1 Data set overview
The trade and tariff data sets we study are provided by Professor In Song Kim (MIT Political
Science) in the form of CSV files. Trade data features annualized trading activities among 243
countries across 28 years, from 1989 to 2016. The product of each trade is given in a two-digit
code in the Harmonized System. The Harmonized System (HS) is a standardized numerical
method of classifying traded products, published by the World Customs Organization (WCO)
and it is consistent across all countries. At the two-digit level, the HS code partitions products
into 97 categories. The trade data set has a total of 19,112,043 entries for recorded trade
transactions. Each entry specifies the importer, exporter, value (in US dollars), and year of
trade. Additional information include the trade registration code and whether or not the good
is re-imported, which we opt to neglect. Moreover, we choose to remove 45 countries from
the data set, as well as trades that have the same importing and exporting countries. The
neglected countries are typically disputed territories (e.g. Montenegro, Taiwan) or small
countries with scarce data, and the neglected trade lack contextual explanation. In summary,
our trade data can be represented mathematically as a tensor

T = {T p
i, j,t : i, j ∈ [N], t ∈ [Y ], p ∈ [P]} (1)

across N = 198 countries, Y = 28 years, and P = 97 HS2 product categories.
Similarly, the tariff data set contains tariff information for 50 countries across 22 years,

from 1996 to 2017. For each of the 42,731,540 entries, the importer, exporter, year, tariff
category, product, and percentage duty are given. The product categories in the tariff data
set are given at higher levels of granularity, in the form of a 6-digit, 8-digit, or 10-digit HS
code, which provides finer categorization of products. The more granular product information
can be coarsened to 96 HS2 codes by truncating to the first 2 digits to match the trade data
set. This coarsening step creates repeated entries with different duty percentages. Section 3.2
discusses the aggregation of these repeated entries.

The tariff type of each entry belongs to one of the following categories: most favorable
nation (MFN), free-trade areas, zone-zone duties, generalized system of preferences (GSP),
least developed countries (LDC), other preferences not otherwise specified, and general
duties. By definition, MFN tariffs applied by an importer country must be equal for all
WTO countries which are exporting that good. Other types of tariffs are not subject to this
requirement. We choose to only include MFN tariffs in our study, as all other tariff types are
exceptional cases usually tied to free trade agreements.
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To summarize, our MFN tariff data can be represented by the tensor

τ = {τ p
i,t : i ∈ [N], t ∈ [Y ], p ∈ [P]} (2)

here defined across N = 50 countries, Y = 22 years, and P = 96 HS2 product categories.
We reuse the variables N,Y, and P for the number of countries, years, and products

when discussing trade and tariff data but we distinguish these variables when both trade and
tariff data are used in the same context. Unless it is necessary, we often remove the product
superscript and write Ti, j,t and τi,t when describing trades and tariffs for a generic product.

As a final note, the 97 HS2 product categories are often too large for us to display
and analyze. Throughout this paper, we frequently aggregate these 97 products into a
set of 15 aggregate product classes C1, . . . ,C15 ∈ [P] agreed upon by the WTO: https:
//www.foreign-trade.com/reference/hscode.htm.

2.2 Network Modeling

The trade and tariff data are defined on a directed graph G= ([N],E), across n= 198 countries
with |E|=

(n
2

)
directed trade edges.

• Vertices i ∈ [N] represent countries.
• Vertex values τi represent MFN tariff imposed by the country i.
• Directed edges e = (i, j) ∈ E denotes an established trade relationship from exporter

country j to importer country i, consistent with notation from physics and dynamical
systems theory.

• Edge weights wi, j = w(Ti, j) represents a function of trade Ti, j in US dollars (see
Section 3.4) from exporter country j to importer country i.

Modeling trades and tariffs on graphs enables us to use graph-theoretical tools for signal
decomposition. We relate these definitions to our problem with Def 1.

Definition 1. [Network] A network is a graph G = (V,E), consisting of the set of countries
as vertices in V and directed edges between any two countries in E.

Unless otherwise specified, all networks in this paper are assumed to be fully-connected
and directed with no self-loops.

2.3 Dynamical Models in Literature
Three main families of international trade models exist in the literature: gravity model, random
graphs, and stochastic difference/differential equation (SDE) models.

2.3.1 Gravity Model

The gravity model is based off of the experimentally observed phenomenon that the flow of
trade between two countries decreases with their distance, much like the gravitational force
between two planets. Motivated by the law of gravitation, this law takes the general form

Ti, j = G
mβ1

i mβ2
j

dβ3
i, j

ηi, j (3)
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originally proposed by Walter Isard in 1954 [Isa54]. Here Ti, j is the directed trade from
exporter country j to importer country i, di, j is the geodesic distance between the two
countries, and ηi, j is an error term with mean one. Importantly, the masses mi,m j correspond
to the ‘size’ of the countries measured either by their GDP, population, or other factors. Here
the ‘gravitational constant’ G and factors β1,β2,β3 can be learned from data or set to default
values such as one. Since it’s conception in 1954, the gravity model has had numerous
extensions including dynamical formulations as well as dependence on tariffs, geography,
and cultural commonalities [Bha+08; GH22]. For, example a time-dependent gravity model
that incorporates tariffs may take the form

Ti, j,t = G
mβ1

i mβ2
j

dβ3
i, j(1+ τi, j,t)β4

ηi, j,t (4)

where t indexes the year of trade and τi, j,t is the tariff applied by importer country i on exporter
country j.

2.3.2 Random Graph Models

Random graph models aim to describe the discrete year-to-year changes of trade edges in the
international trade network as a random weighted directed graph. Let’s denote Tt = {Ti, j,t}N

i, j=1
as the directed trade matrix for year t. A popular model is the discrete temporal exponential
random graph model (DTERGM) [HFX10; SSB22] given by

P
(

Tt+1|Tt

)
=

exp(⟨τ,g(Tt+1,Tt)⟩)
Z(τ)

(5)

where τ ∈Rp is a parameter vector that needs to be learned and g :RN×N×RN×N →Rp is a
vector of network statistics. Examples of useful network statistics when Tt ∈ {0,1}N×N is a
binary matrix include

Stability:
1

N2

N

∑
i, j=1

Ti, j,t+1Ti, j,t +(1−Ti, j,t+1)(1−Ti, j,t)

Reciprocity:
( N

∑
i, j=1

Tj,i,t+1Ti, j,t

)/( N

∑
i, j=1

Ti, j,t

)
Transitivity:

( N

∑
i, j=1

Tk,i,t+1Tj,i,tTk, j,t

)/( N

∑
i, j=1

Tj,i,tTk, j,t

)
.

(6)

Here stability counts the number of trade edges which stay activated or unactivated from one
year to the next, reciprocity studies whether a trade from j to i in one year, will cause a trade
from i to j in the next, and transitivity studies whether a trade from i to j and from j to k in
one year leads to a trade from i to k in the next. By collecting such network statistics into
a vector g(Tt+1,Tt) and learning their corresponding rates in the parameter vector τ , we can
learn the dominant operations that dictate changes in the trade network from year to year.

Extensions of DTERGMs include the separable temporal exponential random graph
model (STERGM) [KH14] which model formation and dissolution of trade edges as separate
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processes. Yet other approaches model the generation of trade networks through preferential
attachment and multiplicative processes which are consistent with the trade flow and degree
distribution statistics of empirical trade networks [GMG19].

Such random graph models cannot be directly applied to predict the dynamics of trade
networks but may provide useful insights into the formation, dissolution, and interaction of
trade edges between countries.

2.3.3 SDE Models

Given the matrix of trades Ti = {Ti, j,t}N
i, j=1 at year t, a stochastic difference equation model

takes the form
Tt+1 = f (t,Tt)+g(t,Tt)Wt (7)

where f :R+×RN×N →RN×N and g :R+×RN×N →R and the entries of Wt ∈RN×N are
independent standard Gaussian for all time t ∈N. Such models have been constructed to
explore the effects of shock propagation in trade networks using discrete models of disease
spreading [SBS19].

An alternative to discrete time models are Itô stochastic differential equations

dT = f (t,T )dt +g(t,T )dWt (8)

where t ∈R+ is now a continuous time variable rather than a discrete index of the year. Here
Wt ∈RN×N is now a matrix-valued Brownian motion. Prior works have fit continuous SDE
models on international trade network data to model economic growth and the temporal
dependence of export products within a country [CBS16; TCS18a; TCS18b].

To the best of our knowledge, most existing work on international trade networks do not
study the effect of tariffs on their dynamics through SDE models. In the following sections,
we discuss important preprocessing and dimensionality reduction steps for transforming trade
and tariff data into a form that allow us to build dynamical models.

3 DESCRIPTIVE STATISTICS

3.1 Trade

Trade data is represented by a 4-tensor, T ∈ R198×198×28×97. The entry (i, j,k, l) denotes
the US dollar value of goods in category l, imported by country i from country j, in year
(1988+ k). For example, T [1,198,28,1] = x means Aruba imported x US dollar’s worth of
animal products from Zimbabwe in 2016. The set of the 198 countries featured in this data
set is highlighted in Figure 1a.

The trade data tensor T is sparse, especially in the earlier years. Across all years and
products, zero values account for 84.7% of the entries of the tensor T . In year 1989, a
95.9% proportion of all trade edges were zero, whereas in year 2016, this value dropped to
81.1%. The decreasing sparsity highlights growing trade relations between countries as well
as increased reporting of trades in our dataset.
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3.2 Tariff

The MFN tariffs are represented by a 3-tensor, τ ∈R50×22×96. The entry (i, j,k) denotes the
tariff rate imposed by country i in year 1988+ j in product k. The set of the 50 countries
featured in this data set is highlighted in Figure 1. The dis-alignment between the size of
trade and tariff data is an artifact of how these datasets were collected.

MFN tariffs have the special feature that the same tariff rate applies to all countries, as
enforced during the WTO GATT agreements. As such, these values can be stored at vertices
of the country graph G, instead of its edges, allowing for simpler analyses of this data (e.g.
spectral decomposition and NMF).

Similar to trade T , tariffs τ are sparse and zero-inflated. In particular, 26.7% entries in
τ are zero. The highly-granular tariff data is coarsened by taking the non-zero mean of all
entries that fall into the same HS2 category.

Trade countries

(a) The set of 198 countries in the trade data set.

MFN countries

(b) The set of 50 countries in the MFN data set.

Figure 1: Countries featured in the trade and MFN tariff data set.

3.3 Hierarchical clustering
Hierarchical clustering identifies the structure of a large data set through a binary partition
process that puts data points with similar features into one of the two clusters. Given the
metric for similarity (e.g. Euclidean distance, Manhattan distance, inner-product) between a
pair of data points, the algorithm merges the two clusters that are the most similar, iteratively,
until all data points end up in the same cluster. In particular, the inter-cluster distance between
clusters u and v is computed with the Ward variance minimization algorithm

d(u,v) =

√
|v|+ |s|
|X |

·d(v,s)2 +
|v|+ |t|
|X |

·d(v, t)2− |v|
|X |
·d(s, t)2, (9)

where X is the set of all data points, u = s∪ t, the union of two merged clusters, and v = X\u,
the unused clusters [Mül11].

3.3.1 Product Aggregation

Results from hierarchical clustering offers critical insight into the structure among the product
classes. For a pair of products p,q∈ [P] the product-product correlation is defined by summing
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the correlation in binarized trade activities in these two products over all countries i, j ∈ [N]
and years t ∈ [Y ]. First define the binarized trade as

Bp
i, j,t = 1{T p

i, j,t > 0}. (10)

Then the correlation between the binarized trade networks of two products p,q ∈ [P] can be
computed as

corr(p,q) =
N

∑
i, j=1

Y

∑
t=1

⟨Bp
i, j,t ,B

q
i, j,t⟩

∥T p
i, j,t∥ · ∥T

q
i, j,t∥

. (11)

The distance d(p,q) is thus defined as 1− corr(p,q).
Hierarchical clustering results is compared with the WTO’s 15-class aggregation on the

97 products in Figure 2. The high value concentration along the diagonal signals that products
in the same aggregated class follows similar trading patterns.
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Figure 2: Confusion matrix for hierarchical clustering on the 97 products based on binarized trade
patterns. An identical relationship between predicted and true product categories is observed on
non-binarized (original) trade data.

3.4 Discussion on Trade Data Normalization
We construct our bases with trade data normalized in the following three ways.

1. No normalization.
2. Taking the logarithm of trade data: log(1+T p

i j ), where T p
i j denotes the trade volume

from country j to country i in product p.
3. Log-normalization with GDP correction:

log(1+T p
i j )−mp log(1+GDPi ·GDPj)−bp (12)
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where mp and bp are product-specific correction parameters obtained with orthogonal
distance regression (ODR) on (log(1+GDPi ·GDPj), log(1+T p

i j )).

Contrary to linear regression that assumes the features (X) to be noisy and observations
(Y ) noiseless, ODR assumes that both Y and X are susceptible to error. As such, it minimizes
the sum of squared perpendicular distances from the data point to its projection on the fitted
line defined by m,b by minimizing

rT
x M−1

x rx + rT
y M−1

y ry, (13)

with residuals rx,ry, and variance-covariance matrices Mx and My, respectively. The bias terms,
b, aim to capture GDP-independent variation, while the slope terms, m, aim to characterize
sensitivity of trade to GDP. An example of ODR is illustrated in Figure 3 on the product class
HS 86 (vehicles).

Figure 3: ODR on product class HS 86 (vehicles). The fitted line is the result of ODR, which has
a slope of 1.27 and bias of -55.1.

The choice of log-normalization is inspired by literature in economics [Eck01; CG05;
Sut97; BS73]. In particular, taking the logarithm allows interpretation of changes in variables
as percentage changes, rather than absolute changes, which is particularly helpful for time-
series data analysis [MLD08]. Another reason for log-normalization is that it is a useful
preprocessing step to standardize data such as trade in US dollars that may span several orders
of magnitude (e.g. trade in hundreds, thousands, millions of dollars).

10



0 20 40 60 80 100
Basis

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d 
va

ria
nc

e 3
Unnormalized

0 20 40 60 80 100
Basis

0.0

0.2

0.4

0.6

0.8

1.0
83

Log normalized

0 20 40 60 80 100
Basis

0.0

0.2

0.4

0.6

0.8

1.0
79

Log normalized GDP corrected
Transportation products PCA scree plots across normalizations

Figure 4: Recovery of trade data as a function of PCA basis size. In this example, more than
95% variance can be explained with the first 3 components on the unnormalized data, as only
large trades are captured. Variance recovery rate is much slower in the log normalized and log
normalized GDP corrected samples, as normalization de-emphasize outliers. The product-specific
GDP correction yields minor improvement, in comparison to the log-normalization.

The rest of this paper focuses on applying the three decomposition methods (PCA, SPCA,
and Haar wavelet) applied on different normalizations and comparing their performance.
For the purpose of illustration and consistency, we restrict the scope of all examples to the
aggregate product class of transportation for the remainder of this paper.

4 PRINCIPAL COMPONENT ANALYSIS (PCA) AND SPARSE PCA

Principal component analysis (and its variants) is a popular data mining technique to reduce
the dimensionality of a dataset. It works to identify the direction in the feature space among
which the most variance is explained. For the purpose of this work, the feature space is either
country tuples (i, j) for trade data, or individual countries i for MFN tariff data. Samples
are obtained across all HS2 product classes in the same aggregated product class across all
years. For instance, the aggregated product class “transportation” contains four HS2 product
classes: C = {85,86,87,88}. As a reminder, the trade data set comprises 198 countries across
28 years, hence the sample size is 4×28 for transportation, where each sample is a vector
of length 1982 that characterizes the trade activities in one of the four HS2 products in a
particular year.

In mathematical terms, given our trade tensor

T = {T p
i, j,t : i, j ∈ [N], t ∈ [Y ], p ∈ [P]} (14)

we first subset this tensor to only include the transportation products p ∈C := {85,86,87,88}
which gives us

TC = {T p
i, j,t : i, j ∈ [N], t ∈ [Y ], p ∈C}. (15)

In order to prepare this trade tensor for basis decomposition (using PCA, sparse PCA or Haar
decompositions), we then flatten its (t, p) dimensions and (i, j) dimensions to obtain a final
matrix of size X ∈RY |C|×N2

.
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The final goal of all trade data basis decompositions is to approximate the trade data as a
weighted sum of basis matrices. Specifically, for each trade matrix T p

t = {T p
i, j,t : i, j ∈ [N]} for

a given year t ∈ [Y ] and transportation-related product p ∈C we approximate it using b ∈N
basis elements as

T p
t ≈ yp

t,1U1 + . . .+ yp
t,bUb (16)

where {yp
t,l ∈R}b

l=1 are the weights and {Ul ∈RN×N}b
l=1 are the basis matrices.

For MFN tariffs, our tariff tensor is given by

τ = {τ p
i,t : i ∈ [N], t ∈ [Y ], p ∈ [P]} (17)

and subsetting this tensor to only include the transportation products p∈C := {85,86,87,88}
gives us

τ
C = {τ p

i,t : i ∈ [N], t ∈ [Y ], p ∈C}. (18)

Again to prepare this MFN tariff tensor for basis decomposition, we flatten its (t, p) dimen-
sions to obtain a final matrix of size X ∈RY |C|×N .

Similarly, using basis decomposition method for tariffs (PCA, sparse PCA, or Haar) we
approximate each tariff vector τ

p
t = {τ p

i,t : i ∈ [N]} for a given year t ∈ [Y ] and transportation-
related product p ∈C as

τ
p
t ≈ zp

t,1v1 + . . .+ zp
t,bvb (19)

using b ∈N basis elements where {zp
t,l ∈ R}b

l=1 are the weights and {vl ∈ RN}b
l=1 are the

basis vectors.

4.1 PCA
Dimensionality reduction through PCA is accomplished singular value decomposition on
feature-wise, mean-centered data matrix, X ∈Rn×d . Here and d is the dimension of the data
and n the number of data points. X is normalized to have zero mean along each column.
Singular value decomposition factors the matrix X = UΣV T , where U ∈ Rn×b a unitary
matrix, V ∈ Rd×b is the matrix of components, and Σ ∈ Rb×b is a diagonal matrix of the
corresponding singular values for b = min(n,d).

PCA can be equivalently expressed as a iterative optimization process, where in the i-th
iteration, the basis vi ∈Rd that explain the most remaining variance is identified by solving
the following

Xi = Xi−1−Xi−1vivT
i , (20)

vi = argmax
||vi||=1

{||Xivi||2} (21)

where X0 is the original mean-centered data.
The result of PCA is a complete, orthogonal basis, where the components are ranked by

the variance they explain (formulation given in Section 4.3). Results from PCA serve as a
benchmark to evaluate other decomposition methods (SPCA, NMF, and Haar wavelet).
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4.2 Sparse PCA
Sparse PCA (SPCA) is a variant of PCA that extracts the set of sparse components that
best reconstruct the data. By introducing an L1-penalty, SPCA suppresses small non-zero
coefficients in its components when expressed as linear combinations of the original variables.
In comparison to the PCA formulation in (20), the iterative optimization for SPCA uses α as
a parameter to control for the level of sparsity. This work uses a default value of α = 1.

Xi = Xi−1−Xi−1vivT
i , (22)

vi = argmin
||vi||=1

{||Xi−XivivT
i ||2 +α∥vi∥1}. (23)

SPCA has the advantage over PCA that it can avoid noise-related overfitting and yield a
more parsimonious, interpretable representation of the original data.

Unlike PCA, SPCA does not guarantee the components wi to be orthogonal. As such, we
compute the SPCA components following the algorithm in Algorithm 1, manually subtracting
the explained variance in each component.

Algorithm 1 Sparse PCA
i← 0
X ← X
while i < b do

X ← X−XvvT

v← argmin||vi||=1{||Xi−XivivT
i ||2 +α||vi||}

V [i] = v
i← i+1

end while

4.3 Explained Variance

For any basis set {vi ∈Rd}b
i=1 we can stack this basis column-wise into a matrix V ∈Rd×b.

Given a data matrix X ∈Rn×d consisting of n samples of dimension d, the variance explained
in the data by this basis is defined as

variance explained =
∥XV (V TV )+V T∥2

F

∥X∥2
F

(24)

If all columns of V (e.g. all basis vectors vi) are orthogonal as in the case of PCA, sparse
PCA, and the Haar basis discussed below, then this formula simplifies to

variance explained =
∥XV∥2

F

∥X∥2
F

. (25)
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5 HAAR WAVELET DECOMPOSITION

5.1 Existing Wavelet Decompositions
Comparable to Fourier transformation, the wavelet transform aims to find simpler representa-
tions of signals in an alternative basis. Yet it has the advantage over Fourier transform for
identifying non-periodic and sparse signals as is the case for trade and tariffs.

The classical continuous wavelet transform for R consists a set of integrable real-valued
functions all generated by the choice of a single “mother” wavelet ψ. The basis is the span of
ψ by translation and scaling with continuous parameters. As such, the wavelet basis captures
signals at different locations and at different scales, and is frequently used for transient
localization and multi-resolution analysis. Typical choices of ψ include the Morse wavelet,
Daubechies wavelet, and the “Mexican hat” [Dau88; Mey93].

The discrete wavelet transform relaxes the continuity requirement the translation and
scaling parameter of ψ. In doing so, the transform space is drastically compressed. The
discrete wavelet transform can be equivalently obtained by discretely sampling the continuous
wavelet transform of the same signal.

Discretizing the translation and scaling parameter of ψ makes the Haar wavelet a particu-
larly appealing choice for basis construction, as its support is also discretized. The mother
Haar wavelet ψ(t), can be described as

ψ(t) =


1 0≤ t < 1

2 ,

−1 1
2 ≤ t < 1,

0 otherwise.

(26)

Previous efforts to extend the Haar wavelets to graphs are limited to vertex-based construc-
tion [CK03; HVG11]. To the best of our knowledge, there is no systematic Haar wavelet basis
construction on graph edges. This work proposes one such construction. In our definition,
each basis component is built by applying graph-specific scaling factors to different intervals
of the mother wavelet, hence ensuring orthogonality between all components.

5.2 Basis construction
We propose two basis constructions, one on graph edges, and one on graph vertices. The
edge construction is used to decompose the trade data set, as flow information is stored
on directed edges, whereas the vertex construction is used to decompose the tariff data set,
as MFN tariffs are country-specific. For both the edge and vertex construction, the basis
construction algorithm starts with a set of weights, and iteratively partitions the set into two
roughly equal-sized sets until all sets become singlets. Basis elements are obtained from
each partition by assigning different weights to elements in the two sets. To construct a basis
on edges, the initial set is the set of values assigned to the edges; to construct a basis on
vertices, the initial set is the set of values assigned to vertices. The algorithm is outlined in
Algorithm 2.
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Algorithm 2 Haar wavelet basis construction

S←{v1,v2, . . . ,vn}
q← [S]
B← []
function BISECTION(X)

m← median of X
Le f t← arg(X < m)
Right← arg(X > m)
return Le f t,Right

end function
while q do

Le f t,Right← BISECTION(q.pop())
v← all-zero array of length |S|
v[Le f t] =−1/|Le f t|
v[Right] = 1/|Right|
B← add v
if Le f t has more than one element then

q← add Le f t
end if
if Right has more than one element then

q← add Right
end if

end while

The Haar bases for trade are defined on the edges of the graphs. For a fixed product, the
weight on the directed edge between countries (i, j) is defined by the average trade volume
along this edge over all years as follows

wi, j =
1
Y

Y

∑
t=1

Ti, j,t . (27)

where Y = 28 is the number of total years in our trade dataset. The distance between two
edges (i, j) and (k, l) is the absolute difference between their corresponding average trade
flows, |wi, j−wk,l|. The algorithm is initialized with all edges and their corresponding weights
in the set S, as the input to Algorithm 2, then following the below process to construct the
basis.

• Find the median among the set of weights, S = {w1,w2, . . .}. Partition S into S1,S2, by
the median. Add the vector v to the basis set defined as

vi =


− 1
|S1| wi ∈ S1

1
|S2| wi ∈ S2

0 otherwise.

(28)

• Repeat the previous step on S1 and S2, respectively, until there is a single element in the
set.
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On the MFN tariff dataset, the Haar bases decomposition is defined on nodes of the graph,
where the distance between two nodes is defined as the geodesic distance between the two
corresponding countries. Rather than partitioning country-country edges, the Haar bases
construction for tariffs performs a binary partition over countries. In this case, the input to
Algorithm 2 becomes the set of all countries.

6 TRADE & TARIFF BASIS VISUALIZATIONS

Trade and tariff decomposition result give critical insight into both the global trade and tariff
signals and our normalization and decomposition choices.

As the trade basis components are on the edges, the bases are in RN2
for the number of

countries N = 198. Despite the large dimension, most of the variances can be explained with
the significantly less components with PCA and SPCA. We choose to visualize the basis
components using arrows between countries, where both the arrow and gradient (from light
to dark) to denote directionality of the edge, and the thickness to denote the weight on the
edge. All basis for trade are visualized in this manner as in Figure 6, Figure 7, and Figure 8,
with the only exception of Haar wavelet basis. As the construction for Haar wavelet basis
assigns many edges the same weights, and the number of edges in the principal components
become too large to visualize, we use an alternative country-based visualization, as done in
Figure 7 and Figure 8. Here, the color for country c in a component is computed as

k(c) = ∑
i,c

wi,c−∑
c, j

wc, j, (29)

where wi,c is the weight on the incoming edge from country i to country c, and wc, j is the
weight on the outgoing edge from country c to country i. The color is determined by re-scaling
k(c) with the formula

1
tanh(5)

· tanh
(

5 · k(c)
maxc′(k(c′)

)
. (30)

As for tariffs, since tariffs are country-specific, the basis are in Rn for the number of
countries N = 50. The size of the basis is dependent on the number of HS2 products in the
aggregated class. Tariff bases are similarly visualized with colors re-scaled with (30).

6.1 Trade
PCA, SPCA, and Haar wavelet decomposition are applied on the transportation trade data
(with three normalizations: no normalization, log normalization, and log normalization with
GDP correction). Evaluating the recovery rate of the nine experiments led to following four
observations.

First is the advantage of SPCA. Despite having sparse components, its variance recovery
rate is comparable to that of PCA, while enforcing sparsity. PCA and SPCA identified similar
edges in each components, as can be seen by comparing the first two columns in Figure 6,
Figure 7 and Figure 8.

Second is the loss in sparsity with normalization. The principal components for normalized
data (Figure 7, Figure 8) are much denser and weaker than that in the unnormalized data
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(Figure 6). The loss of sparsity is even more apparent in Haar wavelet decomposition to the
point that variance is becomes extremely hard to capture with Haar components, evidence by
the slow convergence in recovery rates in Figure 5. More than 10,000 basis components are
required to achieve a > 95% explained variance for both normalizations (not shown in figure).
This slow convergence can be explained with the way Haar wavelets are constructed—at
each partition, the binary partitions assign identical weight to edges in each subset without
weighing the importance among edges in each subset. Further work is needed to find suitable
normalization methods that reduce the strength of outliers without completely erasing their
strength, so as to preserve sparsity in the decomposed basis.

Third is the loss of interpretability with normalization. Results given by all three decom-
position methods on the unnormalized data agree with our empirical knowledge—US exports
cars to Canada and Mexico; Germany exports to the UK, France, and Italy; and Japan and
China exports to the USA. However, with normalization, the principal components from PCA
and SPCA are no longer sparse, and identified smaller, less active countries like Uzbekistan,
Liberia and the Marshall Islands. The principal Haar wavelets are so dense that our software
fails to visualize the more-than-20,000 edges on the same graph. The loss of interpretability
is yet another reason to search for better normalization techniques.

Fourth is the strength of certain outliers. With normalization, many bigger economies
including USA and Canada disappear from the principal components with GDP normalization.
However, certain trade routes the are linked to Japan and Germany persist. The robustness of
these edges against normalization signals their dominating position on a global scale.

0 20 40 60 80 100
Basis

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d 
va

ria
nc

e

33 25

Unnormalized

PCA
SPCA
Haar

0 20 40 60 80 100
Basis

0.0

0.2

0.4

0.6

0.8

1.0
79 88

Log normalized

PCA
SPCA
Haar

0 20 40 60 80 100
Basis

0.0

0.2

0.4

0.6

0.8

1.0
8390

Log normalized GDP corrected

PCA
SPCA
Haar

Transportation products recovery rate for different decomposition methods

Figure 5: Scree plot for the first 100 basis components under decompositions and normalizations.
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Figure 6: First 3 components for three types of basis decompositions (PCA, SPCA, and Haar), no
data normalization, with explained variances σ .
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Figure 7: First 3 components for three types of basis decompositions (PCA, SPCA, and Haar),
log-normalized trade data, with explained variances σ .
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Figure 8: First 3 components for three types of basis decompositions (PCA, SPCA, and Haar),
log-normalized and GDP-corrected trade data, with explained variances σ .

6.2 Tariff
While PCA, SPCA, and Haar decompositions are effective in capturing data variation and
are easy to visualize, they lack interpretability. Recovery rates with each decomposition
method is given in Figure 9, with PCA and SPCA significantly out-performing Haar wavelets.
Additionally, Figure 10 illustrates the first 3 principal components from each decomposition
technique and variance explained up to each.

20



0 10 20 30 40 50
Basis

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d 
va

ria
nc

e 99 37

MFN recovery rate

PCA
SPCA
Haar

Figure 9: Recovery of MFN data as a function of basis size for various decomposition methods.
In this example, PCA and SPCA decomposition yield identical recovery rates, with more than
95% variance explained by the first 9 components. Decomposition with Haar wavelets captures
95% variance with the first 37 components.
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Figure 10: First 3 components under various decompositions with explained variances σ .
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7 NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization (NMF) is a decomposition technique that factors a matrix
of non-negative entries into the product of two non-negative matrices [PT94]. It has the
advantage of being interpretable as it automatically extracts sparse and meaningful features
from a set of nonnegative data vectors, and is particularly popular among the applied machine
learning community [LS99; WZ13].

7.1 Non-Negative Matrix Factorization Formulation

Given a non-negative matrix X ∈Rn×d , NMF finds two lower rank matrices, W ∈Rn×b and
H ∈Rb×d , such that WH best approximates X . Columns in H can be seen as basis elements,
and rows in W, weights corresponding to the basis elements. In the context of tariffs, X is
derived from the tariff tensor τ ∈RN×Y×P by averaging over years

Xi,p =
1
Y

Y

∑
t=1

τ
p
i,t (31)

for all i ∈ [N] and p ∈ [P]. Hence, the dimension of this data matrix is X ∈RN×P. Now the
columns of H can be interpreted as tariff strategies and rows in W capture how much each
strategy is adopted by each country.

7.2 Country classification based on tariff strategies
NMF is highly effective in capturing the degree of variance in MFN tariffs, reaching 95%
explainability with 3 components. NMF’s performance is compared against that of PCA
in Figure 11. The comparability in performance between NMF and PCA as a benchmark
highlights NMF as a promising choice for tariff basis construction.
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Figure 11: Recovery of MFN data as a function of basis size for PCA and NMF.

Matrices W and H lend critical insight into tariff strategies. As each row in H is a strategy
profile across all product classes, summing over the rows of H reveals the level of variation in
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each tariff product class. In particular, as illustrated in Figure 12, heavily weighted product
classes like chemicals, textiles, and machines have greater variation among different countries.
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Figure 12: Top 5 strategies for applying tariffs across the 15 aggregated product classes.

Hierarchical clustering on country-wise strategy profile based on matrix W reveals struc-
ture that is consistent with international trade agreements, political interests, and the countries’
income levels. As illustrated in Figure 13, at the 5-label level of granularity, European
countries (in green), North American countries (in navy), equatorial countries (in grey) are
grouped into the same clusters, respectively. These groupings further confirm the correlation
between international politics and tariff strategies.
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Country classification

Figure 13: Hierarchical clustering on countries based on tariff strategies.

8 DYNAMICS

Here we outline next steps for building a stochastic dynamical model using the basis sets
for trade and tariff data constructed above (shown on the example of products related to
transportation). Recall that our trade data tensor

T = {T p
i, j,t : i, j ∈ [N], t ∈ [Y ], p ∈ [P]} (32)

can be split into the 15 aggregate product categories C1, . . . ,C15 defined as

TCk = {T p
i, j,t : i, j ∈ [N], t ∈ [Y ], p ∈Ck}, k = 1, . . . ,15. (33)

From this, using one of the basis construction methods discussed above (PCA, sparse PCA,
Haar) we can learn a separate basis set for each TCk aggregate product tensor given by

Bk = {Uk
l ∈RN×N : l ∈ [bk]}, k = 1, . . . ,15 (34)

where bk ∈N is the number of basis elements constructed for aggregate product k. Finally,
each trade matrix T p

t = {T p
i, j,t : i, j ∈ [N]} for a given year t ∈ [Y ] and product p ∈ [P] can be

approximated in this basis as

T p
t ≈ yp

t,1Uk
1 + . . .+ yp

t,bk
Uk

bk
(35)

assuming that p is in aggregate product class Ck.
Finally, we can stack the basis coefficients yp

t = {yp
t,l}

bk
l=1 ∈Rbk across all products p∈ [P]

to obtain the vector
Yt = (y1

t , . . . ,y
P
t ) ∈RB (36)

where B = ∑
15
k=1 bk. This procedure allows us to project our four-dimensional trade data tensor

of size N×N×Y ×P onto a two-dimensional matrix of size B×Y which provides significant
compression since we expect that B≪ N2P.

Similarly, we can also perform a projection of our tariff data. Namely, our MFN tariff
data tensor takes the form

τ = {τ p
i,t : i ∈ [N], t ∈ [Y ], p ∈ [P]} (37)
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which can be split into the same 15 aggregate product categories C1, . . . ,C15 defined as

τ
Ck = {τ p

i,t : i ∈ [N], t ∈ [Y ], p ∈Ck}, k = 1, . . . ,15. (38)

As before, using one of the basis construction methods (PCA, sparse PCA, Haar) we obtain a
separate basis set for each τCk aggregate product tensor given by

Rk = {vk
l ∈RN : l ∈ [rk]}, k = 1, . . . ,15. (39)

where rk ∈N is the number of tariff basis elements constructed for aggregate product k.
Finally, we approximate each tariff vector τ

p
t = {τ p

i,t : i ∈ [N]} for a given year t ∈ [Y ] and
product p ∈ [P] in this basis as

τ
p
t ≈ zp

t,1vk
1 + . . .+ zp

t,rk
vk

rk
(40)

if p is in aggregate product class Ck.
Finally, we stack the basis coefficients zp

t = {zp
t,l}

rk
l=1 ∈Rrk across all products p ∈ [P] to

obtain the vector
Zt = (z1

t , . . . ,z
P
t ) ∈RR (41)

where again R = ∑
15
k=1 rk.

Now we can combine the basis coefficients for trades and tariffs into one state vector

Xt = (Yt ,Zt) ∈RB+R. (42)

In this projected coefficient space, we aim to learn the following stochastic difference
equation (SDE)

Xt+1 = f (t,Xt)+g(t,Xt)Wt (43)

where f :R+×RB+R→RB and g :R+×RB+R→R(B+R)×m are functions that need to be
learned and Wt ∈Rm×m is a matrix with i.i.d. standard Gaussian entries. Such SDE models
can be fit to data by specifying a parametric or nonparametric form for the unknown functions
f ,g and writing out the closed-form likelihood of the statistical model to find the optimal
choice of f ,g that maximize this likelihood through optimization.

A key challenge will be to understand the constraints we need to impose on the functional
form of f and g such that they do not overfit our data consisting of t = 1, . . . ,21 timepoints
(the intersection of the years when both trade and tariff data were collected).

9 CONCLUSION

In this paper we have studied data of international trade and tariff dynamics across a range
of products from 1989 to 2017. Our analysis studied the hierarchical clustering of products
based on their network of trades, the use of nonnegative matrix factorization to extract tariff
placement strategies of countries, and importantly the basis decompositions of spatiotemporal
trade and tariff data using PCA, sparse PCA, and Haar wavelets. These analyses have allowed
us to understand the structure of international trades and tariffs and prepare us to build
stochastic dynamical models of their temporal interactions.

25



10 ACKNOWLEDGEMENTS

The authors thank Professor In Song Kim (MIT Political Science) for providing the trade
and tariff data which inspired this project, Alasdair Hastewell for meaningful discussions,
and David Jerison for constructive feedback. The authors are also grateful for the Summer
Program in Undergraduate Research of the MIT Mathematics Department for financial
support.

REFERENCES

[Ber96] C. F. Bergsten. “Globalizing free trade”. In: Foreign Affairs (1996),
pp. 105–120.

[Bha+08] K. Bhattacharya et al. “The international trade network: weighted
network analysis and modelling”. In: Journal of Statistical Mechanics:
Theory and Experiment 2008.02 (2008), P02002.

[BS73] F. Black and M. Scholes. “The Pricing of Options and Corporate Lia-
bilities”. In: Journal of Political Economy 81.3 (1973), pp. 637–654.

[CA08] T. J. Courchene and J. R. Allan. “Climate change: the case for a carbon
tariff/tax”. In: POLICY OPTIONS-MONTREAL- 29.3 (2008), p. 59.

[CBS16] M. Caraglio, F. Baldovin, and A. L. Stella. “Export dynamics as an op-
timal growth problem in the network of global economy”. In: Scientific
reports 6.1 (2016), p. 31461.

[CG05] F. Clementi and M. Gallegati. Pareto’s Law of Income Distribution:
Evidence for Grermany, the United Kingdom, and the United States.
Microeconomics. University Library of Munich, Germany, May 2005.

[CK03] M. Crovella and E. Kolaczyk. “Graph wavelets for spatial traffic anal-
ysis”. In: IEEE INFOCOM 2003. Twenty-second Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (IEEE Cat.
No.03CH37428). Vol. 3. 2003, 1848–1857 vol.3.

[Dau88] I. Daubechies. “Orthonormal bases of compactly supported wavelets”.
In: Communications on Pure and Applied Mathematics 41.7 (1988),
pp. 909–996.

[Eck01] M. A. Eckhard Limpert Werner A. Stahel. “Log-normal Distributions
across the Sciences: Keys and Clues: On the charms of statistics, and
how mechanical models resembling gambling machines offer a link
to a handy way to characterize log-normal distributions, which can
provide deeper insight into variability and probability—normal or
log-normal: That is the question”. In: (2001).

[Fag16] G. Fagiolo. “The international trade network: Empirics and modeling”.
In: (2016).

26



[Faj+20] P. D. Fajgelbaum et al. “The return to protectionism”. In: The Quar-
terly Journal of Economics 135.1 (2020), pp. 1–55.

[FK22] P. D. Fajgelbaum and A. K. Khandelwal. “The economic impacts of
the US–China trade war”. In: Annual Review of Economics 14 (2022),
pp. 205–228.

[GH22] A. Gnutzmann-Mkrtchyan and J. Hugot. “Gravity-Based Tools for
Assessing the Impact of Tariff Changes”. In: Asian Development Bank
Economics Working Paper Series 649 (2022).

[GMG19] J. Garcı́a-Algarra, M. L. Mouronte-López, and J. Galeano. “A stochas-
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