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Abstract. We prove a conjecture of Cameron and Aydinian [2] in three dimensions, showing the
density of the largest sum-free subset of [n]3 is (10+

√
15)/20 as n → ∞. We also give an alternate

proof of the result in two dimensions, which was first shown by Elsholtz and Rackham [3].

1. Introduction

1.1. History. A set S ⊂ Zd is sum-free if there are no solutions to the equation x + y = z with
x, y, z ∈ S. Let [n] := {1, . . . , n}, and let S

(n)
d be the largest sum-free subset of [n]d. We would like

to determine its density asymptoticall, defined as the following:

cd := lim sup
n→∞

∣∣∣S(n)
d

∣∣∣
nd

.

This question for d = 2 was originally posed by Aydinian [2, Problem 10] at the 19th British
Combinatorial Conference. In an unpublished note [1], Cameron asked the same question for a
general d. It was also presented in a collection of open problems maintained by Green [4, Problem 6].

Observe that {v ∈ [n]d : 1⊺v ∈ [tn, 2tn)} is a sum-free subset of [n]d for any t ≥ 0, where 1
denotes the all-ones vector in Rd. For each d, we can optimize t to get a lower bound on cd. It is
conjectured that these lower bounds are sharp, i.e. S

(n)
d is of this form.

For d = 1, this construction is optimized at t = 1/2, showing c1 ≥ 1/2. The matching upper
bound follows a simple argument involving pairing elements that sums to the maximum of the set.

For d = 2, the construction is optimized at t = 4/5, showing c2 ≥ 3/5. The matching upper
bound was recently given by Elsholtz and Rackham [3]. The proof involves doing case work on the
shape of the upper convex hull of a sum-free set. Liu, Wang, Wilkes, and Yang [5] showed stability
of this optimum, i.e. any near-maximal sum-free subset of [n]2 must be close to this construction.

For d = 3, the construction is optimized at the following, showing c3 ≥ (10+
√
15)/20 = 0.693 . . .

S∗
3 := {v ∈ [n]3 : 1⊺v ∈ [un, 2un)} where u :=

15−
√
15

10
= 1.112 . . . . (1.1)

The best upper bound c3 ≤ 2/e = 0.735 . . . is due to Cameron [1]. The argument involves pairing
points that sum up to the point in the set with the largest product of coordinates. To obtain a sharp
upper bound, a natural approach is to adapt the proof of the d = 2 case in [3]. However, this seems
intractable, as the geometry of the upper convex hull becomes too complex in three dimensions.

1.2. Main Results. In this paper, we prove the conjecture for d = 3, showing c3 = (10+
√
15)/20.

Theorem 1.1. The size of the largest sum-free set S(n)
3 ⊂ [n]3 satisfies∣∣∣S(n)

3

∣∣∣ = (10 +
√
15

20

)
n3 +O

(
n5/2

)
.

We also reprove the result for d = 2 given by [3], showing c2 = 3/5.

Theorem 1.2. The size of the largest sum-free set S(n)
2 ⊂ [n]2 satisfies∣∣∣S(n)

2

∣∣∣ = 3

5
n2 +O(n).
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1.3. Proof Sketch. We now sketch the proof of the upper bound of Theorem 1.1. For the purposes
of this sketch, all inequalities and equalities hold up to lower order terms, which we omit.

The main idea is to average one dimensional inequalities on triples of lines with suitable weights
to get a sharp upper bound. Let π : R3 → R2 be the projection that forgets the last coordinate.

For any sum-free set S ⊂ [n]3 and v ∈ [n]2, let λ(v) = |S ∩ π−1(v)| be the number of points of S
lying on the segment with base v. We show in Lemma 2.1 that for any x, y, z ∈ [n]2 with x+ y = z,

λ(x) + λ(y) + λ(z) ≤ 2n. (1.2)

In addition, we have trivial constraints λ(v) ≤ n for all v ∈ [n]2. Maximizing |S| corresponds to
maximizing

∑
v∈[n]2 λ(v). The key point is that the linear program relaxation suffices to show the

sharp upper bound. By duality, we want some weight function w on these constraints such that

(1) the constraints in the support of w attain equality when S = S∗
3 is conjectured optimizer,

(2) for each v ∈ [n]2, the sum of the weights of all the constraints that contain v is roughly 1.

If we look at the conjectured optimizer S∗
3 under the projection π, the following four regions appear:

A

B

C

D

A = {v ∈ [n]2 : 1⊺v ∈ [0, (u− 1)n)},
B = {v ∈ [n]2 : 1⊺v ∈ [(u− 1)n, un)},
C = {v ∈ [n]2 : 1⊺v ∈ [un, (2u− 1)n)},
D = {v ∈ [n]2 : 1⊺v ∈ [(2u− 1)n, 2n]}.

(1.3)

We can see that the set S∗
3 contains none of π−1(A), all of π−1(C), and a 2/3-fraction of π−1(B∪D).

In Lemma 2.3, we check that S∗
3 attains equality in (1.2) when (x, y, z) ∈ (A×C×C)∪(B×B×D) and

x+ y = z. This motivates us to construct the weight function w as a sum of two weight functions,
corresponding to this partition. Here, we will roughly explain the more challenging construction on
{(x, y, z) ∈ B × B ×D : x+ y = z}, as it is sharper and explains how the optimizer u arises.

Let Z be the triangular region in [0, n]2 defined by D. Partition the hexagonal region in [0, n]2

defined by B into triangles in two ways, namely
⋃3

i=0Xi and
⋃3

i=0 Yi, as shown in the figure below.

X0

X1

X2

X3

Y0

Y3

Y1

Y2

Z

We see that the vertices of Xi and Yi can be matched together so that they add up to the vertices
of Z. In the figure, we color-coded this for X0 and Y0. Once we match the vertices, we can match
the entire triangles by taking convex combinations of the vertex maps, e.g. barycentric coordinates.
More precisely, in Claim 2.6, we will construct invertible affine transformations Xi : Z → Xi and
Yi : Z → Yi such that Xi(z) + Yi(z) = z for all z ∈ Z. Ignoring integrality issues, we set weight

w(Xi(z), Yi(z), z) =
Area(Xi)

2Area(Z)
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for each i ∈ {0, 1, 2, 3} and z ∈ Z, and set the weight to be 0 elsewhere. As u = (15−
√
15)/10, we

see that the area of the hexagon is double that of the triangle, i.e. |B| = 2|D|, so after a discretization
procedure, the weight assignment above will satisfy (1) and (2) up to some lower order error.

We can similarly construct a weight function on {(x, y, z) ∈ A×C×C : x+y = z}. Moreover, we
see that |C| ≥ 2|A|, so certain points v ∈ C will be given total weight less than 1. We can then give
an appropriate weight to the trivial constraint λ(v) ≤ n to reach a total weight of roughly 1 at v.

1.4. Notation. In the paper, all logs are natural and all constants in asymptotic notations are
universal. For any v ∈ Rd, r ∈ R, and A ⊂ Rd, let v+A := {v+a : a ∈ A} and rA := {ra : a ∈ A}.

Acknowledgements. This research was conducted at the MIT SPUR program during summer
2023. We extend our profound gratitude towards our mentor Mehtaab Sawhney, for his invaluable
guidance, and to the professor David Jerison, for directing the program and insightful discussions.

2. Proof of the Three Dimensional Result

In this section, we will prove our main result Theorem 1.1 carefully, building off the proof sketch.

2.1. The Three Lines Lemma. First, we prove a key lemma used for both Theorem 1.1 and
Theorem 1.2. For any v ∈ [n]2, let λ(v) := |S ∩ π−1(v)| and λ∗(v) := |S∗

3 ∩ π−1(v)|. For any
p, q ∈ Rd, let ℓ(p, q) := {tp+(1− t)q : t ∈ [0, 1]} be the segment between them. Let 0 be the origin.

Lemma 2.1. For any x, y, z ∈ [n]d with x+ y = z, a vector w ∈ Rd
≥0, and a sum-free set S ⊂ [n]d,

|S ∩ ℓ(x, x+ w)|+ |S ∩ ℓ(y, y + w)|+ |S ∩ ℓ(z, z + w)| ≤ 2
∣∣∣[n]d ∩ ℓ(0, w)

∣∣∣+O(1). (2.1)

Proof. Observe that if v ∈ [0, n]d and z + v ∈ [0, n]d, then x+ v ∈ [0, n]d and y + v ∈ [0, n]d. Also,
we note that (2.1) clearly holds if S ∩ ℓ(z, z + w) = ∅.

Otherwise, let m ∈ [0, 1] be the largest number such that z +mw ∈ S. The observation above
implies that x+mw ∈ [0, n]d and y+mw ∈ [0, n]d. Note that (x+tw)+(y+(m−t)w) = z+mw ∈ S
for any t ∈ [0,m]. As z+mw ∈ [n]d and S is sum-free, x+tw ∈ [n]d if and only if y+(m−t)w ∈ [n]d,
and S contains at most one of them. The three segments (and so the lattice points on them) are
translations of ℓ(0, w). This allows us to bound the left hand side of (2.1) above by∣∣[n]d ∩ ℓ(x, x+ w)

∣∣+ ∣∣[n]d ∩ ℓ(y +mw, y + w)
∣∣+ ∣∣[n]d ∩ ℓ(z, z +mw)

∣∣ ≤ 2
∣∣[n]d ∩ ℓ(0, w)

∣∣+O(1). □

Corollary 2.2. For any x, y, z ∈ [n]2 with x+ y = z, and sum-free set S ⊂ [n]3,

λ(x) + λ(y) + λ(z) ≤ 2n+O(1). (2.2)

Proof. Apply Lemma 2.1 to (x1, x2, 1), (y1, y2, 1), (z1, z2, 2) and w = (0, 0, n−2), with O(1) error. □

Let us partition [n]2 = A ⊔ B ⊔ C ⊔ D as in (1.3). We will now show that S∗
3 attains equality in

(2.2) on triples of lines whose base points are in the set

E3 := {(x, y, z) ∈ (A× C × C) ∪ (B × B ×D) : x+ y = z}. (2.3)

Lemma 2.3. For any (x, y, z) ∈ E3,

λ∗(x) + λ∗(y) + λ∗(z) ≥ 2n−O(1). (2.4)

Proof. If (x, y, z) ∈ A×C ×C, then S∗
3 contains none of the segment π−1(x)∩ [n]3 and all points on

the segments π−1(y) ∩ [n]3 and π−1(z) ∩ [n]3, so (2.4) holds. If (x, y, z) ∈ B × B ×D instead, then

λ∗(x) + λ∗(y) + λ∗(z) ≥ (n− ⌈un⌉+ x1 + x2 + 1) + (n− ⌈un⌉+ y1 + y2 + 1) + (2⌊un⌋ − z1 − z2 − 1)

= 2n− 2⌈un⌉+ 2⌊un⌋+ 1− 1⊺(x+ y − z)

= 2n−O(1) □
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2.2. Reduction to the Construction of a Weight Function. In this section, we will reduce
Theorem 1.1 to the existence of a weight function as in Lemma 2.5. First, we check the lower bound.

Lemma 2.4. S∗
3 defined in (1.1) is a sum-free of size (10 +

√
15)n3/20 +O

(
n2
)
.

Proof. For any x, y ∈ S∗
3 , 1⊺(x + y) ≥ 2un, so x + y /∈ S∗

3 . Hence, S∗
3 is sum-free. By a volume

computation and a standard geometry of numbers argument, |S∗
3 | =

(
10 +

√
15
)
n3/20+O

(
n2
)
. □

To prove Theorem 1.1, we will sum inequalities (2.2) with weights given by the following lemma.

Lemma 2.5. There exist weight functions w : E3 → R≥0 and w̃ : C → R≥0 such that
∑

e∈E3 w(e) =

O(n2), and the following holds for all but at most O
(
n3/2

)
-many points v ∈ [n]2:

w̃(v) +
∑

e∈E3:v∈e
w(e) = 1 +O

(
n−1/2

)
,

where we let w̃(v) = 0 for v ̸∈ C.

We will defer the proof of this lemma to the next section. Here, we see how it implies Theorem 1.1.

Proof of Theorem 1.1. Let w and w̃ be weight functions from Lemma 2.5. We compute

Q :=
∑
v∈C

w̃(v)λ(v) +
∑

(x,y,z)∈E3

w(x, y, z)(λ(x) + λ(y) + λ(z))

=
∑

v∈[n]2

(
1 +O

(
n−1/2

))
λ(v) +O

(
n5/2

)
= |S|+O

(
n5/2

)
.

(2.5)

Replacing S by S∗
3 and λ by λ∗, we obtain

Q∗ :=
∑
v∈C

w̃(v)λ∗(v) +
∑

(x,y,z)∈E3

w(x, y, z)(λ∗(x) + λ∗(y) + λ∗(z)) = |S∗
3 |+O

(
n5/2

)
. (2.6)

By Corollary 2.2 and Lemma 2.3, for any (x, y, z) ∈ E3,
λ(x) + λ(y) + λ(z) ≤ λ∗(x) + λ∗(y) + λ∗(z) +O(1).

Now, we will combine this with the trivial bound λ(v) ≤ n = λ∗(v) for all v ∈ C to get

Q :=
∑
v∈C

w̃(v)λ(v) +
∑

(x,y,z)∈E3

w(x, y, z)(λ(x) + λ(y) + λ(z))

≤
∑
v∈C

w̃(v)λ∗(v) +
∑

(x,y,z)∈E3

w(x, y, z)(λ∗(x) + λ∗(y) + λ∗(z) +O(1))

= Q∗ +O
(
n5/2

)
.

By (2.5) and (2.6), this gives the matching upper bound to Lemma 2.4, and Theorem 1.1 follows. □

2.3. Constructing the Weight Function. In this section, we prove Lemma 2.5 by constructing
a continuous analog and applying a discretizing procedure. Clearly, adding Claim 2.6 and Claim 2.7
gives Lemma 2.5. This is motivated by the obvious partition of E3 into A× C × C and B × B ×D.

A standard geometry of numbers argument allows us to interchange between volumes of polytopal
regions in Rd and the number of lattice points contained in the region up to O

(
nd−1

)
error.

Claim 2.6. There exists a weight function w : {(x, y, z) ∈ B ×B×D : x+ y = z} → R≥0 such that∑
ew(e) = O(n2), and the following holds for all but at most O

(
n3/2

)
-many points v ∈ B ∪ D:∑

e:v∈e
w(e) = 1 +O

(
n−1/2

)
. (2.7)
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Proof. Define the following regions in [0, n]2: let Z = n · conv{(1, 2u− 2), (2u− 2, 1), (1, 1)} and

X0 = n · conv{(0, u− 1), (u− 1, 1), (1, 0)},
X1 = n · conv{(0, u− 1), (u− 1, 0), (1, 0)},
X2 = n · conv{(1, u− 1), (u− 1, 1), (1, 0)},
X3 = n · conv{(0, u− 1), (u− 1, 1), (1, 0)},

Y0 = n · conv{(1, u− 1), (u− 1, 0), (0, 1)},
Y1 = n · conv{(1, u− 1), (u− 1, 1), (0, 1)},
Y2 = n · conv{(0, u− 1), (u− 1, 0), (0, 1)},
Y3 = n · conv{(1, u− 1), (u− 1, 0), (0, 1)},

where conv denotes the convex hull. Note,
(⋃3

i=0Xi

)
∩[n]2 =

(⋃3
i=0 Yi

)
∩[n]2 = B and Z∩[n]2 = D.

We can compute Area(Xi) = Area(Yi) for i ∈ {0, 1, 2, 3} and
∑3

i=0Area(Xi) = 2Area(Z).

X0

X1

X2

X3

Y0

Y3

Y1

Y2

Z

We now construct invertible affine transformations Xi : Z → Xi and Yi : Z → Yi for i ∈
{0, 1, 2, 3}. For any z ∈ Z, let µj ≥ 0 be the unique numbers such that z = µ1(1, 2u− 2) + µ2(2u−
2, 1) + µ3(1, 1) and µ1 + µ2 + µ3 = n. This amounts to a convex combination. Define Xi and Yi by

X0(z) = µ1(0, u− 1) + µ2(u− 1, 1) + µ3(1, 0),

X1(z) = µ1(0, u− 1) + µ2(u− 1, 0) + µ3(1, 0),

X2(z) = µ1(1, u− 1) + µ2(u− 1, 1) + µ3(1, 0),

X3(z) = µ1(0, u− 1) + µ2(u− 1, 1) + µ3(1, 0),

Y0(z) = µ1(1, u− 1) + µ2(u− 1, 0) + µ3(0, 1),

Y1(z) = µ1(1, u− 1) + µ2(u− 1, 1) + µ3(0, 1),

Y2(z) = µ1(0, u− 1) + µ2(u− 1, 0) + µ3(0, 1),

Y3(z) = µ1(1, u− 1) + µ2(u− 1, 0) + µ3(0, 1).

Observe that Xi(z) + Yi(z) = z for all z ∈ Z. Let B(p, r) :=
{
q ∈ R2 : ∥p− q∥∞ ≤ r

}
denote the

L∞-ball and let 1{·} denote the indicator function. We can now construct the weight function w
as follows: for (x, y, z) ∈ B × B ×D with x+ y = z, define the weight function

w(x, y, z) :=
1

2n

3∑
i=0

Area(Xi)

2Area(Z)
1
{
Xi(z) ∈ B

(
x,

√
n
)}

· 1
{
Yi(z) ∈ B

(
y,
√
n
)}

.

It suffices to check that w satisfies the conditions. We first check the total weight condition:∑
(x,y,z)∈B×B×D

x+y=z

w(x, y, z) ≤ 1

4n

3∑
i=0

Area(Xi)

Area(Z)

∑
z∈D

∑
x∈B

1
{
x ∈ B

(
Xi(z),

√
n
)}

= O
(
n2
)
.

We will now show (2.7) for most points in D. For any z ∈ D, we compute∑
(x,y)∈B×B
x+y=z

w(x, y, z) =
1

4n

3∑
i=0

Area(Xi)

Area(Z)

∑
(x,y)∈B×B
x+y=z

1
{
x ∈ B(Xi(z),

√
n)
}
· 1
{
y ∈ B(Yi(z),

√
n)
}
.

For all z ∈ D such that Xi(z) and Yi(z) are at least 2
√
n away from ∂Xi and ∂Yi in L∞-distance,

respectively, observe that x+ y = z = Xi(z) + Yi(z) implies Xi(z)− x = y − Yi(z), so we bound∑
(x,y)∈B×B
x+y=z

1
{
x ∈ B(Xi(z),

√
n)
}
· 1
{
y ∈ B(Yi(z),

√
n)
}
=
∣∣B(Xi(z),

√
n
)
∩ [n]2

∣∣ = 2n+O
(
n1/2

)
.
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The boundary regions have O(n3/2)-many points, so for all but O(n3/2)-many z ∈ D, we conclude∑
(x,y)∈B×B
x+y=z

w(x, y, z) =
1

4n

3∑
i=0

Area(Xi)

Area(Z)

(
2n+O

(
n1/2

))
= 1 +O

(
n−1/2

)
.

We will now show (2.7) for most points in B. Without loss of generality, take any x ∈ Xi. If x is at
least 2

√
n away from the boundary ∂Xi in L∞-distance, then∑

(y,z)∈B×D
x+y=z

w(x, y, z) =
1

4n
· Area(Xi)

Area(Z)

∑
(y,z)∈B×D
x+y=z

1
{
Xi(z) ∈ B(x,

√
n)
}
· 1
{
Yi(z) ∈ B(y,

√
n)
}
.

If X−1
i (B(x,

√
n)) ⊂ Z and Yi

(
X−1

i (B(x,
√
n))
)
⊂ Yi, i.e. images of x under the maps are Ω(

√
n)-

away from the boundaries ∂Yi and ∂Z, then Xi(z) ∈ B(x,
√
n) implies Yi(z) ∈ B(y,

√
n), and∑

(y,z)∈B×D
x+y=z

w(x, y, z) =
1

4n
· Area(Xi)

Area(Z)
·
∣∣X−1

i

(
B
(
x,

√
n
))

∩ [n]2
∣∣.

Since Xi is invertible linear transformation∣∣X−1
i

(
B
(
x,

√
n
))

∩ [n]2
∣∣ = Area

(
X−1

i

(
B
(
x,

√
n
)))

+O
(
n1/2

)
=

Area(Z)

Area(Xi)

(
2n+O

(
n1/2

))
.

The boundary regions have O(n3/2)-many points, so for all but O(n3/2)-many x ∈ B, we conclude∑
(y,z)∈B×D
x+y=z

w(x, y, z) =
1

2
+O

(
n−1/2

)
.

By symmetry, the same holds for y ∈ B. Adding the two equations together yields (2.7) on B. □

Claim 2.7. There exist functions w : {(x, y, z) ∈ A×C×C : x+y = z} → R≥0 and w̃ : C → R≥0 such
that

∑
ew(e) = O(n2) and the following holds for all but at most O

(
n3/2

)
-many points v ∈ A ∪ C:

w̃(v) +
∑
e:v∈e

w(e) = 1 +O
(
n−1/2

)
, (2.8)

where we let w̃(v) = 0 for v ̸∈ C.

Proof. Define the following regions in [0, n]2, so that A = X ∩ [n]2, Y ∩ [n]2 ⊂ C, and Z ∩ [n]2 ⊂ C:

X = n · conv{(0, 0), (u− 1, 0), (0, u− 1)},

Y = n · conv
{(

3u− 1

4
,
3u− 1

4

)
, (u− 1, 1), (1, u− 1)

}
,

Z = n · conv
{(

3u− 1

4
,
3u− 1

4

)
, (2u− 2, 1), (1, 2u− 2)

}
.

X

Y
Z
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As before, we construct invertible affine transformations Y : X → Y and Z : X → Z. For x ∈ X ,
let µj ≥ 0 be the such that x = µ1(0, 0) + µ2(u− 1, 0) + µ3(0, u− 1) and µ1 + µ2 + µ3 = n. Define

Y (x) = µ1

(
3u− 1

4
,
3u− 1

4

)
+ µ2(u− 1, 1) + µ3(1, u− 1),

Z(x) = µ1

(
3u− 1

4
,
3u− 1

4

)
+ µ2(2u− 2, 1) + µ3(1, 2u− 2).

Observe that x+Y (x) = Z(x) for all x ∈ X . For (x, y, z) ∈ A×C ×C with x+ y = z, define weight

w(x, y, z) :=
1

2n
1
{
Y (x) ∈ B

(
y,
√
n
)}

· 1
{
Z(x) ∈ B

(
z,
√
n
)}

.

It suffices to check that w satisfies the conditions. We first check the total weight condition:∑
(x,y,z)∈A×C×C

x+y=z

w(x, y, z) ≤ 1

2n

∑
x∈A

∑
y∈C

1
{
y ∈ B

(
Y (x),

√
n
)}

= O
(
n2
)
.

We will now show (2.8) for most points in X . For any x ∈ X , we compute∑
(y,z)∈C×C
x+y=z

w(x, y, z) =
1

2n

∑
(y,z)∈C×C
x+y=z

1
{
Y (x) ∈ B

(
y,
√
n
)}

· 1
{
Z(x) ∈ B

(
z,
√
n
)}

.

For all x ∈ D such that Y (x) and Z(x) are at least 2
√
n away from ∂Y and ∂Z in L∞-distance,

respectively, observe that Z(x)− Y (x) = x = z − y implies Z(x)− z = Y (x)− y, so we bound∑
(y,z)∈C×C
x+y=z

1
{
Y (x) ∈ B

(
y,
√
n
)}

· 1
{
Z(x) ∈ B

(
z,
√
n
)}

=
∣∣B(Z(x),

√
n
)
∩ [n]2

∣∣ = 2n+O
(
n1/2

)
.

The boundary regions have O(n3/2)-many points, so (2.8) holds for all but O(n3/2)-many x ∈ X .
We will now show (2.8) on C. For any y ∈ Y ∩ [n]2, since Y is an invertible affine transformation∑

(x,z)∈A×C
x+y=z

w(x, y, z) =
1

2n

∑
(x,z)∈A×C
x+y=z

1
{
Y (x) ∈ B

(
y,
√
n
)}

· 1
{
Z(x) ∈ B

(
z,
√
n
)}

≤ 1

2n

∑
x∈[n]2

1
{
Y (x) ∈ B

(
y,
√
n
)}

=
Area(X )

Area(Y)
+O

(
n−1/2

)
.

For any z ∈ Z ∩ [n]2, since Z is an invertible affine transformation∑
(x,y)∈A×C
x+y=z

w(x, y, z) =
1

2n

∑
(x,z)∈A×C
x+y=z

1
{
Y (x) ∈ B

(
y,
√
n
)}

· 1
{
Z(x) ∈ B

(
z,
√
n
)}

≤ 1

2n

∑
x∈[n]2

1
{
Z(x) ∈ B

(
z,
√
n
)}

=
Area(X )

Area(Z)
+O

(
n−1/2

)
.

It follows a simple computation that Area(X ) < Area(Z) < Area(Y). Therefore, to show (2.8) on
C, it now suffices to set w̃(v) = max

(
0, 1−

∑
e:v∈ew(e)

)
≥ 0 for every v ∈ C. □
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3. Reproof of the Two Dimensional Result

3.1. Overview. In this section, we will reprove Theorem 1.2, first shown in [3]. For completeness,
we first check the lower bound construction S∗

2 := {v ∈ [n]2 : 1⊺v ∈ [4n/5, 8n/5)}.

Lemma 3.1. S∗
2 ⊂ [n]2 is a sum-free set of size 3n2/5 +O(n).

Proof. For any x, y ∈ S∗
2 , 1⊺(x + y) ≥ 8n/5, so x + y /∈ S∗

2 . Hence, S∗
3 is sum-free. By an area

computation and a standard geometry of numbers argument, |S∗
2 | = 3n2/5 +O(n). □

For the upper bound, the same argument as Theorem 1.1 does not apply immediately: the analog
of regions B and D in (1.3) are intervals [0, 4/5] and [3/5, 1]. They intersect, so we cannot hope
for something like Lemma 2.5. This is unsurprising since the upper bound we seek is 3/5, and
combining Lemma 2.1 on triples of lines cannot give any upper bound better than 2/3.

Instead of lines in the axial direction, we will consider segments in the 1-direction, and derive
an analog of Corollary 2.2 showing S∗

2 is optimal on those segments. Combined with an analog of
Lemma 2.5, we will derive an stability statement in a region around S∗

2 . Finally, we will do some
numerical computations to rule out cases where S contains any point not in this stability region.

3.2. Stability of S∗
2 . The goal of this section is to deduce the following stability result.

Lemma 3.2. Fix any α, β ≥ 0 such that 3α+β ≤ 4/5. Then, |S| ≤ 3n2/5+O(n) for any sum-free

S ⊂ R(α, β) := {v ∈ [n]2 : 1⊺v ∈ [(4/5− α)n, (8/5 + β)n)}. (3.1)

Hence, S∗
2 is the largest sum-free subset of R(α, β). Let [2n]/2 = {k/2 : k ∈ [2n]} be the set of

half-integers. We will prove the lemma by combining triples of segments along 1 intersecting

E2 := {(x, y, z) ∈ ([2n]/2)2 × ([2n]/2)2 × ([2n]/2)2 : x+ y = z,1⊺x = 1⊺y = ⌊4n/5⌋}.
For each triple in E2, the following analog of Corollary 2.2 holds.

Lemma 3.3. For any (x, y, z) ∈ E2 and a, b, c ≥ 0, if x− a1, y − b1, z + c1 ∈ [0, n]2, then

ℓ(x− a1, x+ (b+ c)1), ℓ(y − b1, y + (a+ c)1), ℓ(z − (a+ b)1, z + c1) ⊂ [0, n]2. (3.2)

Moreover, for any sum-free set S ⊂ [n]2,

|S ∩ ℓ(x− a1, x+ (b+ c)1)|+ |S ∩ ℓ(y − b1, y + (a+ c)1)|+ |S ∩ ℓ(z − (a+ b)1, z + c1)| (3.3)

is at most 2(a+ b+ c) +O(1), and equality is attained when S = S∗
2 .

Proof. Define partial order ⪯ on R2 where p ⪯ q if p1 ≤ q1 and p2 ≤ q2. Since x+ y = z

0 ⪯ x− a1 ⪯ x+ (b+ c)1 = (z + c1)− (y − b1) ⪯ n1− 0 = n1.

Hence, x+ (b+ c)1 ∈ [0, n]2, and similarly y + (a+ c)1 ∈ [0, n]2 by symmetry. Now

0 = 0+ 0 ⪯ (x− a1) + (y − b1) = z − (a+ b)1 ⪯ z ⪯ n1

so z − (a+ b)1 ∈ [0, n]2. Then, (3.2) follows the convexity of [0, n]2. Now, we apply Lemma 2.1 to
the segments in (3.2). The endpoints of the segments being half-integral gives O(1) error, so

(3.3) ≤ 2
∣∣[n]2 ∩ ℓ(0, (a+ b+ c)1)

∣∣+O(1) = 2(a+ b+ c) +O(1)

When S = S∗
2 , its boundary intersects the segments in (3.2) at x, y, z respectively, so

(3.3) =
∣∣[n]2 ∩ ℓ(x, x+ (b+ c)1)

∣∣+ ∣∣[n]2 ∩ ℓ(y, y + (a+ c)1)
∣∣+ ∣∣[n]2 ∩ ℓ(z − (a+ b)1, z)

∣∣
=
∣∣[n]2 ∩ ℓ(0, (b+ c)1)

∣∣+ ∣∣[n]2 ∩ ℓ(0, (a+ c)1)
∣∣+ ∣∣[n]2 ∩ ℓ(0, (a+ b)1)

∣∣+O(1)

= 2(a+ b+ c) +O(1) □

To combine the inequality on (3.3), we construct a weight function on E2. The idea is similar to
Lemma 2.5, but do it explicitly in the discrete setting, thereby obtaining a sharper error term.
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Lemma 3.4. There exists weight function w : E2 → R≥0 such that
∑

e∈E2 w(e) = O(n), and the
following holds for all but at most O(1)-many v ∈ ([2n]/2)2 satisfying 1⊺v ∈ {⌊4n/5⌋, 2⌊4n/5⌋}:∑

e∈E2:v∈e
w(e) = 1. (3.4)

Proof. Let m = ⌊n/10⌋ and r = ⌊4n/5⌋ − 8⌊n/10⌋, so that 8m + r = ⌊4n/5⌋. Define the weight
function w to be 1 on the following triples for all k ∈ {−2m,−2m+ 1, · · · , 2m}, and 0 otherwise:((

7m+ r +
k

2
,m− k

2

)
,

(
m+

k

2
, 7m+ r − k

2

)
,

(
8m+ r +

2k

2
, 8m+ r − 2k

2

))
,((

5m+ r +
k + 1

2
, 3m− k + 1

2

)
,

(
3m+

k

2
, 5m+ r − k

2

)
,

(
8m+ r +

2k + 1

2
, 8m+ r − 2k + 1

2

))
.

Then, for all but at most O(1)-many v ∈ ([2n]/2)2 with 1⊺v ∈ {⌊4n/5⌋, 2⌊4n/5⌋}, (3.4) holds as
only one summand is nonzero, and it is equal to 1. The total weight is O(m) which is O(n). □

We will now combine Lemma 3.3 and Lemma 3.4 to show Lemma 3.2.

Proof of Lemma 3.2. Similar to before, for all v ∈ ([2n]/2)2 such that 1⊺v = ⌊4n/5⌋, define

λ−(v) = |S ∩ ℓ(v − nα1, v + n(α+ β)1)| and λ∗
−(v) = |S∗

2 ∩ ℓ(v − nα1, v + n(α+ β)1)|,
and for all v ∈ ([2n]/2)2 such that 1⊺v = 2⌊4n/5⌋, define

λ+(v) = |S ∩ ℓ(v − 2nα1, v + nβ1)| and λ∗
+(v) = |S∗

2 ∩ ℓ(v − 2nα1, v + nβ1)|.
For any (x, y, z) ∈ E2, let a, b ∈ [0, nα] and c ∈ [0, nβ] each be maximal such that x−a1, y− b1, z+
c1 ∈ [0, n]2. They exist since x, y, z ∈ [0, n]2, so a = b = c = 0 works. By Lemma 3.3,

λ−(x) + λ−(y) + λ+(z) ≤ λ∗
−(x) + λ∗

−(y) + λ∗
+(z) +O(1). (3.5)

As 3α + β ≤ 4/5, the segments in λ−(v) and λ+(v) are pairwise disjoint and their union covers
R(α, β). For S ⊂ R(α, β), we use (3.5) with weights from Lemma 3.4 to upper bound

|S| =
∑

v∈([2n]/2)2
1⊺v=⌊4n/5⌋

λ−(v) +
∑

v∈([2n]/2)2
1⊺v=2⌊4n/5⌋

λ+(v)

= O(n) +
∑

(x,y,z)∈E2

w(x, y, z)(λ−(x) + λ−(y) + λ+(z))

≤ O(n) +
∑

(x,y,z)∈E2

w(x, y, z)
(
λ∗
−(x) + λ∗

−(y) + λ∗
+(z) +O(1)

)
= O(n) +

∑
v∈([2n]/2)2
1⊺v=⌊4n/5⌋

λ∗
−(v) +

∑
v∈([2n]/2)2
1⊺v=2⌊4n/5⌋

λ∗
+(v)

= |S∗
2 |+O(n). □

3.3. Numerical Computations. To prove Theorem 1.2, we need to rule out instances where some
sum-free S ⊂ [n]2 contains points outside stability region R(α, β) for some α and β. The idea is that
having any point at the corners near 0 or 1 imposes a lot of conditions, so it cuts out many elements
from S. More precisely, we have the following two lemmas, corresponding to the two corners.

Lemma 3.5. If sum-free S ⊂ [n]2 contains some v with 1⊺v ≥ 17n/10, then |S| ≤ 3n2/5 +O(n).

Lemma 3.6. If sum-free S ⊂ [n]2 contains some v with 1⊺v ≤ 17n/30, then |S| ≤ 3n2/5 +O(n).
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The proofs of Lemma 3.5 and Lemma 3.6 require some numerical computations. Here, we first
show how to combine Lemma 3.1, Lemma 3.2, Lemma 3.5, and Lemma 3.6 to deduce Theorem 1.2.

Proof of Theorem 1.2. Recall that Lemma 3.1 gives the lower bound. For the upper bound, we fix
any sum-free set S ⊂ [n]2 and do case work on possible values of 1⊺v for v ∈ S.

• If some v ∈ S satisfies 1⊺v ≥ 17n/10, Lemma 3.5 gives the upper bound |S| ≤ 3n2/5+O(n).
• If some v ∈ S satisfies 1⊺v ≤ 17n/30, Lemma 3.6 gives the upper bound |S| ≤ 3n2/5+O(n).
• Otherwise, S ⊂ R(α, β) for α = 7/30 and β = 1/10, as defined in (3.1). We can check that
3α+ β = 4/5, so Lemma 3.2 applies to show |S| ≤ 3n2/5 +O(n). □

Now, it remains to show Lemma 3.5 and Lemma 3.6.

Proof of Lemma 3.5. We rescale [n]2 to the unit square [0, 1]2. The neglected boundary effect gives
O(n) error by a standard geometry of numbers argument. Let (xn, yn) be the point in S that
maximizes r = xy. If 1⊺v ≥ 17n/10 for some v ∈ S, then r ≥ 7/10. For every p ∈ [0, x] × [0, y], p
and v− p cannot both be in S as they sum to v, so we cut out an area of r/2. By maximality of r,

|S| −O(n)

n2
≤ r +

∫ 1

r

r

t
dt− r

2
=

r

2
− r log r ≤ 7

20
− 7

10
log

(
7

10

)
= 0.599 . . . < 3/5,

where we note that r/2−r log r is decreasing on [7/10, 1], so we can bound it by its value at 7/10. □

This proof is a modification of an argument due to Cameron [1]: upon obtaining the upper bound
in r in the display, he obtained a global upper bound by maximizing it over r. The maximizer and
maximum both turn out to be 1/

√
e = 0.606 . . .. We now show Lemma 3.6.

Proof of Lemma 3.6. We rescale [n]2 to the unit square [0, 1]2. The neglected boundary effect gives
O(n) error by a standard geometry of numbers argument. Let v = (a, b) be the point in S/n with
the smallest L1-norm, so a+b ≤ 17/30. Without loss of generality, assume a ≥ b. Define the regions

U = {p ∈ [0, 1]2 : 1⊺p ≥ 17/10} and L = {p ∈ [0, 1]2 : 1⊺p ≤ a+ b}.

By definition of v and Lemma 3.5, we can assume S/n is disjoint from U and L. Observe that for
any A,B ⊂ [0, 1]2 such that B ⊂ v +A, each p ∈ B and v + p ∈ A cannot both be in S/n, so∣∣∣∣Sn ∩ (A ∪B)

∣∣∣∣ ≤ Area(A) · n2 +O(n), (3.6)

which we will refer to as “cutting out region B”. For each positive integer t, define L-shaped regions

Rt :=
{
p ∈ [0, 1]2 : p− tv ̸∈ [0, 1]2, p− (t− 1)v ∈ [0, 1]2

}
.

We see that Rt − v ⊂ Rt−1, allowing us to apply (3.6). Moreover, the area of these regions are

Area(Rt) =


a+ b− (2t− 1)ab if 1 ≤ t < ⌈1/a⌉
(1− (t− 1)a)(1− (t− 1)b) if t = ⌈1/a⌉
0 if t > ⌈1/a⌉

. (3.7)

We casework on ⌈1/a⌉ and cut out an area of at least 2/5 in all cases, i.e. (
∣∣S∣∣+O(n))/n2 ≥ 2/5.

In the figures below, U and L are colored orange, and we cut them out trivially. The diagonal lines
x+ y = t(a+ b) for positive integer t are colored purple and x+ y = 17/10 is colored green. Using
(3.6), we will also cut out blue, red, and pink regions, with the latter two requiring more careful
boundary analysis. Grey regions will also require boundary analysis, except we will not cut them out.

10



v 2v
v

2v
v

3v

2v
v

3v
4v

Case (1) Case (2) Case (3) Case (4)

(1) Suppose a ≥ 1/2. Note that R2 ⊂ v +R1. By (3.6), we can cut out at least Area(R2), so∣∣S∣∣+O(n)

n2
≥ Area(R2) = (1− a)(1− b),

which in this case is minimized at (a, b) = (17/30, 0) with value 13/30 > 2/5.
(2) Suppose 1/3 ≤ a < 1/2. Note that R2 \ (v+L) ⊂ v+(R1 \L) and (v+L)∩ [0, 1]2 ⊂ v+L,

so we can cut out at least Area(R2) from the region R1 ∪ R2. Also, we see that the red
region (2v + L) ∩ [0, 1]2 ⊂ v + (v + L) ∩ [0, 1]2, so we also cut it out. It has area

1

2
(a+ b)2 − 1

2
max(0, 3a+ b− 1)2 − 1

2
max(0, 3b+ a− 1)2 ≥ 1

2
(a+ b)2 − 1

2
(3a+ b− 1)2 − 1

2

(
1

30

)2

,

where we bound the third term below by checking that 3b + a − 1 ≤ 1/30, achieved at
(a, b) = (1/3, 7/30). We also exclude the orange region U ∩ ([2a, 1]× [2b, 1]) with area

1

2

(
2− 17

10

)2

− 1

2
max

(
0, 2a− 7

10

)2

− 1

2
max

(
0, 2b− 7

10

)2

≥ 9

200
− 1

2

(
2a− 7

10

)2

,

where we see the third term is 0 as b ≤ 17/30− a ≤ 7/30. Hence, in total we cut out∣∣S∣∣+O(n)

n2
≥ Area(R2) + Area

(
(2v + L) ∩ [0, 1]2

)
+Area(U ∩ ([2a, 1]× [2b, 1]))

= a+ b− 3ab+
1

2
(a+ b)2 − 1

2
(3a+ b− 1)2 − 1

1800
+

9

200
− 1

2

(
2a− 7

10

)2

,

which in this case is minimized at (a, b) = (1/3, 0) with value 0.432 . . . > 2/5.
(3) Suppose 1/4 ≤ a < 1/3. As before, we cut out at least Area(R2) from the region R1 ∪ R2.

Now, the red region (2v+L)∩ [0, 1]2 ⊂ v+(v+L)∩ [0, 1]2 and contains disjoint translations
of the grey region (3v+L)∩ [0, 1]2 and trapezoid L∩ ([1− 3a, 1− 2a]× [0, 1]). We compute

Area(L ∩ ([1− 3a, 1− 2a]× [0, 1])) =
1

2
max(0, 4a+ b− 1)2 − 1

2
max(0, 3a+ b− 1)2

≥ 1

2
(4a+ b− 1)2 − 1

2
(3a+ b− 1)2,

(3.8)

where we use that a ≥ 1/4. Also, this means the orange region U\R4 has area (3a−7/10)2/2.
The blue region R4 \ (3v+L) ⊂ v+R3 \ (2v+L), so we also cut it out. In total, we cut out∣∣S∣∣+O(n)

n2
≥ Area(R2) + Area((2v + L) ∩ [0, 1]2) + Area(R4 \ (3v + L)) + Area(U \R4)

≥ Area(R2) + Area(R4) + Area(L ∩ ([1− 3a, 1− 2a]× [0, 1])) + Area(U \R4)

= a+ b− 3ab+ (1− 3a)(1− 3b) +
1

2
(4a+ b− 1)2 − 1

2
(3a+ b− 1)2 +

1

2

(
3a− 7

10

)2

,

which in this case is minimized at a = b = 1/4 with value 0.4075 > 2/5.
(4) Suppose 1/5 ≤ a < 1/4. As before, we cut out at least Area(R2) from the region R1 ∪ R2.

Also, the argument (3.8) from case (3) on the grey and red regions still holds, so we can cut
out at least Area(R4) + Area(L ∩ ([1− 3a, 1− 2a]× [0, 1])) from R3 ∪R4. The pink region
(4v + L) ∩ [0, 1]2 ⊂ v + (3v + L) ∩ [0, 1]2, so we also cut it out. Now, we do case on a+ b.
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(a) Suppose a + b ≥ 17/50. The top orange region U \ R5 overlaps with the pink region
(4v + L) ∩ [0, 1]2, so we can cut out the entire region R5. Hence, in total, we cut out∣∣S∣∣+O(n)

n2
≥ Area(R2) + Area(R4 ∪R5) + Area(L ∩ ([1− 3a, 1− 2a]× [0, 1]))

≥ a+ b− 3ab+ (1− 3a)(1− 3b) +
1

2
(4a+ b− 1)2 − 1

2
(3a+ b− 1)2,

which in this case is minimized at a = b = 5/21 with value 0.404 . . . > 2/5.
(b) Suppose a + b < 17/50. We need to consider the white parallelogram between lines

x + y = 5(a + b) and x + y = 17/10, and with x ∈ [4a, 1]. We can compute its area
(4a−1)(5(a+b)−17/10) and subtract it from the total we cut out in case (a) to obtain∣∣S∣∣+O(n)

n2
≥ a+ b− 3ab+ (1− 3a)(1− 3b) +

1

2
(4a+ b− 1)2 − 1

2
(3a+ b− 1)2 − (4a− 1)

(
5(a+ b)− 17

10

)
,

which in this case is minimized at (a, b) = (1/4, 9/100) with value 0.446 . . . > 2/5.
(5) Suppose a < 1/5. As v ̸= 0, there exists a unique positive integer k ≥ 3 such that either

1

2k
≤ a <

1

2k − 1
or

1

2k + 1
≤ a <

1

2k
.

(a) For the first case, the non-empty regions are {Rt : t ∈ [2k]}. By (3.6), we include

|S| −O(n)

n2
≤

k∑
t=1

Area(R2t−1) = k(a+ b− (2k − 1)ab),

which under the (slightly relaxed) constraints 1/2k ≤ a ≤ 1/(2k − 1) and 0 ≤ b ≤ a is
maximized at a = b = 1/(2k − 1) with value k/(2k − 1) ≤ 3/5, as k ≥ 3.

(b) For the second case, the non-empty regions are {Rt : t ∈ [2k+1]}. By (3.6), we cut out∣∣S∣∣+O(n)

n2
≥

k∑
t=1

Area(R2t) = k(a+ b− (2k + 1)ab),

which under the (slightly relaxed) constraints 1/(2k + 1) ≤ a ≤ 1/2k and 0 ≤ b ≤ a is
minimized at a = b = 1/2k with value (2k − 1)/4k > 2/5, as k ≥ 3.

In all the cases above, we showed
(∣∣S∣∣−O(n)

)
/n2 ≥ 2/5, so |S| ≤ 3n2/5 +O(n). □
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