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Abstract

In this paper, we introduce a flip operation on self-complementary ideals of chain product
posets and study the resulting flip graphs. We give asymptotics for the number of vertices in
these graphs, compute their diameters, and give bounds for their radii. We also define similar
flip operations on self-complementary ideals of the chain product [2r] × [2r] × [2r] satisfying
additional symmetries, and we achieve similar results for the resulting flip graphs.
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1 Introduction

Self-complementary ideals of chain products originate from a generalization of maximal intersecting
families. The graph of maximal intersecting families of a fixed set S is formed by taking all
maximal intersecting families as vertices, and connecting two maximal intersecting families if they
differ in exactly one set. Asymptotics for the number of maximal intersecting families are given
in [BMMV13]; this paper also computes this vertex count exactly for all |S| ≤ 9. The structure
of this graph is studied in [LM97], which computes bounds and some exact values for its diameter
and radius. Another related graph is studied in [Mey95], where maximal intersecting families that
are the same under a permutation of S are mapped to the same vertex.

Because the poset of all subsets of a finite set of size n is isomorphic to an n-fold product of the
two-element chain, this setup admits a natural generalization to chains of arbitrary length. In this
setting, maximal intersecting families correspond to self-complementary ideals. The corresponding
graph, which we refer to as a flip graph, is formed by taking all self-complementary ideals of a
chain product as vertices and connecting two ideals if they differ in the minimum possible number
of elements. Questions about the structure of the flip graph include vertex count bounds, diameter
bounds, and radius bounds.

Additional types of flip graphs can be created by imposing symmetry restrictions on the self-
complementary ideals that form the vertices of the flip graph. One such example is the flip graph
on all cyclically symmetric self-complementary (CSSC) ideals of a product of three chains of equal
length; two ideals are connected if they differ in exactly three elements. Another such example
considers the set of all totally symmetric self-complementary (TSSC) ideals; in this setting, some
edges need to be weighted differently to account for the fact that some vertices of the poset lie
on axes of symmetry. The total number of vertices in these graphs are computed in [Kup94] and
[And94], respectively, via connections to plane partitions.

The main results can be summarized in the table below. The vertex count for the flip graphs on
cyclically symmetric and totally symmetric self-complementary ideals are known exactly; asymp-
totics are given for all three cases. The diameter of the flip graph is also known exactly in all
three cases. The radius is known exactly only for the flip graph on cyclically symmetric self-
complementary ideals; bounds are given for the other two cases.

poset symmetry vertex count diameter radius

[ℓ1]× · · · × [ℓd] self-complementary 3.1.1, 3.1.2, 3.1.4 3.2.5 3.3.7, 3.3.9
[2r]× [2r]× [2r] CSSC 4.1.1 4.2.2 4.3.5
[2r]× [2r]× [2r] TSSC 5.1.1 5.2.2 5.3.1

1.1 Organization

In Section 2, the relevant terms and definitions are stated. In Section 3, results for the vertex count,
diameter, and radius of flip graphs on self-complementary ideals are given. In Section 4, results for
the vertex count, diameter, and radius of flip graphs on cyclically symmetric self-complementary
ideals are given. In Section 5, results for the vertex count, diameter, and radius of flip graphs
on totally symmetric self-complementary ideals are given. In Section 6, we provide links to the
code we wrote to compute graph properties for various small cases, and we provide some sample
code output. In Section 7, future directions for research are proposed. In Section 8, we give our
acknowledgments.

The structure of this paper encourages jumping around. In fact, each section after the prelimi-
naries section can be read independently from the others.
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2 Preliminaries

2.1 Posets

A poset (P,≤P ) is a set P with a binary relation ≤P that satisfies the following three conditions
for all a, b, c ∈ P :

• a ≤P a (reflexivity),

• a ≤P b and b ≤P a imply a = b (antisymmetry), and

• a ≤P b and b ≤P c imply a ≤P c (transitivity).

When the binary relation ≤P is unambiguous, it is denoted with the symbol ≤. Similarly, posets
are denoted with their base set for brevity.

A poset is self-dual if there exists an involution φ : P → P such that

a ≤P b ⇐⇒ φ(b) ≤P φ(a).

When referring to a self-dual poset, it is assumed that the map φ is given and fixed.
The product P1 × · · · × Pn of a finite number of posets P1, . . . , Pn is the poset on all tuples

(a1, . . . , an) with a1 ∈ P1, . . . , an ∈ Pn and the relation

(a1, . . . , an) ≤P1×···×Pn (b1, . . . , bn) ⇐⇒ a1 ≤P1 b1, . . . , an ≤Pn bn.

Observe that a product of self-dual posets is self-dual; if P1, . . . , Pn come with involutions φ1, . . . , φn,
then the involution on P1 × · · · × Pn is given by

(a1, . . . , an) 7→ (φ1(a1), . . . , φn(an)).

One example of a poset, and also the primary poset of importance in this paper, is a chain.
Given a positive integer ℓ, the chain with ℓ elements is the poset with elements {1, 2, . . . , ℓ} and
the binary relation given by the natural ordering on the integers. This poset is denoted with the
notation [ℓ]. Chains are self-dual since the involution φ : {1, . . . , ℓ} → {1, . . . , ℓ} sending i to ℓ+1−i
for each i ∈ {1, . . . , ℓ} reverses the natural ordering on the integers.

2.2 Ideals

Let P be a poset. An ideal of P is a subset I ⊆ P with the property that

a ∈ I and b ≤ a =⇒ b ∈ I

for all a ∈ I, b ∈ P . Given an ideal I, an element a ∈ I is maximal if there does not exist b ∈ I
with b ̸= a and a ≤ b.

Remark. The standard definition of an ideal states that ideals are nonempty, but for our purposes,
we will allow empty ideals.

Given a self-dual poset P , an ideal I ⊂ P is self-complementary if

a ∈ I ⇐⇒ φ(a) /∈ I.

Observe that if I is self-complementary, then I ⊔ φ(I) = P , where φ(I) = {φ(a) | a ∈ I}. In
particular, only self-dual posets with an even number of elements can have self-complementary
ideals.
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If the poset P is a product of chains [ℓ1]×· · ·× [ℓd] for a sequence of positive integers ℓ1, . . . , ℓd,
an ideal I ⊂ P is self-complementary if

(a1, . . . , ad) ∈ I ⇐⇒ (ℓ1 + 1− a1, . . . , ℓd + 1− ad) /∈ I.

If the chains that comprise the poset all have the same number of elements, it is possible for
ideals to have additional types of symmetries. Let ℓ be a positive integer; an ideal I ⊆ [ℓ]× [ℓ]× [ℓ]
is cyclically symmetric if

(a1, a2, a3) ∈ I =⇒
(
aσ(1), aσ(2), aσ(3)

)
∈ I

for all 3-cycles σ ∈ S3. Similarly, an ideal I ⊆ [ℓ]× [ℓ]× [ℓ] is totally symmetric if

(a1, a2, a3) ∈ I =⇒
(
aσ(1), aσ(2), aσ(3)

)
∈ I

for all permutations σ ∈ S3.
Figure 1 is a visualization of a self-complementary ideal of the poset [6]× [6]× [6]. Elements of

the ideal are represented as cubes, and the poset itself is represented by the rectangular skeleton.
Figure 2 and Figure 3 are examples of a cyclically symmetric self-complementary ideal and a

totally symmetric self-complementary ideal, respectively, of the poset [6]× [6]× [6].

2.3 Graphs

Given a graph G, let let V (G) denote its vertex set and let v(G) = |V (G)| denote its vertex count.
Let G be a connected, unweighted graph. The distance between two vertices v, v′ ∈ V (G) is the

minimum possible number of edges in any path connecting v and v′. Similarly, let G be a connected,
weighted graph with nonnegative edge weights. The distance between two vertices v, v′ ∈ V (G) is
the minimum possible sum of the edge weights along any path connecting v and v′. Observe that
the distance in a weighted graph with edge weights all equal to 1 coincides with the distance in
the corresponding unweighted graph. The distance between two vertices u, v ∈ V (G) is denoted
dist(u, v).

Let G be a connected graph that can be weighted or unweighted. The eccentricity of a vertex
v ∈ G is the maximum distance between v and any vertex in G. The diameter of G is the maximum
eccentricity of any vertex v ∈ G, and the radius of G is the minimum eccentricity of any vertex
v ∈ G. The center of G is the set of all vertices with eccentricity equal to the radius. The perimeter
of G is the set of all vertices with eccentricity equal to the diameter.

3 Self-Complementary Ideals

Given a self-dual poset P , the flip graph on self-complementary ideals of P is the unweighted graph
whose vertices are the self-complementary ideals of P , and whose edges connect self-complementary
ideals I, J ⊂ P for which

|I \ J | = |J \ I| = 1.

When the context is clear, this graph will simply be referred to as the flip graph. The graph is
named this way because traversing an edge of the graph can be thought of as a “flip”: taking a
maximal element a of some ideal and replacing it with its dual φ(a). Figure 4 shows the flip graph
structure for the specific case P = [2]× [3]× [4].

The following lemma, although simple to prove, is important for establishing bounds on the
distance between self-complementary ideals in the flip graph.
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Figure 1: A self-complementary ideal of the poset [6]× [6]× [6].

Figure 2: A cyclically symmetric self-complementary ideal of the poset [6]× [6]× [6].

Figure 3: A totally symmetric self-complementary ideal of the poset [6]× [6]× [6].
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Figure 4: The flip graph on self-complementary ideals of [2]× [3]× [4].
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Lemma 3.0.1. Let I and J be self-complementary ideals of a self-dual poset P . Then the distance
from I to J in the flip graph of P is |I \ J |. In particular, the flip graph of any self-dual poset is
connected.

Proof. The distance from I to J must be at least |I \ J | since each flip decreases |I \ J | by at most
1. Thus, it suffices to give a path from I to J using exactly |I \ J | flips. Indeed, repeatedly flipping
a maximal element in I \ J works.

Given a positive integer d and a sequence of positive integers ℓ1, . . . , ℓd, let G(ℓ1, . . . , ℓd) denote
the flip graph on self-complementary ideals of [ℓ1]× · · · × [ℓd].

3.1 Vertex Count

Consider the graph G(ℓ1, . . . , ℓd) for some sequence of positive integers ℓ1, . . . , ℓd. When d ≤ 3, the
exact vertex count of G(ℓ1, . . . , ℓd) is known.

Theorem 3.1.1. Let d ≤ 3 be a positive integer, and let ℓ1, . . . , ℓd be a sequence of positive integers
with even product.

• If d = 1, the number of vertices in G(ℓ1) is 1.

• If d = 2, the number of vertices in G(ℓ1, ℓ2) is

(⌊ℓ1/2⌋+ ⌊ℓ2/2⌋
⌊ℓ1/2⌋

)
.

• If d = 3, the number of vertices in G(ℓ1, ℓ2, ℓ3) is⌊ℓ1/2⌋∏
i1=1

⌈ℓ2/2⌉∏
i2=1

ℓ3/2∏
i3=1

i1 + i2 + i3 − 1

i1 + i2 + i3 − 2

⌈ℓ1/2⌉∏
i1=1

⌊ℓ2/2⌋∏
i2=1

ℓ3/2∏
i3=1

i1 + i2 + i3 − 1

i1 + i2 + i3 − 2

 ,

assuming ℓ3 is even.

Proof. If d = 1 and ℓ1 is even, there is only one self-complementary ideal.
If d = 2, there is a bijection between self-complementary ideals of [ℓ1] × [ℓ2] and rotationally

symmetric up-left lattice paths from (ℓ1, 0) to (0, ℓ2). Observing that each rotationally symmetric
path bijects to a up-left lattice path from (ℓ1, 0) to (⌈ℓ1/2⌉ , ⌊ℓ2/2⌋) gives the desired result. (An
example of the bijection is given in Figure 5.)

If d = 3, the result is given in [Sta86].

⇐⇒ ⇐⇒

Figure 5: An example of the bijection in the case d = 2.

Determining exact answers for d ≥ 4 in general seems to be a difficult problem; even getting
asymptotically tight results appears to be difficult due to the intractability of counting solid parti-
tions. However, some statements about asymptotics can be made, depending on which parameters
are fixed and which are varied.
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Theorem 3.1.2. Let d be a positive integer, and let ℓ1, . . . , ℓd−1 be a fixed sequence of positive
integers. Then as n tends to infinity, we have

v(G(ℓ1, . . . , ℓd−1, n)) ∼ Cn⌊ℓ1···ℓd−1/2⌋

for some constant C. (If ℓ1 · · · ℓd−1 is even, the asymptotic runs over all positive integers n. If
ℓ1 · · · ℓd−1 is odd, the asymptotic runs over all even positive integers n.)

Proof. Let P denote the poset

P =

{
[ℓ1]× · · · × [ℓd−1] if ℓ1 · · · ℓd−1 even

([ℓ1]× · · · × [ℓd−1]) \ (12(ℓ1 + 1), . . . , 12(ℓd−1 + 1)) if ℓ1 · · · ℓd−1 odd.

It suffices to find asymptotics for the number of order-preserving functions f : P → {0, . . . , n}
satisfying φ{0,...,n}(f(a)) = f(φP (a)) for all a ∈ P , where φ{0,...,n} and φP denote the self-dual
involution on {0, . . . , n} and P , respectively; this condition is equivalent to the corresponding ideal
in P × [n] being self-complementary. To do this, pick any self-complementary ideal I ⊂ P . Observe
that |I| =

⌊
1
2ℓ1 · · · ℓd−1

⌋
and that any function g : I → {0, . . . , n} extends uniquely to a function

g̃ : P → {0, . . . , n} satisfying φ{0,...,n}(g̃(a)) = g̃(φP (a)) for all a ∈ P . (If ℓ1 · · · ℓd−1 is odd, then

g̃((12(ℓ1 + 1), . . . , 12(ℓd−1 + 1))) = 1
2n is forced.) An example of this extension is given in Figure 6.

Construct a function h : I → [0, 1) such that each of its |I| outputs are chosen uniformly and
independently, and define g : I → {0, . . . , n} via a 7→ ⌊(n+ 1)h(a)⌋; note that this uniformly
selects a function from I → {0, . . . , n}. In the limit of large n, the probability that g̃ is order-
preserving is asymptotically equal to the probability that h is order-preserving, since the probability
that two outputs of g have the same floor tends to zero. If C denotes the probability that h is
order-preserving, the total number of order-preserving functions f : P → {0, . . . , n} satisfying
φ{0,...,n}(g̃(a)) = g̃(φP (a)) for all a ∈ P is asymptotic to Cn|I| = Cn⌊ℓ1···ℓd−1/2⌋, as desired.

4 0 3 0 4 1 1

4 3 0 2 4 0

4 3 1

4

4 0 3 0 4 1 1

4 3 0 2 4 0 0

4 3 1 2 3 1 0

4 4 0 2 4 1 0

3 3 0 4 1 4 0

Figure 6: A sample function g : I → {0, . . . , n} (that is not order-preserving) and its corresponding
g̃ : I → {0, . . . , n} for (ℓ1, ℓ2, n) = (5, 7, 4). The corresponding subset of [5] × [7] × [4] is also
included.

For the next asymptotic result, the following crude bound will be needed.

Lemma 3.1.3. Let n and d be positive integers with d ≥ 2. Then there are at most 4n
d−1

ideals
(not necessarily self-complementary) in [n]d.

Proof. Induct on d. For the base case of d = 2, there are
(
2n
n

)
≤ 4n such ideals. For the inductive

step, observe that each layer of an ideal in [n]d is an ideal in [n]d−1. There are d such layers and

at most 4n
d−2

choices for each layer by the inductive step, so there are at most
(
4n

d−2)n
= 4n

d−1

ideals in [n]d.
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Theorem 3.1.4. Let d be a fixed positive integer. As n tends to infinity, we have

log v(G(n, . . . , n︸ ︷︷ ︸
d n’s

)) = Θ(nd−1).

(The asymptotic runs over all even positive integers n).

Proof. The upper bound is given by Lemma 3.1.3. For the lower bound, it suffices to construct
2Θ(nd−1) self-complementary ideals of [n]d.

Consider the set

S =

{
(a1, . . . , ad) ∈ [nd]

∣∣∣∣∣ ad ≤ 1
2n and a1 + · · ·+ ad ≤ d(12n+ 1)− 1, or

ad > 1
2n and a1 + · · ·+ ad ≤ d(12n) + 1

}
.

An example of this set is given in Figure 7.

Figure 7: S for the case n = 10, d = 3.

Let M be the set of maximal elements in S; observe that φ(m) ∈ M for each m ∈ M , where
φ is the self-dual involution on [n]d. Therefore, every subset M ′ ⊂ M such that M = M ′ ⊔ φ(M ′)
gives rise to a self-complementary ideal S \M ′ of [n]d. Bounding the size of 1

2 |M | gives

1
2 |M | ≥ |{(b1, . . . , bd) ∈ Zd

≥0
| b1 + · · ·+ bd = 1

2n− 1}| =
(1

2n− 1 + d− 1

d− 1

)
= Θ(nd−1),

since a suitable translation of the set {(b1, . . . , bd) ∈ Zd
≥0

| b1 + · · ·+ bd = 1
2n− 1} is a subset of M .

This gives 2|M |/2 ≥ 2Θ(nd−1) such self-complementary ideals, as desired.

Remark. For d = 2, the asymptotic is exactly

v(G(n, n)) =

(
n
1
2n

)
∼ C

2n√
n
.

for C = 2√
2π

≈ 0.798. The logarithmic asymptotic is thus log v(G(n, n)) ∼ log(2)n ≈ 0.693n. For

d = 3, the asymptotic is exactly

v(G(n, n, n)) =

 n/2∏
i1=1

n/2∏
i2=1

n/2∏
i3=1

i1 + i2 + i3 − 1

i1 + i2 + i3 − 2

2

∼ Cn−1/6e9n

(
9 4
√
3

8

)n2

9



for C = 21/33−1/6e2ζ
′(−1)−18. The logarithmic asymptotic is thus log v(G(n, n, n)) ∼ log(9 4

√
3/8)n2 ≈

0.392n2. For d ≥ 4, the exact logarithmic asymptotic appears to be open.

Conjecture 3.1.5. Let ℓ be an fixed even positive integer. As n tends to infinity, we have

log v(G(ℓ, . . . , ℓ︸ ︷︷ ︸
n ℓ’s

)) ∼ C
(2ℓ)n√

n
,

where C = log 2√
2π(2ℓ−1)(2ℓ+1)/3

.

This is a generalization of [BMMV13], which proves this asymptotic for n = 2. A key result
used is [Kle69], which bounds the total number of ideals in [2]n as n tends to infinity.

3.2 Diameter

This section will compute the exact value of the diameter of G(ℓ1, . . . , ℓd) for every sequence of
positive integers ℓ1, . . . , ℓd.

Lemma 3.2.1. Let n be a positive integer, and let x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn be nonincreasing
sequences of real numbers. Then

1

n

n∑
i=1

xiyi ≥
(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

yi

)
.

Proof. This is an application of the rearrangement inequality. Alternatively, observe that

1

n2

∑
1≤i<j≤n

(xi − xj)(yi − yj) ≥ 0

is the difference between the left hand side and the right hand side of the original inequality.

Now, given a poset P and an ideal I ⊆ P , let µ(I) denote the density µ(I) = |I|
|P | . The follow-

ing lemma is effectively a “correlation inequality” and is a generalization of the Harris-Kleitman
inequality [Har60, Kle66].

Lemma 3.2.2. Let ℓ1, . . . , ℓd be a sequence of positive integers, and let I and J be ideals of [ℓ1]×
· · · × [ℓd]. Then µ(I ∩ J) ≥ µ(I)µ(J).

Proof. Induct on d. The base case of d = 1 follows from the inequality min(|I|,|J |)
ℓ1

≥ |I|
ℓ1

· |J |
ℓ1
, since

|I ∩ J | = min(|I| , |J |) in this case.
For the inductive step, let I and J be ideals of [ℓ1]×· · ·× [ℓd], and for each index i ∈ {1, . . . , ℓd}

define

Ii = {(a1, . . . , ad−1) ∈ [ℓ1]× · · · × [ℓd−1] | (a1, . . . , ad−1, i) ∈ I},
Ji = {(a1, . . . , ad−1) ∈ [ℓ1]× · · · × [ℓd−1] | (a1, . . . , ad−1, i) ∈ J}.

Observe that both Ii and Ji are ideals of [ℓ1]× · · · × [ℓd−1] for each index i ∈ {1, . . . , ℓd}, and that
µ(I1) ≥ · · · ≥ µ(Iℓd) and µ(J1) ≥ · · · ≥ µ(Jℓd). By the inductive hypothesis and Lemma 3.2.1, we
have

µ(I ∩ J) =
1

ℓd

ℓd∑
i=1

µ(Ii ∩ Ji) ≥
1

ℓd

ℓd∑
i=1

µ(Ii)µ(Ji)

≥
(

1

ℓd

ℓd∑
i=1

µ(Ii)

)(
1

ℓd

ℓd∑
i=1

µ(Ji)

)
= µ(I)µ(J),

10



completing the induction.

Corollary 3.2.3. Let ℓ1, . . . , ℓd be a sequence of positive integers with ℓ1 · · · ℓd even. Then for any
self-complementary ideals I, J ⊂ [ℓ1]× · · · × [ℓd], we have |I ∩ J | ≥ 1

4ℓ1 · · · ℓd.
Proof. Since µ(I) = µ(J) = 1

2 , we have

|I ∩ J |
ℓ1 · · · ℓd

= µ(I ∩ J) ≥ µ(I)d(J) =
1

4

by Lemma 3.2.2.

Corollary 3.2.4. Let ℓ1, . . . , ℓd be a sequence of positive integers, all of which are odd except for
ℓk. Then for any self-complementary ideals I, J ⊂ [ℓ1]×· · ·× [ℓd], we have |I ∩ J | ≥ 1

4(ℓ1 · · · ℓd+ℓk).

Proof. Induct on d. The base case of d = 1 is true because the flip graph on [ℓ1] has only one
self-complementary ideal: the ideal with 1

2ℓ1 elements.
For the inductive step, suppose without loss of generality that ℓd is odd. Consider the sets

I ′ = {(a1, . . . , ad) ∈ I | ad = 1
2(ℓd + 1)}

J ′ = {(a1, . . . , ad) ∈ J | ad = 1
2(ℓd + 1)}.

and

I ′′ =
{
(a1, . . . , ad−1) ∈ [ℓ1]× · · · × [ℓd−1] | (a1, . . . , ad−1,

1
2(ℓd + 1)) ∈ I ′

}
J ′′ =

{
(a1, . . . , ad−1) ∈ [ℓ1]× · · · × [ℓd−1] | (a1, . . . , ad−1,

1
2(ℓd + 1)) ∈ J ′} .

Observe that I ′′ and J ′′ are self-complementary ideals in [ℓ1]× · · · × [ℓd−1], since the involution on
the self-dual poset [ℓ1] × · · · × [ℓd] maps elements with last coordinate 1

2(ℓd + 1) to elements with
last coordinate 1

2(ℓd + 1). Similarly, I \ I ′ and J \ J ′ are self-complementary ideals in [ℓ1] × · · · ×
[ℓd−1]× ([ℓd] \ {1

2(ℓd + 1)}). Therefore,

|I ∩ J | =
∣∣I ′′ ∩ J ′′∣∣+ ∣∣(I \ I ′) ∩ (J \ J ′)

∣∣
≥ 1

4(ℓ1 · · · ℓd−1 + ℓk) +
1
4(ℓ1 · · · ℓd−1(ℓd − 1))

= 1
4(ℓ1 · · · ℓd + ℓk)

by the inductive hypothesis and Corollary 3.2.3.

Theorem 3.2.5. Let ℓ1, . . . , ℓd be a sequence of positive integers, and let V denote their product.
The diameter of the flip graph on self-complementary ideals of [ℓ1]× · · · × [ℓd] is

0 if all of ℓ1, . . . , ℓd are odd,
1
4V if at least two of ℓ1, . . . , ℓd are even, and
1
4(V − ℓk) if ℓk is even and the rest are odd.

Proof. If all of ℓ1, . . . , ℓd are odd, then no self-complementary ideals exist. Thus, the flip graph is
empty, and the diameter is zero.

Now, suppose that at least two of ℓ1, . . . , ℓd are even.

• To prove that the distance between any two self-complementary ideals is at most 1
4V , let I

and J be self-complementary ideals in [ℓ1]× · · · × [ℓd]. By Lemma 3.0.1 and Corollary 3.2.3,
the distance between I and J is

|I \ J | = |I| − |I ∩ J | ≤ 1
2V − 1

4V = 1
4V.
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• Suppose that i and j are distinct indices for which both ℓi and ℓj are even. Then the self-
complementary ideals

I = {(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | ai ≤ 1
2ℓi}

J = {(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | aj ≤ 1
2ℓj}

(see Figure 8 for an example) satisfy

|I \ J | =
∣∣{(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | ai ≤ 1

2ℓi and aj >
1
2ℓj
}∣∣ = 1

4V.

By Lemma 3.0.1, the distance between I and J is 1
4V .

Therefore the diameter of the flip graph of [ℓ1]× · · · × [ℓd] is
1
4V when at least two of ℓ1, . . . , ℓd are

even.
Finally, suppose that ℓk is even and the rest are odd. If d = 1, the result follows because the

diameter of a one-vertex graph is zero; hence, suppose d ≥ 2.

• To prove that the distance between any two self-complementary ideals is at most 1
4(V −ℓk), let

I and J be self-complementary ideals in [ℓ1]×· · ·× [ℓd]. By Lemma 3.0.1 and Corollary 3.2.4,
the distance between I and J is

|I \ J | = |I| − |I ∩ J | ≤ 1
2V − 1

4(V + ℓk) =
1
4(V − ℓk).

• Without loss of generality, assume ℓd is even, and let I ′ be a self-complementary ideal of
[ℓ1]× · · · × [ℓd−1] \

{(
1
2(ℓ1 + 1), . . . , 12(ℓd−1 + 1)

)}
. Then the self-complementary ideals

I =
(
I ′ × [ℓd]

)
∪
{(

1
2(ℓ1 + 1), . . . , 12(ℓd−1 + 1), i

)
| i ∈ {1, . . . , 12ℓd}

}
J = {(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | ad ≤ 1

2ℓd}

(see Figure 9 for an example) satisfy

|I \ J | =
∣∣I ′ × {1

2ℓd + 1, . . . , ℓd}
∣∣ = 1

2(ℓ1 . . . ℓd−1 − 1) · 1
2ℓd = 1

4(V − ℓd).

By Lemma 3.0.1, the distance between I and J is 1
4(V − ℓd).

Figure 8: An example of I and J for the case (ℓ1, ℓ2, ℓ3) = (5, 6, 4).
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Figure 9: An example of I ′, I, and J for the case (ℓ1, ℓ2, ℓ3) = (5, 7, 4).

3.3 Radius

This section will compute the radius of G(ℓ1, . . . , ℓd) for certain sequences of positive integers
ℓ1, . . . , ℓd. The answer is known exactly in the specific case when both of the following conditions
hold:

• all of ℓ1, . . . , ℓd are even, and

• d is odd or some ℓi is divisible by 4.

Some of these results are generalizations of [Mey95], which gives a tight radius bound for [2]d

when d is odd.

Lemma 3.3.1. Let d be a positive integer. Let ℓ1, . . . , ℓd be a sequence of even positive integers,
and let V denote their product. Then the radius of G(ℓ1, . . . , ℓd) is at least(

1

4
− 1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋))V .

Proof. Let r denote the radius of G(ℓ1, . . . , ℓd), and let C be any self-complementary ideal of
[ℓ1]× · · · × [ℓd] contained in the center of G(ℓ1, . . . , ℓd). Additionally, for each index i ∈ {1, . . . , d}
let Ii be the self-complementary ideal

Ii = {(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | ai ≤ 1
2ℓi}.

Then

r ≥ max
i∈{1,...,d}

dist(C, Ii) ≥
1

d

d∑
i=1

dist(C, Ii) =
1

d

d∑
i=1

|C \ Ii| =
1

2
V − 1

d

d∑
i=1

|C ∩ Ii| .

Now, for each every tuple (t1, . . . , td) ∈ {0, 1}d, define

c(t1,...,td) =
∣∣{(a1, . . . , ad) ∈ C | 1a1>ℓ1/2 = t1, . . . ,1ad>ℓd/2 = td}

∣∣ .
Since C is self-complementary, we have

c(t1,...,td) + c(1−t1,...,1−td) =
V

2d

for every tuple (t1, . . . , td) ∈ {0, 1}d. Using this fact gives

d∑
i=1

|C ∩ Ii| =
d∑

i=1

∑
(t1,...,td)∈{0,1}d

ti=0

c(t1,...,td) =

d∑
s=0

∑
(t1,...,td)∈{0,1}d

t1+···+td=s

(d− s)c(t1,...,td).

13



Using the equalities c(t1,...,td) + c(1−t1,...,1−td) =
V
2d

for all (t1, . . . , td) ∈ {0, 1}d and the inequalities

c(t1,...,td) ≤ V
2d

for t1 + · · ·+ td < 1
2d gives a bound of

d∑
i=1

|C ∩ Ii| ≤

d
(
1
4 + 1

2d+1

(
d−1

(d−1)/2

))
V if d is odd

d
(
1
4 + 1

2d+1

(
d−1

(d−2)/2

))
V if d is even

= d

(
1

4
+

1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋))V

after collecting the binomial sums. Therefore,

r ≥ 1

2
V − 1

d

d∑
i=1

|C ∩ Ii| ≥
1

2
V −

(
1

4
+

1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋))V =

(
1

4
− 1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋))V

for all positive integers d.

Remark. Equality in the above lemma can only occur when the inequality c(t1,...,td) ≤ V
2d

is tight

for all (t1, . . . , td) ∈ {0, 1}d satisfying t1 + · · · + td < 1
2d. An example of the equality case for the

poset [6]× [8]× [4] is given in Figure 11.

The next theorem, known as the Erdős-Ko-Rado theorem, is a famous result bounding the size
of an intersecting family of r-element sets. It will give a tight bound for the radius in the case when
all of the side lengths ℓ1, . . . , ℓd are even and the dimension d is odd.

Theorem 3.3.2 (Erdős-Ko-Rado). Let n and r be nonnegative integers with n ≥ 2r. Let S be an
n-element set, and let F be a set of r-element subsets of S for which every pair of sets in F share
an element. Then |F| ≤

(
n−1
r−1

)
.

Proof. A beautiful proof by Katona is given in [Kat72].

Lemma 3.3.3. Let d be an odd positive integer, and let ℓ1, . . . , ℓd be a sequence of even positive
integers with product V . Then the radius of the flip graph on [ℓ1]× · · · × [ℓd] is at most(

1

4
− 1

2d+1

(
d− 1

1
2(d− 1)

))
V.

Additionally, the self-complementary ideal

{(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | 1a1≤ℓ1/2 + · · ·+ 1ad≤ℓd/2 >
1
2d}

achieves this bound.

Proof. It suffices to prove the result for ℓ1 = · · · = ℓd = 2, since [ℓ1]× · · · × [ℓd] can be partitioned
into V

2d
copies of [2]d, where the center of symmetry of each copy of [2]d is the same as the center

of symmetry of [ℓ1]× · · · × [ℓd]. An example of this partition can be found in Figure 10.
Let

C = {(a1, . . . , ad) ∈ [2]d | 1a1=1 + · · ·+ 1ad=1 >
1
2d}.

be a self-complementary ideal in [2]d, and let I be any self-complementary ideal in [2]d. By
Lemma 3.0.1, it suffices to show that

|I \ C| ≤
(
1

4
− 1

2d+1

(
d− 1

1
2(d− 1)

))
2d.
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= ⊔ ⊔ ⊔ ⊔ ⊔

Figure 10: The partition of [2]× [4]× [6] into six copies of [2]3.

Observe that if (a1, . . . , ad) and (b1, . . . , bd) are elements in I, then there is some index i for which
ai = bi = 1, since I is self-complementary. This means I \ C can be interpreted as an intersecting
family of subsets of {1, . . . , d} by mapping each tuple (a1, . . . , ad) to the set {i ∈ [d] | ai = 1}. By
Theorem 3.3.2, we have

|I \ C| ≤
(d−3)/2∑

i=0

(
d− 1

i

)
=

1

2

(
2d−1 −

(
d− 1

1
2(d− 1)

))
=

(
1

4
− 1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋)) 2d,

since every tuple in I \ C has fewer than d
2 1’s. Lastly, the self-complementary ideal

{(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | 1a1≤ℓ1/2 + · · ·+ 1ad≤ℓd/2 >
1
2d}

achieves this bound because it corresponds to the equality cases in Theorem 3.3.2.

An example of a self-complementary ideal in the center of the flip graph of [6] × [8] × [4] is
depicted in Figure 11.

Figure 11: The unique equality case for the case (ℓ1, ℓ2, ℓ3) = (6, 8, 4).

Lemma 3.3.4. Let d be a positive integer, and let ℓ1, . . . , ℓd be a sequence of even positive integers
with product V . Suppose ℓd is divisible by 4. Then the radius of G(ℓ1, . . . , ℓd) is at most(

1

4
− 1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋))V.

Additionally, if d is odd, then the self-complementary ideal

{(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | 1a1≤ℓ1/2 + · · ·+ 1ad≤ℓd/2 >
1
2d}

achieves this bound. Similarly, if d is even, then the self-complementary ideal

{(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | 1a1≤ℓ1/2 + · · ·+ 1ad−1≤ℓd−1/2 +
1
2

⌈
4ad
ℓd

− 1
⌉
> 1

2d}
achieves this bound.

15



Proof. If d is odd, the result follows from Lemma 3.3.3, so assume henceforth that d is even and ad is
divisible by 4. It suffices to prove the result for ℓ1 = · · · = ℓd−1 = 2 and ℓd = 4, since [ℓ1]×· · ·× [ℓd]
can be partitioned into V

2d+1 copies of [2]d−1 × [4], where the center of symmetry of each copy of

[2]d−1× [4] is the same as the center of symmetry of [ℓ1]×· · ·× [ℓd], and if (a1, . . . , ad−1, ad) lies in a
copy, then so does (a1, . . . , ad−1,

1
2ℓd+1−ad), (a1, . . . , ad−1,

1
2ℓd+ad), and (a1, . . . , ad−1, ℓd+1−ad).

= ⊔ ⊔ ⊔ ⊔ ⊔

Figure 12: The partition of [2]× [6]× [8] into six copies of [2]× [2]× [4].

Let
C = {(a1, . . . , ad) ∈ [2]d−1 × [4] | 1a1=1 + · · ·+ 1ad−1=1 +

4−ad
2 ≥ d

2}
be a self-complementary ideal in [2]d−1×[4], and let I be any self-complementary ideal in [2]d−1×[4].
It suffices to show that

|I \ C| ≤
(
1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
2d+1.

Let φ : [2]d−1 × [4] → [2]d+1 be the map given by

(a1, . . . , ad−1, ad) 7→


(a1, . . . , ad−1, 1, 1) if ad = 1

(a1, . . . , ad−1, 1, 2) if ad = 2

(a1, . . . , ad−1, 2, 1) if ad = 3

(a1, . . . , ad−1, 2, 2) if ad = 4

.

Observe that φ maps self-complementary ideals of [2]d−1×[4] to self-complementary ideals of [2]d+1.
Since φ maps C to an element in the center of [2]d+1, we apply Lemma 3.3.3 to obtain

|I \ C| = |φ(I) \ φ(C)| ≤
(
1

4
− 1

2d+2

(
d
1
2d

))
2d+1 =

(
1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
2d+1.

Conjecture 3.3.5. Let d be an even positive integer. Then the radius of the flip graph of [2]d is
at most ⌈(

1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
2d
⌉
.

Additionally, there exists a self-complementary ideal achieving this bound containing

{(a1, . . . , ad) ∈ [2]d | 1a1=1 + · · ·+ 1ad=1 >
1
2d}

as a subset.

Remark. The truth of a specific case (Conjecture 3.4.3) of Chvátal’s conjecture (Conjecture 3.4.1)
implies the truth of this conjecture. To see why, let H be a uniform set of subsets of {1, . . . , d},
satisfying the conditions of Conjecture 3.4.3. Let φ be the map from elements of [2]d to subsets of
{1, . . . , d} given by

(a1, . . . , ad) 7→ {i ∈ [d] | ai = 1},
and let C = [2]d \ {φ−1(A) | A ∈ H}. Observe that C is an self-complementary ideal of [2]d, since
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• for each subset A ⊆ {1, . . . , d}, exactly one of A or {1, . . . , d} \A is contained in H, and

• φ maps the order structure on [2]d to the reverse inclusion structure on subsets of {1, . . . , d}
(that is, a ≤[2]d b ⇐⇒ φ(a) ⊇ φ(b)), so C is an ideal.

Now by Lemma 3.0.1, it suffices to show that

|I \ C| ≤
⌈(

1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
2d
⌉

for any self-complementary ideal I ⊂ [2]d. Indeed,

|I \ C| = |φ(I) \ φ(C)| = |φ(I) ∩H| .

Since I is a self-complementary ideal, every pair of sets in φ(I) must share an element. By the
hypothesis of the conjecture, we have

|φ(I) ∩H| ≤
⌈
1

4

(
d
1
2d

)⌉
+

1
2
d−1∑
i=1

(
d− 1

i− 1

)
=

⌈(
1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
2d
⌉
.

Finally, observe that C contains

{(a1, . . . , ad) ∈ [2]d | 1a1=1 + · · ·+ 1ad=1 >
1
2d}

as a subset, as desired.

Corollary 3.3.6. Assume Conjecture 3.3.5. Let d be a positive integer, and let ℓ1, . . . , ℓd be a
sequence of even positive integers with product V . Suppose none of ℓ1, . . . , ℓd are divisible by 4.
Then the radius of G(ℓ1, . . . , ℓd) is at most⌈(

1

4
− 1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋))V

⌉
.

Additionally, there exists a self-complementary ideal achieving this bound containing

{(a1, . . . , ad) ∈ [ℓ1]× · · · × [ℓd] | 1a1≤ℓ1/2 + · · ·+ 1ad≤ℓd/2 >
1
2d}

as a subset.

Proof. Let P denote the poset [ℓ1] × · · · × [ℓd]. For each index i ∈ {1, . . . , d}, define ci = {1
4ℓi +

1
2 ,

3
4ℓi +

1
2}. Define the following sequence of subsets of P :

P0 = c1 × c2 × · · · × cd−1 × cd

P1 = {[ℓ1] \ c1} × c2 × · · · × cd−1 × cd

P2 = [ℓ1]× {[ℓ2] \ c2} × · · · × cd−1 × cd
...

Pd−1 = [ℓ1]× [ℓ2]× · · · × {[ℓd−1] \ cd−1} × cd

Pd = [ℓ1]× [ℓ2]× · · · × [ℓd−1]× {[ℓd] \ cd}.

Observe that P = P0 ⊔ · · · ⊔ Pd. (An example of this partition is given in Figure 13.)
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= ⊔ ⊔ ⊔

Figure 13: The partition of the poset [2]× [6]× [10].

Let C0 ⊂ P0 be an ideal satisfying Conjecture 3.3.5. Similarly, let C1 ⊂ P1, . . . , Cd ⊂ Pd be
ideals satisfying Lemma 3.3.4, which exist since each of P1, . . . , Pd have at least one dimension
divisible by 4. Let C = C0 ⊔ · · · ⊔ Cd.

C is an ideal of P because the construction given in Lemma 3.3.4 implies that for every maximal
element a ∈ Ci, the set {b ∈ P | b ≤ a} ⊆ I and {b ∈ P | b > a} ⊆ P \ I. Furthermore,
it is self-complementary because C0, . . . , Cd are all self-complementary. Therefore, for any self-
complementary ideal I ⊂ P ,

dist(C, I) ≤ dist(C0, I ∩ C0) + · · ·+ dist(Cd, I ∩ Cd)

≤
⌈(

1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
|P0|

⌉
+

d∑
i=1

(
1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
|Pi|

=

⌈(
1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
(|P0|+ · · ·+ |Pd|)

⌉
=

⌈(
1

4
− 1

2d+1

(
d− 1

1
2(d− 2)

))
V

⌉
by Conjecture 3.3.5 and Lemma 3.3.4, since I ∩ Ci is an self-complementary ideal of Ci for each
i ∈ {0, . . . , d} by construction.

Combining all previous results gives the following theorem.

Theorem 3.3.7. Let d be a positive integer, and let ℓ1, . . . , ℓd be a sequence of even positive integers
with product V . Suppose that d is odd or that at least one ℓi is divisible by 4. Then the radius of
G(ℓ1, . . . , ℓd) is (

1

4
− 1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋))V.

Additionally, if Conjecture 3.3.5 is true and there are no assumptions on d or any ℓi being divisible
by 4, then the radius of G(ℓ1, . . . , ℓd) is⌈(

1

4
− 1

2d+1

(
d− 1⌊

1
2(d− 1)

⌋))V

⌉
=


(
1
4 − 1

2d+1

(
d−1

⌊(d−1)/2⌋
))

V if d is not a power of 2(
1
4 − 1

2d+1

(
d−1

⌊(d−1)/2⌋
))

V + 1
2 if d is a power of 2,

.

Proof. The lower bound in all cases is given by Lemma 3.3.1. The upper bound, assuming d is odd,
is given by Lemma 3.3.3. The upper bound, assuming one dimension is divisible by 4, is given by
Lemma 3.3.4. The upper bound, assuming nothing aside from the evenness of ℓ1, . . . , ℓd, is given
by Corollary 3.3.6, which is true because Conjecture 3.4.3 implies Conjecture 3.3.5, which implies
Corollary 3.3.6.
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Now, we turn our attention towards the case when at least one of ℓ1, . . . , ℓd is odd.

Lemma 3.3.8. Assume Conjecture 3.3.5. Given a sequence of positive integers ℓ1, . . . , ℓd, let
r(ℓ1, . . . , ℓd) denote the radius of G(ℓ1, . . . , ℓd). Suppose ℓ1, . . . , ℓd′ are odd, and ℓd′+1, . . . , ℓd are
even. Then for every positive integer k, we have

r(ℓ1, . . . , ℓd′) ≤
∑

S⊆{1,...,d}

r({ℓi − 1 | i ∈ S} ∪ {ℓd′+1, . . . , ℓd}).

Proof. Let P denote [ℓ1] × · · · × [ℓd]. Without loss of generality, assume ℓ1, . . . , ℓd′ are odd, and
ℓd′+1, . . . , ℓd are even. For each index i ∈ {1, . . . , d′}, let mi = {1

2(ℓi + 1)}. For each subset
S ⊆ {1, . . . , d′}, define

PS =

({
m1 if 1 ∈ S

[ℓ1] \m1 if 1 /∈ S

)
× · · · ×

({
md′ if d′ ∈ S

[ℓd′ ] \md′ if d′ /∈ S

)
× [ℓd′+1]× · · · × [ℓd].

Observe that
[ℓ1]× · · · × [ℓd] =

⊔
S⊆{1,...,d′}

PS .

(An example of this partition is given in Figure 14.)

= ⊔ ⊔ ⊔

Figure 14: The partition of the poset [3]× [5]× [8].

For each poset PS , construct an element CS of the center according to Lemma 3.3.3, Lemma 3.3.4,
or Corollary 3.3.6. Let C = ⊔S⊆{1,...,d′}CS . Then C is an ideal because every CS contains

{(a1, . . . , ad) ∈ PS | 1a1≤ℓ1/2 + · · ·+ 1ad≤ℓd/2 >
1
2d}

as a subset, and dually does not contain any element of

{(a1, . . . , ad) ∈ PS | 1a1≤ℓ1/2 + · · ·+ 1ad≤ℓd/2 <
1
2d}.

Thus for any self-complementary ideal I ⊂ P , we have

|I \ P | =
∑

S⊆{1,...,d′}

(I ∩ PS) \ CS ≤
∑

S⊆{1,...,d}

r({ℓi − 1 | i ∈ S} ∪ {ℓd′+1, . . . , ℓd})

by Lemma 3.0.1, since each I ∩ PS is self-complementary in PS .

An almost-exact answer is obtainable in the d = 3 case. In fact, the following is true:
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Theorem 3.3.9. Let d ≤ 3 be a positive integer, and let ℓ1, . . . , ℓd be positive integers. Let
r(ℓ1, . . . , ℓd) and d(ℓ1, . . . , ℓd) denote the radius and diameter of G(ℓ1, . . . , ℓd). Then

r(ℓ1, . . . , ℓd) =
⌈
1
2d(ℓ1, . . . , ℓd)

⌉
,

unless (ℓ1, ℓ2, ℓ3) ≡ (2, 3, 3) (mod 4) or permutations, in which case it is possible that

r(ℓ1, . . . , ℓd) =
1
2d(ℓ1, . . . , ℓd) + 1.

Proof. To prove the upper bound, we use Theorem 3.2.5 and Lemma 3.3.8 and split into cases.

• If ℓ1 · · · ℓd is odd, then r(ℓ1, . . . , ℓd) = d(ℓ1, . . . , ℓd) = 0.

• If d = 1 and ℓ1 is even, then r(ℓ1) = d(ℓ1) = 0.

• If d = 2 and ℓ1, ℓ2 are both even, then

r(ℓ1, ℓ2) =
⌈
(14 − 1

8)ℓ1ℓ2
⌉
=
⌈
1
8ℓ1ℓ2

⌉
=
⌈
1
2d(ℓ1, ℓ2)

⌉
.

• If d = 2, ℓ1 is even, and ℓ2 = 2k + 1 is odd, then

r(ℓ1, ℓ2) ≤ r(ℓ1, 2k) + r(ℓ1) =
⌈
1
8ℓ1 · 2k

⌉
=
⌈
1
2 · 1

4(ℓ1ℓ2 − ℓ1)
⌉
=
⌈
1
2d(ℓ1, ℓ2)

⌉
.

• If d = 3 and ℓ1, ℓ2, ℓ3 are all even, then

r(ℓ1, ℓ2, ℓ3) = (14 − 1
8)ℓ1ℓ2ℓ3 =

1
8ℓ1ℓ2ℓ3 =

1
2d(ℓ1, ℓ2, ℓ3).

• If d = 3, ℓ1, ℓ2 are even, and ℓ3 = 2k + 1 is odd, then

r(ℓ1, ℓ2, ℓ3) ≤ r(ℓ1, ℓ2, 2k) + r(ℓ1, ℓ2) =
1
8ℓ1ℓ2 · 2k +

⌈
1
8ℓ1ℓ2

⌉
=
⌈
1
8ℓ1ℓ2ℓ3

⌉
=
⌈
1
2d(ℓ1, ℓ2, ℓ3)

⌉
.

• If d = 3, ℓ1 = 2k1 + 1 and ℓ2 = 2k2 + 1 are odd, and ℓ3 is even, then

r(ℓ1, ℓ2, ℓ3) ≤ r(2k1, 2k2, ℓ3) + r(2k1, ℓ3) + r(2k2, ℓ3) + r(ℓ3)

= 1
82k1 · 2k2 · ℓ3 +

⌈
1
8 · 2k1ℓ3

⌉
+
⌈
1
8 · 2k2ℓ3

⌉
=
⌈
1
8(2k1 · 2k2 + 2k1 + 2k2)ℓ3

⌉
+ 1k1, k2, ℓ3/2 odd

=
⌈
1
8(ℓ1ℓ2ℓ3 − ℓ3)

⌉
+ 1k1, k2, ℓ3/2 odd.

To prove the lower bound, observe that r(ℓ1, . . . , ℓd) ≥
⌈
1
2d(ℓ1, . . . , ℓd)

⌉
.

This result illustrates the difficulty of obtaining a “nice” formula for the radius when ℓ1, . . . , ℓd
can be any sequence of positive integers.

3.4 Relation to Chvátal’s Conjecture

This section is essentially an addendum to the previous section about radius bounds, since some
results from the previous section rely on the truth of conjectures stated here.

The following conjecture, known as Chvátal’s conjecture, can be thought of as an extension
of the Erdős-Ko-Rado theorem (Theorem 3.3.2) to sets of subsets closed under taking subsets. If
proven, it would imply tight radius bounds for flip graphs of all products of even-length chains.
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Conjecture 3.4.1 (Chvátal). Let S be a finite set, and let D be a set of subsets of S closed under
taking subsets. Let F be a subset of D for which every pair of sets in F share an element. Then

|F| ≤ max
s∈S

|{A ∈ F | s ∈ A}| .

Remark. This conjecture seems to be open in all but a small number of cases. According to
[FKKK18], the intractability of this conjecture stems from the inability to choose a suitable s in
the maximum, and that current progress is limited. For the purposes of this paper, the conjecture
only needs to be resolved in the case given in Conjecture 3.4.3.

Before the next conjecture is stated, consider the following definition. Let d be an even positive
integer, and call a set H of subsets of S = {1, . . . , d} uniform if

• every subset has size 1
2d,

• for every subset A ⊂ S of size 1
2d, exactly one of A and S \A is in H, and

• for every element s ∈ S, s appears in at most
⌈
1
4

(
2d
d

)⌉
subsets of H.

Observe that if d is not a power of 2, then 1
4

(
2d
d

)
is an integer, so every element must appear exactly

1
4

(
2d
d

)
times. The existence of uniform subsets is given by [Mey95] in Lemma 13.

Conjecture 3.4.2. Let d be an even positive integer. There exists a uniform set of subsets H such
that if

D = H ∪ {A ⊂ {1, . . . , d} | |A| = 1
2d− 1},

then every subset F of D for which every pair of sets in F share an element satisfies

F ≤
⌈
1

4

(
d
1
2d

)⌉
+

(
d− 1
1
2d− 2

)
.

Remark. This conjecture is true for d ≤ 6. For d = 2, select H = {{1}}. For d = 4, select
H = {{1, 2}, {1, 3}, {2, 3}}. For d = 6, select

H = {{1, 2, 3}, {1, 2, 4}, {1, 3, 6}, {1, 4, 5}, {1, 5, 6}, {2, 3, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 6}, {3, 4, 5}}.

The fact that these choices of H work for d = 2 and d = 4 is easy to verify. For d = 6, we
present two interesting proofs for |F | ≤ 1

4

(
6
3

)
+
(
5
1

)
= 10. However, these proofs seem difficult to

generalize to larger values of d, because it appears that for large d the structure of uniform H is
not well-behaved.

Proof 1. Define

D1 = {{4, 5}, {1, 2, 3}, {5, 6}, {1, 2, 4}, {3, 6}},
D2 = {{2, 3}, {1, 4, 5}, {2, 6}, {3, 4, 5}, {1, 6}},
D3 = {{4, 6}, {2, 3, 5}, {1, 4}, {2, 5, 6}, {1, 3}},
D4 = {{2, 5}, {1, 3, 6}, {2, 4}, {1, 5, 6}, {3, 4}},
D5 = {{3, 5}, {2, 4, 6}, {1, 5}, {3, 4, 6}, {1, 2}}.

Observe that D = D1 ⊔ D2 ⊔ D3 ⊔ D4 ⊔ D5 so

|F ∩ D| = |F ∩ D1|+ |F ∩ D2|+ |F ∩ D3|+ |F ∩ D4|+ |F ∩ D5| ≤ 2 + 2 + 2 + 2 + 2 = 10.
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Proof 2. Let F be a subset of D for which every pair of sets in F share an element. For every
subset A ⊆ {1, 2, 3, 4, 5, 6}, define

1A =

{
1 if A ∈ F
0 otherwise.

Observe that
1123 +

1
2(145 + 146 + 156) ≤ 1 + 1

2145146156,

and analogous symmetric statements hold. Summing this inequality over all sets in H gives∑
A∈H

1A +
∑

A⊂{1,...,6}
|A|=2

1A ≤ 10 + 1
2

∑
a,b,c∈{1,...,6}

{1,...,6}\{a,b,c}∈H

1ab1ac1bc ≤ 10 + 1
2 .

Since the left hand side is an integer, it follows that∑
A∈H

1A +
∑

A⊂{1,...,6}
|A|=2

1A =
∑
A∈D

1A ≤ 10.

Conjecture 3.4.3. Let d be an even positive integer. There exists a uniform subset H such that if

D = H ∪ {A ⊂ {1, . . . , d} | |A| ≤ 1
2d− 1},

then every subset F of D for which every pair of sets in F share an element satisfies

F ≤
⌈
1

4

(
d
1
2d

)⌉
+

1
2
d−1∑
i=1

(
d− 1

i− 1

)
.

Remark. This conjecture follows from Conjecture 3.4.2 and Theorem 3.3.2 after partitioning

D =
(
H ∪ {A ⊂ {1, . . . , d} | |A| = 1

2d− 1}
)
∪
⋃

i∈{0,..., 1
2
d−2}{A ⊂ {1, . . . , d} | |A| = i}.

This conjecture is also a specific case of Chvátal’s conjecture (Conjecture 3.4.1).

4 Cyclically Symmetric Self-Complementary Ideals

The flip graph on self-complementary ideals of a poset can be modified to accommodate additional
symmetries the ideals may have. In particular, there are flip graphs whose vertices are the cyclically
symmetric self-complementary (CSSC) ideals of a poset P = [ℓ]× [ℓ]× [ℓ] = [2r]× [2r]× [2r] for an
even positive integer ℓ = 2r.

Given two distinct CSSC ideals I, J ⊂ P , I and J differ by a flip if there exists a point
(a1, a2, a3) ∈ I such that the replacements

(a1, a2, a3) 7→ (2r + 1− a1, 2r + 1− a2, 2r + 1− a3)

(a2, a3, a1) 7→ (2r + 1− a2, 2r + 1− a3, 2r + 1− a1)

(a3, a1, a2) 7→ (2r + 1− a3, 2r + 1− a1, 2r + 1− a2)

yield J . The flip graph on cyclically symmetric self-complementary ideals of P is an unweighted
graph whose edges are constructed between CSSC ideals of P that differ by a flip. Figure 15 shows
the flip graph structure for the specific case P = [4]× [4]× [4].
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Figure 15: The flip graph on cyclically symmetric self-complementary ideals of [4]× [4]× [4].

Observe that at least two of a1, a2, a3 must be distinct for the above flip to yield another ideal,
because

{(1, 1, 1), (2, 2, 2), . . . , (r, r, r)} ⊂ I

for any self-complementary ideal I ⊂ P . Thus the points (a1, a2, a3), (a2, a3, a1), and (a3, a1, a2)
above are distinct, and we have

|I \ J | = |J \ I| = 3

for any two CSSC ideals that differ by a flip. Observe that this condition is also sufficient: if
CSSC ideals I and J satisfy |I \ J | = |J \ I| = 3 and (a1, a2, a3) ∈ I \ J , then flipping (a1, a2, a3),
(a2, a3, a1), and (a3, a1, a2) in I yields the ideal J . This readily implies the following lemma:

Lemma 4.0.1. Let I and J be cyclically symmetric self-complementary ideals of [2r]× [2r]× [2r].
Then the distance from I to J in the flip graph is 1

3 |I \ J |.
Proof. This is essentially the same as the proof of Lemma 3.0.1.

Given a positive integer r, let GC3(2r, 2r, 2r) denote the flip graph on cyclically symmetric
self-complementary ideals of [2r] × [2r] × [2r]. Additionally, for each tuple (t1, t2, t3) ∈ {0, 1}3
define

Ot1t2t3 = {(a1, a2, a3) ∈ [2r]× [2r]× [2r] | t1 = 1a1>r, t2 = 1a2>r, t3 = 1a3>r}.
For ideals I, J ⊆ P let I △ J denote their symmetric difference, equal to (I \ J) ∪ (J \ I).

Observe that if I and J are CSSC ideals that differ by a flip, then

|I △ J | = 6,

and for t1t2t3 ∈ {001, 010, 100, 011, 101, 110}, we have

|(I △ J) ∩Ot1t2t3 | = 1.
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4.1 Vertex Count

The number of vertices in GC3(2r, 2r, 2r), also equal to the number of cyclically symmetric self-
complementary ideals of [2r]× [2r]× [2r], was determined by Kuperberg in 1994.

Theorem 4.1.1. Let r be a positive integer. The number of vertices in GC3(2r, 2r, 2r) isr−1∏
j=0

(3j + 1)!

(r + j)!

2

.

Proof. This is given in [Kup94].

Corollary 4.1.2. As r tends to infinity, we have

v(GC3(2r, 2r, 2r)) ∼ Cr−5/18

(
27

16

)r2

for some real number C. In particular, log v(GC3(2r, 2r, 2r)) ∼ log(27/16)r2 ≈ 0.523r2.

Proof. In fact,

C =

(
eζ

′(−1)21/4Γ(2/3)

31/12Γ(1/3)

)2/3

≈ 0.600.

This can be obtained using asymptotic formulas for the superfactorial numbers and triple factorial
numbers.

4.2 Diameter

This section will compute the exact value of the diameter of GC3(2r, 2r, 2r) for all positive integers
r.

Lemma 4.2.1. Let r be a positive integer. The diameter of GC3(2r, 2r, 2r) is at least
1
3(r−1)r(r+1).

Proof. Let I denote the CSSC ideal O000 ∪ O001 ∪ O010 ∪ O100, and let J denote the CSSC ideal
constructed as a union of three “pyramids” consisting of 1× 1, 3× 3, . . . , (2r− 1)× (2r− 1) squares
as layers. Figure 16 depicts these ideals in the case r = 5.

By Lemma 4.0.1, the distance between I and J in the flip graph is

1
3 |I \ J | = |O011 ∩ (I \ J)| = 1 · 2 + 2 · 3 + · · ·+ (r − 1) · r = 1

3(r − 1)r(r + 1).

Therefore, the diameter of the flip graph is at least 1
3(r − 1)r(r + 1).

Theorem 4.2.2. Let r be a positive integer. The diameter of GC3(2r, 2r, 2r) is
1
3(r − 1)r(r + 1).

Proof. The lower bound is given by Lemma 4.2.1. Since the diameter is at most twice the radius,
the upper bound is given by Lemma 4.3.4.
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Figure 16: I and J for the case r = 5. These ideals attain the maximum possible distance in the
flip graph on cyclically symmetric self-complementary ideals of [10]× [10]× [10].

4.3 Radius

This section will compute the exact value of the radius of GC3(2r, 2r, 2r) for all positive integers r.
We first prove two general lemmas about CSSC ideals.

Lemma 4.3.1. All cyclically symmetric self-complementary ideals I ⊂ [2r]×[2r]×[2r] must contain
the points (i, i, 2r + 1− i) for each integer 1 ≤ i ≤ r.

Proof. If (i, i, 2r + 1 − i) /∈ I, then (2r + 1 − i, 2r + 1 − i, i) ∈ I from I being self-complementary.
Since I is cyclically symmetric, we also have (i, 2r + 1− i, 2r + 1− i) ∈ I, which is a contradiction
because 2r + 1− i > i.

Lemma 4.3.2. All cyclically symmetric self-complementary ideals I ⊂ [2r]×[2r]×[2r] must contain
at least one of (1, r, 2r) or (r, 1, 2r).

Proof. Suppose that (1, r, 2r) /∈ I, so (2r, r + 1, 1) ∈ I, and thus (r + 1, 1, 2r) ∈ I. Then I contains
(r, 1, 2r), as it is covered by (r + 1, 1, 2r). The other case is similar.

Next, we prove a lemma about ideals in two dimensions that will be used when inducting with
3-dimensional ideals.

Lemma 4.3.3. Let r ≥ 2 be a positive integer, and let k ≤ r−2 be a nonnegative integer. Let C be
the self-complementary ideal in [r−k−1]×[r+k] given by {(a1, a2) ∈ [r−k−1]×[r+k] | a1+a2 ≤ r}.
(An example of C is given in Figure 17.) Then for any ideal I ⊆ [r−k−1]× [r+k], not necessarily
self-complementary, we have

|C △ I| ≤ (k + 1) + (k + 2) + · · ·+ (r − 1) = 1
2(r + k)(r − k − 1).

Furthermore, equality holds only when I is the empty ideal or the entire poset.
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r − 1

k + 1

k + 1

r − k − 1

Figure 17: An example of C for the case r = 6, k = 2.

Proof. For each integer 1 ≤ i ≤ r − k − 1, define pi = |{(a1, a2) ∈ I | a1 = i}|, so 0 ≤ pr−k−1 ≤
· · · ≤ p1 ≤ r + k. Since C contains r − i points with a1 = i for each integer 1 ≤ i ≤ r − k − 1, we
wish to upper-bound

|C △ I| =
r−k−1∑
i=1

|pi − (r − i)|.

We will pair up column i with column r − k − i and show that

|pi − (r − i)|+ |pr−k−i − (k + i)| ≤ r + k.

For the following, assume without loss of generality that i ≤ r − k − i, so 0 ≤ pr−k−i ≤ pi ≤ r + k.
For a fixed pi, the maximum value of |pi − (r − i)| + |pr−k−i − (k + i)| obtained by varying

pr−k−i must occur at an extreme: when pr−k−i = pi or pr−k−i = 0. Similarly for a fixed pr−k−i, the
maximum value obtained by varying pi occurs when pi = pr−k−i or when pi = r+k. The maximum
value now reduces to a finite case check:

• Case 1: pi ̸= pr−k−i.

Then we must have pi = r + k and pr−k−i = 0, and

|(r + k)− (r − i)|+ |0− (k + i)| = 2k + 2i ≤ r + k,

by the assumption that i ≤ r − k − i.

• Case 2: pi = pr−k−i.

Setting x = pi = pr−k−i, the maximum value of |x− (r − i)|+ |x− (k + i)| must occur at an
endpoint of x = 0 or x = r + k, both of which give r + k.

Summing the inequalities |pi − (r − i)| + |pr−k−i − (k + i)| ≤ r + k for i = 1 to r − k − 1 and
dividing by 2 yields the desired conclusion of

|C △ I| ≤ 1
2(r + k)(r − k − 1).

In order for equality to hold, we need |pi− (r− i)|+ |pr−k−i− (k+ i)| = r+k for all 1 ≤ i ≤ r−k
2 .

Note that equality cannot actually hold in Case 1 above, because that would require i = r− k− i,
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but then pi = pr−k−i, so Case 2 would apply instead. Thus, to achieve equality, we must apply
Case 2 and have pi = pr−k−i = 0 or pi = pr−k−i = r + k for each integer 1 ≤ i ≤ r−k

2 .
In particular, we have that p1 = pr−k−1 = 0 or p1 = pr−k−1 = r + k. This determines that

either pi = 0 for all i, or pi = r + k for all i, giving that I is either the empty ideal or the entire
poset.

Lemma 4.3.4. The radius of GC3(2r, 2r, 2r) at most 1
6(r − 1)r(r + 1).

Proof. Let C2r denote the CSSC ideal of [2r]× [2r]× [2r] given by

{(a1, a2, a3) ∈ [2r]× [2r]× [2r] | a1 + a2 + a3 ≤ 3r + 1},

and let I denote any CSSC ideal of [2r]× [2r]× [2r]. C2r for the case r = 5 is shown in Figure 18.

Figure 18: C2r for the case r = 5. This ideal lies in the center of the flip graph on cyclically
symmetric self-complementary ideals of [10]× [10]× [10].

By Lemma 4.0.1, it suffices to show that

1
6 |C2r △ I| ≤ 1

6(r − 1)r(r + 1),

or that
|O001 ∩ (C2r △ I)| ≤ 1

6(r − 1)r(r + 1).

We will induct on r; the base case of r = 1 is true because there is only one CSSC ideal, which
is the center. Now assuming the result for r − 1, we will show it for r.

Let the core of a CSSC ideal I ⊂ [2r] × [2r] × [2r] refer to its intersection with {(a1, a2, a3) |
2 ≤ ai ≤ 2r − 1} (i.e. the points in the inner [2r − 2] × [2r − 2] × [2r − 2] cube), and let the shell
refer to the rest of I. Observe that the core of a CSSC ideal of [2r]× [2r]× [2r] is a CSSC ideal of
[2r−2]× [2r−2]× [2r−2], and that the core of C2r is C2r−2, which is the center in the r−1 case by
the inductive hypothesis. The inductive hypothesis for r−1 states that symmetric difference of the
cores of I and C2r in O001 is at most 1

6(r − 2)(r − 1)r. Now it suffices to show that the symmetric
difference of the shells of I and C2r in O001 is at most 1

6(r−1)r(r+1)− 1
6(r−2)(r−1)r = 1

2(r−1)r.
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From Lemma 4.3.2, we may assume without loss of generality that I contains (r, 1, 2r), and
therefore all points (a1, a2, a3) in the shell in O001 with a2 = 1. Note that C2r contains (r, 1, 2r) as
well.

Consider the remaining points in O001 that the shells of C2r and I may differ in, which is the
union of a vertical layer of points V = {(a1, a2, a3) ∈ O001 | a1 = 1, a2 ≥ 2, a3 ≤ 2r − 1} and the
top layer of points T = {(a1, a2, a3) ∈ O001 | a2 ≥ 2, a3 = 2r}.

Consider swinging the vertical layer V “behind” the top layer T to form the poset [2r − 1] ×
[r − 1]× [1], which we will now view as an ideal in P ′ = [2r − 1]× [r − 1].

More precisely, the point (1, a2, a3) ∈ V for 2 ≤ a2 ≤ r and r + 1 ≤ a3 ≤ 2r − 1 corresponds
to the point (a3 − r, a2 − 1) in P ′, and the point (a1, a2, 2r) ∈ T for 1 ≤ a1 ≤ r and 2 ≤ a2 ≤ r
corresponds to the point (a1 + r − 1, a2 − 1) in P ′. An example of V , T , and P ′ is illustrated in
Figure 19.

2r − 1

r − 1

r − 1

r

Figure 19: V ∪ T for the case r = 6 is depicted on the left; note that only O001 is drawn. The
corresponding P ′ is shown on the right.

Let I ′ and C ′
2r denote the ideals in P ′ corresponding to the shells of I and C2r in V ∪ T . It

remains to show that |C ′
2r △ I ′| ≤ 1

2(r − 1)r. We split into two cases:

• Case 1: (1, r, 2r − 1) ∈ I.

This corresponds to I ′ containing the point (r − 2, r − 1), which we note is also contained
in C ′

2r. Then the remainder of P ′ not covered by the point (r − 2, r − 1), in which I ′ and
C ′
2r may differ, is a rectangle with dimensions r × (r − 1). Applying the k = 0 version of

Lemma 4.3.3 gives that |C ′
2r △ I ′| ≤ 1

2(r − 1)r, as desired.

Applying the equality cases of Lemma 4.3.3 gives that equality here holds when I ′ = P ′ or
when I ′ = {(a1, a2) ∈ P ′ | a1 ≤ r − 2}.

• Case 2: (1, r, 2r − 1) /∈ I.

Let k be the largest positive integer such that (1, r, 2r − k) /∈ I; we have that k ≥ 1 by
assumption and that k ≤ r − 2 because (r, r, r + 1) ∈ I by Lemma 4.3.1. Then since I
is CSSC, we have that (2r, r + 1, k + 1) ∈ I, so (r + 1, k + 1, 2r) ∈ I. This means that
(2r− 2, k) ∈ I ′. In other words, all points in the leftmost k columns of P ′ are contained in I ′.
In these leftmost k columns, the symmetric difference between C ′

2r and I ′ is 1 + 2 + · · ·+ k.

This leaves us with a (r + k) × (r − k − 1) rectangle in which C ′
2r and I ′ may differ. By

Lemma 4.3.3, the symmetric difference between C ′
2r and I ′ in that rectangle is at most

(k + 1) + (k + 2) + · · · + (r − 1). All together, we have that C ′
2r and I ′ differ in at most
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1 + 2 + · · · + (r − 1) = 1
2(r − 1)r points, as desired. A visual depiction of this logic is given

in Figure 20.

The equality cases of Lemma 4.3.3 imply that equality here holds when I ′ = P ′ or when
I ′ = {(a1, a2) ∈ P ′ | a1 ≤ r− k− 2 or a2 ≤ k}. However, in this case, we have I ′ ̸= P ′ by the
assumption that (1, r, 2r − 1) /∈ I, so we are left with only the latter equality case.

k

r

r − 1

2r − 1

k

r − k − 1

Figure 20: An example of P ′ for the case r = 6, k = 3. The highlighted cells are contained in C ′
2r.

The darker highlighted cells must also be contained in I ′ by Lemma 4.3.1.

This concludes the proof that |C ′
2r △ I ′| ≤ 1

2(r − 1)r. To complete the list of equality cases
for the inductive step, we must note that we previously assumed without loss of generality that
(r, 1, 2r) ∈ I, since I contains one of (r, 1, 2r) and (1, r, 2r) by Lemma 4.3.2. The symmetric case of
when (1, r, 2r) ∈ I introduces r − 2 more equality cases that are analogous to the equality cases in
Case 2, but with the first two coordinates swapped. Extending these equality cases in O001 to all
octants, the 2r − 1 CSSC shells that differ overall from the shell of C2r in the maximum possible
6 · 1

2(r − 1)r points are the CSSC shells Sk,2r such that

{(k, 2r − k, 2r), (2r − k, 2r, k), (2r, k, 2r − k)} ⊂ Sk,2r

for each of 1 ≤ k ≤ 2r − 1. The shells Sk,2r in the case of r = 5 are depicted in Figure 21.

Theorem 4.3.5. The radius of GC3(2r, 2r, 2r) is
1
6(r − 1)r(r + 1).

Proof. The upper bound is given by Lemma 4.3.4. Since the radius is at least half the diameter,
the lower bound is given by Lemma 4.2.1.

Remark. From our code, it appears that the center of GC3(2r, 2r, 2r) contains exactly 1 element,
namely C2r. This fact should not be hard to prove with a little more time, applying the work
already done in this section.

Furthermore, we can enumerate nicely the number of ideals that are furthest from C2r in the
flip graph.

Theorem 4.3.6. The number of ideals of [2r]× [2r]× [2r] that are a distance of 1
6(r − 1)r(r + 1)

from C2r in GC3(2r, 2r, 2r) is 3r−1.
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Figure 21: The shells that are equality cases for the inductive step of Lemma 4.3.4 in the case
r = 5.

Proof. We prove this via induction. The base case of r = 1 is clear because there is only one CSSC
ideal C2 in [2] × [2] × [2], of distance 0 from itself. The three ideals of distance 1 from C2r in the
case of r = 2 were illustrated previously in Figure 4 as well.

Let P2r denote the set of CSSC ideals of [2r]× [2r]× [2r] that are a distance of 1
6(r− 1)r(r+1)

from C2r in the flip graph. We will first construct three ways to add on a shell to each I ∈ P2r−2

to form a CSSC ideal in P2r.
Fix a CSSC ideal I ∈ P2r−2, and recall from the equality cases of the inductive step in

Lemma 4.3.4 that its shell is Sk,2r−2 for some 1 ≤ k ≤ 2r− 3. Then the only three shells Si,2r that
can fit around I to form a CSSC ideal in P2r are

S1,2r, S2r−1,2r, and Sk+1,2r.

The first two shells can in fact fit around any ideal of [2r−2]× [2r−2]× [2r−2]. The third shell is
specific to the fact that the shell of the ideal I ∈ P2r−2 is Sk,2r−2. For the particular I ∈ P2r−2 for
r = 5 shown in Figure 22, the three shells are demonstrated in Figure 23, and the resulting ideals
in P2r are shown in Figure 24. Thus, given that |P2r−2| = 3r−2, we have constructed exactly 3r−1

ideals in P2r. An example of the tree structure arising from this proof is given in Figure 25.

Figure 22: An example of I ∈ P8 with shell S6,8.
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Figure 23: The three shells S1,10, S9,10, S7,10 that can surround I in Figure 22 to form an ideal in
P10.

Figure 24: Three ideals in P10 corresponding to I in Figure 22 and the shells in Figure 23.

Figure 25: The first three layers of the tree structure arising from the proof of Theorem 4.3.6.
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Remark. The perimeter of GC3(2r, 2r, 2r) is a subset of P2r (and appears to be a strict subset for
r ≥ 4).

5 Totally Symmetric Self-Complementary Ideals

The definition of a flip graph can be modified to accommodate totally symmetric self-complementary
(TSSC) ideals of a poset P = [ℓ]× [ℓ]× [ℓ] = [2r]× [2r]× [2r] for an even positive integer ℓ = 2r.

Given two distinct TSSC ideals I, J ⊂ P , I and J differ by a flip if there exists a point
(a1, a2, a3) ∈ I such that the replacements

(aσ(1), aσ(2), aσ(3)) 7→ (2r + 1− aσ(1), 2r + 1− aσ(2), 2r + 1− aσ(3))

over all σ ∈ S3 yield J . The flip graph on totally symmetric self-complementary ideals of P is a
weighted graph whose edges are constructed between TSSC ideals of P that differ by a flip. If
a1, a2, a3 are distinct, connect I and J with an edge of weight one. If exactly two of a1, a2, a3 are
equal, connect I and J with an edge of weight two. Note that, like the CSSC ideal case, it is not
possible for a1 = a2 = a3.

Figure 26 shows the flip graph structure for the specific case P = [6]× [6]× [6]. Edges of weight
one are denoted with a thinner line segment, and edges of weight two are denoted with a thicker
line segment.

Figure 26: The flip graph on totally symmetric self-complementary ideals of [6]× [6]× [6].

Lemma 5.0.1. Let I and J be totally symmetric self-complementary ideals of [2r] × [2r] × [2r].
Then the distance between I and J in the flip graph is 1

3 |I \ J |.

Proof. This is essentially the same as the proofs of Lemma 3.0.1 and Lemma 4.0.1.

Given a positive integer r, let GS3(2r, 2r, 2r) denote the flip graph on totally symmetric self-
complementary ideals of [2r]× [2r]× [2r]. Like before, for each tuple (t1, t2, t3) ∈ {0, 1}3 define

Ot1t2t3 = {(a1, a2, a3) ∈ [2r]× [2r]× [2r] | t1 = 1a1>r, t2 = 1a2>r, t3 = 1a3>r}.
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5.1 Vertex Count

The number of vertices in GS3(2r, 2r, 2r), or the number of totally symmetric self-complementary
ideals of [2r]× [2r]× [2r], was determined by Andrews in 1994.

Theorem 5.1.1. Let r be a positive integer. The number of vertices in GS3(2r, 2r, 2r) is

r−1∏
j=0

(3j + 1)!

(r + j)!
.

Proof. This is given in [And94].

Corollary 5.1.2. As r tends to infinity,

v(GS3(2r, 2r, 2r)) ∼ Cr−5/36

(
3
√
3

4

)r2

for some real number C. In particular, log v(GS3(2r, 2r, 2r)) ∼ 1
2 log(27/16)r

2 ≈ 0.262r2.

Proof. One can take

C =

(
eζ

′(−1)21/4Γ(2/3)

31/12Γ(1/3)

)1/3

≈ 0.775.

This is the square root of the result in Corollary 4.1.2 because the vertex count of GS3(2r, 2r, 2r)
is the square root of the vertex count of GC3(2r, 2r, 2r).

5.2 Diameter

The diameter of the GS3(2r, 2r, 2r) is known exactly. To determine this exact value, first consider
the following lemma.

Lemma 5.2.1. All totally symmetric self-complementary ideals I ⊂ [2r]× [2r]× [2r] must contain
the points (a1, a2, a3) that satisfy

• 2a1 ≤ 2r + 1 and a2 + a3 ≤ 2r + 1, or

• 2a2 ≤ 2r + 1 and a3 + a1 ≤ 2r + 1, or

• 2a3 ≤ 2r + 1 and a1 + a2 ≤ 2r + 1.

Proof. If (a1, a2, a3) /∈ I, then (2r+1−a1, 2r+1−a2, 2r+1−a3) ∈ I, as are (2r+1−a1, 2r+1−
a3, 2r+1−a2), (2r+1−a3, 2r+1−a2, 2r+1−a1), and (2r+1−a2, 2r+1−a1, 2r+1−a3). If any
of the above inequalities hold, then one of these three points covers (a1, a2, a3), a contradiction.

To visualize the points satisfying the above inequalities, we show the example of r = 5 in
Figure 27.

This also means that the TSSC ideal with the fewest points in O001 contains precisely those
points only and the remaining octants filled in accordingly. On the other hand, the TSSC ideal
with the most points in O001 is the one that contains the entirety of O001. The case of r = 5 is
depicted in Figure 28.

In general for the [2r]× [2r]× [2r] case, the symmetric difference between these two TSSC ideals
in O001, which is also their distance in the flip graph, is 12+22+ · · ·+(r− 1)2 = 1

6(r− 1)r(2r− 1).
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Figure 27: Points that must be included in all totally symmetric self-complementary ideals of
[10]× [10]× [10].

Figure 28: I and J for the case r = 5. These ideals attain the maximum possible distance in the
flip graph on totally symmetric self-complementary ideals of [10]× [10]× [10].

34



Theorem 5.2.2. The diameter of GS3(2r, 2r, 2r) is
1
6(r − 1)r(2r − 1).

Proof. It remains to show that for any two TSSC ideals I and J of [2r]× [2r]× [2r], we have that
1
6 |I △ J | ≤ 1

6(r − 1)r(2r − 1). Since |I ∩ J | ≥ 4r3 − 3 · 1
6(r − 1)r(2r − 1) by Lemma 5.2.1, we have

that

|I △ J | = |I|+ |J | − 2 |I ∩ J |
≤ 4r3 + 4r3 − 2

(
4r3 − 3 · 1

6(r − 1)r(2r − 1)
)

= (r − 1)r(2r − 1),

as desired.
Observe that equality holds when |I ∩J | = 4r3− 3 · 16(r− 1)r(2r− 1), i.e. when the intersection

of I and J is the ideal as depicted in Lemma 5.2.1. This can only occur when one ideal contains no
points in O110 and the other ideal contains the minimum possible number of points in O001, which
are the two ideals depicted in Figure 28.

5.3 Radius

Only a lower bound for the radius is known, which follows directly from the diameter bound
(Theorem 5.2.2).

Conjecture 5.3.1. The radius of GS3(2r, 2r, 2r) is
⌈

1
12(r − 1)r(2r − 1)

⌉
.

From our code for r ≤ 6, it appears that the radius equals the ceiling of half of the diameter
(see Section 6 for a link to the source code). Our code gave the following results:

r vertex count diameter radius

1 1 0 0

2 2 1 1

3 7 5 3

4 42 14 7

5 429 30 15

6 7436 55 28

The size of the center is 1 for r = 3 and r = 4, but greater than 1 for r = 5 and r = 6 (and
most likely for r > 6 as well). The elements in the center of the flip graph for r ≤ 5 are depicted
in Figure 29, Figure 30, and Figure 31.

An ideal in the center must contain
⌊

1
12(r − 1)r(2r − 1)

⌋
or
⌈

1
12(r − 1)r(2r − 1)

⌉
points in O110

by considering its distance to two ideals shown in Figure 28. However, there are many such ideals,
and this condition appears to be necessary but not sufficient, as the majority of TSSC ideals
satisfying this condition are not in the center for r = 5. A proof of the upper bound for the radius
may involve picking a certain “nice” element in the center and proving that all TSSC ideals are
a distance of at most

⌈
1
12(r − 1)r(2r − 1)

⌉
in the flip graph. A similar shell induction argument

as in the proof of Lemma 4.3.4 may not necessarily work, as the core of ideals in the center of
GS3(2r, 2r, 2r) do not appear to be ideals in the center of GS3(2r − 2, 2r − 2, 2r − 2) for r ∈ {4, 5}.

We are still hopeful that this conjecture is relatively tractable, as the radius appears to be
essentially half of the diameter.
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Figure 29: The center for r = 3.

Figure 30: The center for r = 4.

Figure 31: The center for r = 5.
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6 Code

The code we wrote while doing research can be found at https://github.com/anser0/spur. A
description of each of the folders is as follows:

• /chainproducts contains code to generate all self-complementary ideals of [ℓ1] × [ℓ2] × [ℓ3]
for small ℓi.

• /cssc contains code to generate all cyclically-symmetric ideals of [2r] × [2r] × [2r], their
eccentricities, and the ideals furthest from the unique element in the center for r ≤ 4.

• /data contains select data from other files, such as all totally symmetric self-complementary
ideals of [2r]× [2r]× [2r] and their eccentricities for r ≤ 4.

• /graphvisualizer contains code to generate and visually represent the flip graph on self-
complementary ideals of chain products; six examples are shown in Figure 32.

– /graphvisualizer/images contains images of the flip graphs of [ℓ1] × · · · × [ℓd] for all
ℓ1 · · · ℓd ≤ 64.

• /tssc contains code to generate all totally symmetric self-complementary ideals of [2r]×[2r]×
[2r], their eccentricities for r ≤ 6, and the points that all totally symmetric self-complementary
ideals must contain.

7 Future Directions

Currently, there are three main open conjectures in this paper:

• Conjecture 3.1.5 conjectures an asymptotic bound on the number of self-complementary ideals
of [ℓ]n for a fixed even positive integer ℓ, as n tends to infinity.

• Conjecture 3.4.3 is a specific case of Chvátal’s conjecture. If true, it would imply an exact
answer for the radius of the flip graph on self-complementary ideals of chain products.

• Conjecture 5.3.1 conjectures that the radius of the flip graph on totally symmetric self-
complementary ideals of [ℓ]3 is given by the ceiling of half of the diameter.

In addition to the three conjectures above, there are also a number of other questions that can
be asked about flip graph structures on self-dual posets. These include, but are not limited to, the
following questions:

• Is it possible to improve on Theorem 3.1.4 to obtain more precise vertex count asymptotics
for flip graphs on self-complementary ideals?

• In this paper, the only graph properties studied were vertex count, diameter, and radius.
Other properties of interest could be:

– edge count and average degree

– maximal degree, which is related to Sperner’s theorem

– characterization of the center, and bounds on its size

– characterization of the perimeter, and bounds on its size.
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Figure 32: Visual representations of sample flip graphs on self-complementary ideals of chain prod-
ucts. Elements in the center are colored blue, and elements in the perimeter are colored red.
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