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Abstract

This paper works with a scheme in characteristic p admitting a smooth lifting to Z/p2.
We wish to study whether the de Rham complex splits into the direct sum of its cohomology
sheaves. Deligne and Illusie proved that if the dimension is less than p then the de Rham
complex splits. Although there are known examples of schemes that do not admit a lifting
and for which there is no splitting of the de Rham complex, there are no known examples
of schemes admitting a lifting for which its de Rham complex does not split. In this paper
we look at schemes of higher dimensions that admit a lifting to Z/p2 and measure how close
the de Rham complex is to splitting by studying the Hodge-de Rham spectral sequence.
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1 Introduction

The de Rham complex is an object of study in different areas of algebraic geometry as well as
complex differential geometry. One of the main properties that has allowed Hodge theory to be
studied in complex differential geometry is the Hodge decomposition. This result can be obtained
by the splitting of the de Rham complex by way of the Hodge-de Rham spectral sequence. In
characteristic 0 this decomposition has led to theorems like the Kodaira-Akizuki-Nakano vanish-
ing which are important for the study of birational geometry.

In 1987, Pierre Deligne and Luc Illusie published “Rélevements Modulo p2 et Décomposition du
Complexe de de Rham” [3] which contains the first proof by purely algebraic methods of the
splitting of the de Rham complex in characteristic 0. By comparison, previous proofs relied on
Serre’s GAGA to go from analytic methods to algebraic results.

Deligne and Illusie proof used work in characteristic p schemes in an essential way. In particular
they used schemes that admitted a smooth lifting to Z/p2. They proved that for such schemes
if the dimension was less than p then the de Rham complex splits. They were able to use this
result to lift up to characteristic 0 and prove that the de Rham complex splits for any scheme
in characteristic 0. Even though their result led to splitting in the characteristic 0 setting, the
situation on prime characteristic was still open. In fact various examples of schemes in prime
characteristic where the de Rham complex does not split were constructed. Some of these ex-
amples can be found in Lang [6] and Schröer [13]. On the other hand, in [4] Illusie states that
there is a family of schemes, called ordinary schemes, for which we have a splitting of the de
Rham Complex regardless of dimension. Nevertheless, there is a class of schemes for which not
much is known, this would be schemes that admit a smooth lifting to Z/p2 but are not ordi-
nary. In this paper we study these schemes. One of the main results in this paper is that for
schemes that admit a smooth lift the Hodge-de Rham spectral sequence has no short differentials.

We now give an outline of this paper. In the following section we will give a more technical
description of Deligne and Illusie’s work. We do this because in subsequent sections we will build
upon the techniques Deligne and Illusie used. In the next section we study in detail the situation
of what happens in dimension p which is where Deligne and Illusie’s work stops. Next, inspired
by the work done in dimension p we work on schemes of all dimensions and prove that there
are no short differentials in the conjugate sequence of the Hodge-de Rham Spectral sequence.
Finally, in the last section we give some homological criteria for the splitting of the de Rham
Complex.
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Gerovitch Slava for directing the program, Prof. David Jerison and Prof. Ankur Moitra for
being the advisors for this program and their advice throughout the length of this program. I
also want to thank my mentor Robert Burklund for his invaluable guidance in this project. The
constant discussions about the topic were really insightful, and his advice throughout the project
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1.2 Notation and Conventions

Throughout the paper we will work with a scheme X lying over a perfect field k of characteristic
p. In particular with those that admit a lift to Z/p2. Such a lift, denoted X̃, is a scheme lying
over the truncated Witt vectors W2(k) such that X̃×W2(k) k ' X. Throughout the paper we also
use the relative Frobenius morphism which is defined as the map FX/k that makes the following
diagram commute.

X X ′ X

Spec k Spec k

FX/k

FX

p

Fk

Where X ′ = X ×k k and Fk is the Frobenius morphism in k and the composition of the maps on
the top row is the absolute Frobenius morphism FX .

When we refer to the complex Ω•X we mean the de Rham complex of a scheme X. We denote its
hypercohomology as HdR(X) the de Rham cohomology of the scheme X.

When working with the homology of groups we will use the groups Cp, Cp−1 and Σn often. In
general we will let γ be the generator of Cp, α the generator of Cp−1 and σ an element of Σn.
When considering a Cp module M [Cp] we let M [Cp] = M [g] where g will be the generator of Cp
inside the module. We will also use the Wreath product o which is defined as follows. If we have
Γ a subgroup of Σn and we let G be any group we consider the wreath product G oΓ as the group
G×n with an action given by Γ that permutes the n copies of G by permutations.

Finally, we will let D(X) be the derived category of X. We will consider this as an infinity
category so that the homotopy colimit (Ω1

X′ [−1])⊗nhΣn
is defined, where the action of Σn is given

by permutation of the elements of the tensor product twisted by the sign representation.

2 Theorem of Deligne and Illusie

In this section we review the technical details of Deligne and Illusie’s theorem on the splitting of
the de Rham complex. We do this because in the following sections we will build upon some of
the results and techniques used in this paper.

We first need to introduce the de Rham complex which is the main object of study. The de
Rham Complex Ω•X is a complex where the objects are the sheaves ΩnX of a scheme X. The
cotangent sheaf Ω1 consists of the differential forms of the scheme X, and each Ωn contains
the n-forms that are defined as the exterior power Ωn := ΛnΩ1. The de Rham Cohomology
HdR(X) is defined as the hypercohomology of this complex.

Even though this is a complex of OX modules, it is not OX linear and is one of the reasons we
cannot do much algebraically on this complex. However, in characteristic p there are ways to go
around this as Deligne and Illusie did. We instead consider the complex F∗Ω

•
X , the pushforward

of the de Rham complex through the Frobenius morphism. The complex F∗Ω
•
X is OX′ linear.
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To understand this we introduce the relative Frobenius morphism of a scheme is.

Definition 2.1. Let X be a scheme lying over a perfect field k of characteristic p. We define
the relative Frobenius map FX/k as the map that makes the following diagram commute.

X X ′ X

Spec k Spec k

FX/k

FX

p

Fk

Where X ′ = X ×k k and Fk is the Frobenius morphism in k and the composition of the maps on
the top row is the absolute Frobenius morphism FX .

For brevity we will denote FX/k as F .

Deligne and Illusie worked with the complex F∗Ω
•
X which is the pushforward of the de Rham

complex through the Frobenius morphism which is OX′ linear. This would allow more coho-
mological tools to be used to understand this complex. The next trick that they used involved
considering the smooth lift of the scheme X, called X̃. There does not always exist a lifting, but
if it exists then it can be used together with the Cartier isomorphism C−1. This isomorphism
plays a crucial part in Deligne and Illusie’s proof.

Definition 2.2. We define a smooth lift X̃ of X from k to W2(k), where W2 are the Witt
vectors, as a scheme X̃ smooth over W2(k) such that X̃ ×W2(k) k ' X.

If such a lift X̃ of X exists we say that X̃ has a lift to Z/p2.

Theorem 2.3 (Cartier). Let X be a smooth scheme over a perfect field k of characteristic p.
Then there exists an isomorphism,

C−1 :
⊕

ΩiX′ →
⊕
HiF∗Ω•.

Here H represents the cohomology sheaves of the complex. With this result due to Cartier,
Deligne and Illusie are able to reduce the question of finding a quasi-isomorphism⊕
HiF∗Ω•X [−i] → F∗Ω

• to a quasi-isomorphism
⊕

ΩiX′ [−i] → F∗Ω
•
X . And the way they are

able to do so is through lifting X to X̃ and locally lifting the Frobenius map F̃ . This way they
got their result.

Theorem 2.4 (Deligne-Illusie). Let X be a smooth scheme over a perfect field k of characteristic
p that admits a smooth lift X̃ over W2(k), then there exists a quasi-isomorphism

ϕ :
⊕
i<p

Ωi[−i] ∼−→ τ<pF∗Ω
•

Furthermore, if F lifts to a morphism F̃ : X̃ → X̃ ′ then we have that

ϕ :
⊕

Ωi[−i] ∼−→ F∗Ω
•

Where the isomorphisms are in the derived category D(X ′).
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The proof of this theorem can be found in [3] and [4]. In Illusie’s section of [4] he explains how to
conclude that the existence of a global Frobenius lift induces a decomposition. We want to show
a small part of the proof. We present this argument as the work done in the following section is
based on the ideas used in this fragment of the proof.

Lemma 2.5 (Delligne-Illusie). Let X be a smooth scheme over a perfect field k of characteristic
p that admits a smooth lift X̃ over W2(k), then there exists a map

ϕ1 : Ω1
X′ [−1]→ F∗Ω

•
X

in the derived category D(X ′) that induces a quasi-isomorphism

ϕ : OX′ ⊕ Ω1
X′ [−1]

∼−→ τ≤1F∗Ω
•
X .

Proof of Theorem 2.4. By the lemma above and the fact that Ω1
X′ is a flat OX′ module then the

functor
L
⊗Ω1

X′ is equivalent to the functor ⊗Ω1
X′ this lets us see that (Ω1

X′ [−1])⊗n ' (Ω1
X′)
⊗n[−n].

From this we see that we have a diagram

(Ω1
X′)
⊗n[−n] (F∗Ω

•
X)⊗n

ΩnX′ [−n] F∗Ω
•
X

q

(ϕ1)⊗n

π

Where q is the projection and π is the product morphism.

If n < p then we see that the projection map (Ω1
X′)
⊗n → Ωn admits a section s : ΩnX′ → (Ω1

X′)
⊗n

given by

s(a1 ∧ a2 ∧ · · · ∧ an) =
1

n!

∑
σ∈Σn

sign(σ)aσ(1) ⊗ · · · ⊗ aσ(n)

so that we actually have a diagram

(Ω1
X′)
⊗n[−n] (F∗Ω

•
X)⊗n

ΩnX′ [−n] F∗Ω
•
X

(ϕ1)⊗n

πs

ϕn

Finally by the multiplicative property of the Cartier isomorphism we have that the map

ϕ =
⊕
n<p

ϕn :
⊕
n<p

ΩnX′ [−n]→ F∗Ω
•
X

induces the Cartier isomorphism in cohomology sheaves.

Now that we have seen the proof of theorem 2.4 assuming Lemma 2.5 we can see why the proof
breaks at dimension p. We need a natural map ϕn : ΩnX′ [−n] → F∗Ω

• but Deligne and Illusie
can only do so for n < p using the section s described above. The reason why this section is
needed is that in the derived category there is no functor for exterior powers. Nevertheless, when
a global lift of Frobenius exists then the map ϕ1 lifts to a morphism of chain complexes (this is

5



actually an if and only if) and in this category we are able to take the exterior powers.

Inspired by this proof and the observations above, we will define a natural map ϕp := (ϕ1)⊗phΣp

which is the homotopy colimit of (ϕ1)⊗p with respect to the action of Σp by permutation and the
sign homomorphism. The object (Ω1

X′)
⊗n
hΣn

can be easily computed and it agrees with Ωn[−n]
for n < p, this leads us to believe that this object and map can be used to continue Deligne and
Illusie’s argument.

3 The map ϕp

As explained in the last section we will study the map ϕp := (ϕ1)⊗phΣp
: (Ω1

X′ [−1])⊗phΣp
→ F∗Ω

•
X .

We now notice that because Ω1 is a flat OX module then ⊗LΩ1 in D(X ′) agrees with tensoring
with Ωi in the category Sh(X). Thus we will have that (Ω1[−1])⊗p ' (Ω1)⊗p[−p]. To get the
exterior power Ωp we will take the homotopy colimit ((Ω1)⊗p[−p])hΣp , this will define a map
which we will call ϕp : (Ω1

X′)
⊗p → F∗Ω

•
X .

We wish to compute this homotopy colimit, and in fact it agrees with the group homology of
Σp acting on (Ω1

X′)
⊗p[−p], which we will now simply write as (Ω1

X′)
⊗p
hΣp

. So the next step is to
compute this homology.

Proposition 3.1. We have the following

Hn(Σp, (Ω
1
X′)
⊗p) '


ΩpX′ n = 0

F ∗X′Ω
1
X′ n ≡ p− 2, p− 1 mod 2(p− 1)

0 otherwise

where Hn is the group homology of Σp where it acts in (Ω1
X′)
⊗p by permuting the factors of the

tensor power and also has a twist by the sign of the permutation.

Before proving proposition 3.1, we will introduce some notation and then give a lemma. We will
call γ the generator of Cp and α the generator of Cp−1, furthermore if we have a Cp module M [Cp]
we will call g the generator of Cp inside the module so that M [Cp] = M [g]. Unless stated other-
wise we will assume that any Cp, Cp−1 or CpoCp−1 module of the form M⊗p has the action given
by their inclusion in Σp twisted by the sign homomorphism. Now we present the following lemma.

Lemma 3.2. The following is a projective resolution for k⊗p with the action by Cp given by
permutations.

k⊗p 0

· · · k[Cp] k[Cp] k[Cp] k[Cp] k[Cp] 0
γp−1
γ−1 γ−1

γp−1
γ−1 γ−1

π

The verification that this is exact is straightforward. We have used the fact that k⊗p ' k to
write on the resolution k[Cp] instead of k⊗p[Cp] with the trivial action on k⊗p. We also used and

will use γr−1
γ−1 as a formal symbol for 1 + · · ·+ γr−1.
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Proof of Proposition 3.1. By [2] Theorem 10.1 we are be able to compute the higher homology
groups as the group homology of Cp o Cp−1 lying inside Σp. This follows as Cp is a p − Sylow
subgroup of Σp and Cp−1 is its normalizer.

To compute the homology we will tensor (Ω1
X′)
⊗p with the resolution given in the lemma above,

we may do so as Ω1 is a flat module. Furthermore we will have a Cp−1 action in each (Ω1
X′)
⊗p[Cp]

which we will describe inductively and will describe them as αi to distinguish in which level this
action is given. By our assumptions we have the action given as a permutation, but we will also
need to describe how it acts on gi ∈ (Ω1

X′)
⊗p[Cp] (where g is the generator of Cp inside (Ω1

X′)
⊗p),

for all i. For the first copy of (Ω1
X′)
⊗p[Cp] the action on gi will be the trivial action.

...

(Ω1
X′)
⊗p[Cp]

(Ω1
X′)
⊗p[Cp]

(Ω1
X′)
⊗p[Cp] (Ω1

X′)
⊗p

0 0

α3

1⊗ g
p−1
g−1

α2

1⊗g−1

α1

The picture above describes the complex and the actions each module has. As a remark we see
that we would compute the same cohomology if we let the objects of the complex have the trivial
action but we make the maps include the permutation. So we could do the computation on any
of these complexes.

We will now define the actions αi. We begin by defining α1 and α2. For this we will first let n
be an integer that is a multiplicative generator modulo p. In particular we will choose n such
that np−1 − 1 is divided by p2, we can always do so because p|np−1 − 1 and so p2|np(p−1) − 1 so
we just change our representative to be np if needed. With this, we define α1 as acting on gi as
α1(gi) = gni and for α2 we let α2(gi) = gni g

n−1
g−1 , this is a valid Cp−1 action as we verify that

αp2(gi) = αp−1
2 (gni

gn − 1

g − 1
) = αp−2

2 (gn
2i g

n2 − 1

gn − 1

gn − 1

g − 1
) = · · ·

= gn
pi g

np − 1

gnp−1 − 1
· · · g

n − 1

g − 1
= gi

gn
p − 1

g − 1
= gi

the last equality follows from the fact that p2|np − 1, as gn
p
−1

g−1 = 1 + a+ ag + · · ·+ agp−1 where

a is np−1−1
p and so it is a multiple of p and thus 0.

We now give the action of α3. This will be α3(gi) = gni g
np−1
gp−1 . To see this is a valid Cp−1 action

we just repeat a similar argument as done for α2.

7



In similar ways we will be able to define α2i based on α2i−1 and α2i+1 from α2i. We see that if
α2i−1 is acting by sending gi → gnif(gi) then α2i acts by sending gi → gnif(gi) g

n−1
g−1 and α2i+1

acts by gi → gnif(gi) g
np−1
gp−1 . It is straightforward to see that these actions act equivariantly and

thus they define a Cp o Cp−1 action on the complex.

Now, we want to compute the cohomology of the resolution. We start by first taking the quotient
by the Cp action. We see that after this if we look at a map that was 1⊗ (g− 1) then the kernel
is still given by elements that are the quotient of elements in the original kernel and these come
from quotients of elements in the image of the previous object of the complex. Thus to see where
the failure of exactness comes we need to see new elements in the kernel. It is straightforward to
verify that these elements are a⊗a⊗· · ·⊗a and something similar happens for the map 1⊗ gp−1

g−1
where only the elements a⊗ a · · · ⊗ a are in the kernel.

If we now quotient by the Cp−1 action we will see that there are no new nonzero elements mapped
to 0 as the maps didn’t change and thus the kernel can only come from elements whose quotient
agrees with the quotient of another element in the kernel. It is thus straightforward to see that
the homology groups are generated by the elements a ⊗ · · · ⊗ a in every level. But we see that
the action of α2i, α2i+1 in these elements send a⊗· · ·⊗a→ −1ni(a⊗· · ·⊗a) the −1 comes from
the sign of α which we can easily verify is −1 because it acts transitively as a permutation (it is
equivalent to sending a0 ⊗ a1 ⊗ · · · ⊗ ap−1 → a0 ⊗ ani · · · ⊗ an(p−1)) and as p− 1 is even or p = 2
then the sign is −1. And so we must have a⊗ · · · ⊗ a = −1ni(a⊗ · · · ⊗ a) which only happens if
−ni = 1 if and only if i ≡ p−1

2 mod p− 1.

So we conclude that H0 is Ωp as desired and that the only non vanishing elements are in
Hp−2, Hp−1 and they are identified as the sheaf that has sections a ⊗ · · · ⊗ a for every sec-
tion a ∈ Ω1. We see that this is equivalent to a vector bundle where we take the pth powers of
the transition functions used for Ω1. This follows because if we take affine charts and wish to go
from a basis e1 · · · ed to a basis a1 · · · ad then we have transition functions given by a matrix fij
and then we see that if a1 =

∑
f1iei then a1⊗· · ·⊗a1 =

∑
(f1iei⊗· · ·⊗f1iei) =

∑
fp1ie1⊗· · ·⊗e1

and this follows because any element that does not have all the sections of the tensor product
equal vanishes. And this sheaf agrees with the pullback F ∗X′Ω

1
X′ as in this case the transition

functions would be ap1 = F ∗(a1) = F ∗(
∑
f1iei) =

∑
fp1ie

p
i and we see they agree.

Having proved this, we first notice that a similar argument follows to compute (Ω1
X′)
⊗n
hΣn

for

p < n < 2p and the difference in the cohomology sheaves is that instead of F ∗Ω1
X′ we have

ΩrX′ ⊗ F ∗Ω1
X′ . One might then ask the question of what happens when we try to compute the

cohomology for higher n(= p+ r). And in the next section we will study this situation.

4 ϕn and the Hodge-de Rham Spectral Sequence

As stated at the end of the previous section it is straightforward to see that we will have similar
homology sheaves for (Ω1

X′)
⊗n as for (Ω1

X′)
⊗p when n < 2p. This motivates us to see what

happens for even higher n. However, the computations are too complicated after n = p2, as the
p-Sylow group is not simply a direct sum of C ′ps. Despite this, we may recognize that we have
a gap in between the 0 and p − 2 levels which we may expect to be there for all n. This is an
expected result by looking at the homological stability results for Σn proved by Nakaoka in [8].
By homological stability we mean that Hi(Σn, Cp) ' Hi(Σn, Cp) for i < cn where cn is a constant
depending on n and cn → ∞. There is also a similar homological stability result for oriented
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configuration spaces done by Palmer in [12] that suggests that for the alternating group and the
action of Σn twisted by the sign representation there is a similar stability result. Although in this
paper we are not able to prove a homological stability result for the group homology of Σn with
its action twisted by the sign representation, we will prove that the expected gap is there for all n.

Theorem 4.1. Let X be a smooth scheme over a perfect field k of characteristic p > 3 that has
a smooth lifting X̃. Then for all n, the cohomology sheaves from 1 to p−3 of the object (Ω1

X′)
⊗n
hΣn

are 0. Where (Ω1
X′)
⊗n has a Σn action by permutation twisted by the sign representation.

We see that the statement above only makes sense for prime numbers p > 3. And this makes
sense because for p = 2, 3 we do not expect there to be a gap in the cohomology. Having said
this, throughout this section we assume p > 3.

Before giving the proof of theorem 4.1 we will present some results from group homology that
will be needed. Most of the results about the homology of symmetric groups we use are due to
Nakaoka in [8] and [9]. The book on group cohomology [1] of Adem and Milgram also has a good
section on this topic.

We will now give a few results on the homology of groups and particularly for Σn which we will
use. But first, we recall the definition of the wreath product. If we have Γ a subgroup of Σn and
we let G be any group we consider the wreath product G o Γ as the group G×n with an action
given by Γ that permutes the n copies of G by permutations.

One important fact we will need is that the p-Sylow subgroups of Σn look all like direct sums
of Cp o Cp o · · · o Cp where we would have am copies of Cp o Cp o · · · o Cp︸ ︷︷ ︸

m copies

where n =
∑
aip

i is its

expansion base p.

Another fact that we will use is that the homology H∗(Σn,M) has a gap between 0 and 2p− 3
for any trivial module M .

Proposition 4.2 (Lyndon-Hochschild-Serre Spectral Sequence). Let G be a group, N a normal
subgroup and A a G-module. Then we have a spectral sequence

Hp(G/N,Hq(N,A))⇒ Hp+q(G,A)

With these homological tools we can now proceed to the proof of theorem 4.1.

Proof of theorem 4.1. We will prove this by induction. We will assume that we have the desired
result for p, p2, · · · , pm and we will prove the result for all integers from pm + 1 to pm+1.

First we notice that because the pullback of the inclusion of a point ix : x→ X commutes with
tensor product and with colimits we can compute the dimension of the cohomology sheaves (which
are vector bundles) of (Ω1

X′)
⊗n
hΣn

as follows. We can detect the rank of a vector bundle V by com-

puting the dimension of the vector space i∗xV . Thus we can see that i∗x(Ω1
X′ [−1])⊗n ' (i∗xΩX′)

⊗n
hΣp

and so it is enough to compute cohomology for the vector space (i∗xΩX′)
⊗n. This tells us that if

we prove the vanishing statement for homology of vector spaces we would get the desired result
for vector bundles. So let us work with a vector space V and as a module we have V ⊗n with the
Σn action given by permutations twisted by the sign representation.
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Because we know the structure of the p-Sylow subgroup of Σn we have that the group
∏

(
∏am

1 Σpm)
contains a p-Sylow subgroup of Σn and thus we have a surjective map

Hr(
∏

(

am∏
1

Σpm), V ⊗n)→ Hr(Σn, V
⊗n)

then we see that we can use the Lyndon-Hochschild-Serre spectral sequence to get the desired
vanishing. To do so we do the computation one by one so that we let G = G′ ⊕Σpm for some m
and our module will be V ⊗n with the action as subgroups of Σn. Then we see that

Hi(Σps , Hj(G,V
⊗n))⇒ Hi+j(G× Σps , V

⊗n)

then we notice that V ⊗n '
⊕
V ⊗|G| as G modules then we have

Hi(Σpm , Hj(G,
⊕

V ⊗|G|)) ' Hi(Σpm ,
⊕

Hj(G,V
⊗|G|))

and by induction we know that Hj(G,V
⊗|G|) vanishes for 0 < j < p − 2 and thus also does

Hj(G,V
⊗n). So we need to understand Hi(Σpm , H0(G,V ⊗n)) to do so we first notice that

H0(G,V ⊗n) is by definition the quotient of V ⊗n by its G action and we see it is isomorphic to
∧|G|V ⊗V n−|G|. Then decomposing this as

⊕
V ⊗p

m

, which we can do as the G and Σpm actions
are independent, we similarly get that for 0 < i < p − 2 Hi(Σpm , H0(G,V ⊗n)) vanishes. From
this we can conclude that H(G× Σpm , V

⊗n) has the same gap.

Now we are left with proving we have the desired gap in the homology of Σpm+1 . For this we
notice that the wreath product Σpm o Σp contains the p-Sylow group of Σpm+1 so we wish to
compute the group homology of this group. To do this we use the Lyndon-Hochschild-Serre
spectral sequence with (Σpm)×p as a normal subgroup of Σpm oΣp with V ⊗p

m+1

as a module that
is acted by permutations twisted by the sign representation. Then we get⊕

i+j=n

Hi(Σp, Hj((Σpm)×p, V ⊗p
m+1

))⇒ Hi+j(Σpm o Σp, V ⊗p
m+1

)

and similarly as above we can see that the left hand side has no nonzero elements except when
i = j = 0. As we know the gap exists for Hj((Σpm)p, V ⊗p

m+1

) as we can use the same argument as

in the previous paragraph. And then we only need to know what Hi(Σp, H0((Σpm)×p, V ⊗p
m+1

))

is. But similarly as above we can see that H0((Σpm)×p, V ⊗p
m+1

) ' (∧pmV )⊗p and as a Σp
module it is acted by permutations twisted by the sign representation. From this we can see
that Hi(Σp, H0((Σpm)×p, V ⊗p

m+1

)) vanishes for 0 < i < p − 2. And so as desired we have that

Hi+j(Σpm o Σp, V ⊗p
m+1

) has the same gap.

Now that we have this vanishing result for the homology groups of (Ω1
X′)
⊗n we want to see what

information we get from considering the map ϕ :
⊕

(Ω1
X′ [−1])⊗i → F∗Ω

•
X we have in the same

way that Deligne and Illusie had that this map induces the Cartier isomorphism between the
cohomology sheaves ΩiX′ and HiF∗Ω•X . With this we see that there is a surjective map between
the spectral sequences that compute the hypercohomology of both objects. And we will use this
fact to prove the following proposition.

Proposition 4.3. Let X be a smooth scheme over a perfect field k of characteristic p > 3 that
admits a smooth lifting. Then the conjugate spectral sequence of the Hodge-de Rham spectral
sequence

Hi(X ′,ΩjX′)⇒ Hi+j(X ′, F∗Ω
•
X)

has no nonzero differentials of size smaller than p− 2.

10



Proof. Let us call the spectral sequences of
⊕

(Ω1
X′ [−1])⊗i and F∗Ω

•
X E and E′ so that they

have pages Er and E′r with differentials dr and d′r respectively. Let us call the map induced in
each page as fr. We will prove by induction that if Er has no nonzero differentials and if fr is
surjective then the same is true for r + 1. We have that the map fr+1 is constructed from fr
by setting Er+1 = ker dr/im dr and similarly E′r + 1 = ker d′r/im d′r as all dr are zero then
Er+1 = ker dr and then the induced map to ker d′r is surjective and its projection to ker d′r/im d′r
is also surjective.

Then we have in particular that for r < p − 2 the rth page Er, has differentials dr = 0 due to
theorem 4.1. Because f is a morphism of spectral sequences we must have that dr ◦ fr = fr ◦ d′r
and if dr = 0 and fr is surjective then we must also have d′r is 0 as otherwise the left hand side
is always 0 but the right hand side could be nonzero.

5 Criteria for Degeneration of the Hodge-de Rham Spec-
tral Sequence

In this section we will first relate the results we got in the previous section to the Hodge-de
Rham spectral sequence. At the end of the section we also give some cohomological conditions
that will result in the degeneration of the Hodge-de Rham spectral sequence at the E1 page for
schemes of dimension p+1. An important fact that we will use that appears in [3] is the following.

Proposition 5.1 (Deligne-Illusie). Let X be a smooth proper scheme over a perfect field k of
characteristic p. Then we have degeneration of the Hodge-de Rham spectral sequence at the E1

page if and only if we have degeneration of the conjugate spectral sequence at the E2 page.

By the map of spectral sequences that we gave in proposition 4.3 we see that we could understand
the conjugate spectral sequence better if we studied the cohomology groups Hi(X ′, F ∗Ω1

X′). In
particular we would expect to have degeneration of the spectral sequence with the vanishing of
some of these groups. Working in this direction makes us notice that as Ωn is a flat OX module
then

Hi(X ′, F ∗Ω1
X′ ⊗ Ωn) ' Hi(X ′, F ∗Ω1

(X
′))⊗ ΩnX′ ,

from this we get the following proposition.

Proposition 5.2. Let X be a smooth proper scheme over a perfect field k of characteristic p that
admits a smooth lift X̃. If the dimension of X n < 2p and the cohomology groups Hi(X ′, F ∗Ω1

X′)
for i < dimX − p+ 1 vanish then the de Rham complex splits.

Proof. We see that if we consider the spectral sequence for (Ω1
X′ [−1])⊗r for r ≥ p then by the

discussion and proof of proposition 3.1 we have that the cohomology sheaves of (Ω1
X′ [−1])⊗r are

Ωr at level −r and F ∗Ω1
X′ ⊗ Ωr−p in levels −r + p− 2 and −r + p− 1. This gives us a spectral

sequence that looks like following at the E2 page.
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0 0 · · · 0

H0(X ′, F ∗Ω1
X′ ⊗ Ωr−p) H1(X ′, F ∗Ω1

X′ ⊗ Ωr−p) · · · Hn(X ′, F ∗Ω1
X′ ⊗ Ωr−p)

H0(X ′, F ∗Ω1
X′ ⊗ Ωr−p) H1(X ′, F ∗Ω1

X′ ⊗ Ωr−p) · · · Hn(X ′, F ∗Ω1
X′ ⊗ Ωr−p)

0 0 · · · 0

...
...

. . .
...

H0(X ′,ΩrX′) H1(X ′,ΩrX′) · · · Hn(X ′,ΩrX′)

But we see that the only differentials that could affect the bottom row are in the pages p− 2 and
p−1. These would be maps Hi(X ′,ΩiX′⊗F ∗Ω1

X′)→ Hi+p−1(X ′,Ωr) or Hi(X ′,ΩiX′⊗F ∗Ω1
X′)→

Hi+p(X ′,Ωr). But then we have that Hi(X ′,ΩiX′ ⊗ F ∗Ω1
X′) ' Hi(X ′, F ∗Ω1

X′) ⊗ ΩiX′ ' 0 for
j. So no differentials affect the lower level. Knowing this we are able to repeat the argument of
proposition 4.3 and see that both spectral sequences must vanish as the differentials we would
be interested in are 0 and the surjectiveness is preserved in each page. This proves that the
conjugate spectral sequence degenerates and thus the Hodge-de Rham spectral sequence does.
This proves that the de Rham complex splits.

Now we will develop another criterion which is based only on theorem 2.4 of Deligne and Illusie.
To get the criterion we will need Poincaré duality in the Hodge-de Rham spectral sequence.

Proposition 5.3. Let X be a smooth proper scheme of dimension n over a perfect field k of
characteristic p. The pushforward of the de Rham complex has Poincaré Duality. This means
that

τ≤iF∗Ω
•
X ' τ≥n−iF∗Ω•X

for all integers 0 ≤ i ≤ n.

Sketch of Proof. To see this duality we follow the argument given by Deligne and Illusie [3]. This
duality follows from Serre’s Duality for ΩiX and Ωn−iX , which has a perfect pairing ΩiX ×Ωn−iX →
ΩiX given by α×β → α∧β. Because F∗ is finite and flat this perfect pairing gives rise to a perfect
pairing F∗Ω

i
X × F∗Ω

n−i
X → F∗Ω

n
X . These pairings are then respected when taking homology. A

more detailed account can be found in [3] and a similar proof that shows the duality for the
homology groups of the spectral sequence can be found in [14]. So we can use duality in terms
of the truncation functors but also in the form of Ei,j ' Ep−i,p−j in the spectral sequence.

We now present a criterion for the degeneration of the Hodge-de Rham spectral sequence.

Proposition 5.4. If X is a smooth proper scheme over a perfect field k of characteristic p that
admits a smooth lifting X̃. If dimX = p+ 1 and either of the following conditions is satisfied
(a) Hp+1(X,Ω1) ' H0(X,Ωp) ' 0 or
(b) Hp(X,Ω1) ' H1(X,Ωp) ' 0 and Hp+1(X,OX) ' H0(X,Ωp+1) ' 0.
then the Hodge-de Rham spectral sequence degenerates in the E1 page.
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Proof. As X has a smooth lift then we know that τ<pF∗Ω
•
X decomposes and by Poincaré Duality

that is also true for τ≥2F∗Ω
•
X′ . Then we want to see the maps going from

(Ωp[−p]→ Ωp+1[−p− 1])→
⊕

Ωi[−i]

then we can see that we have an exact triangle

τ<pF∗Ω
•
X → F∗Ω

•
X → (Ωp[−p]→ Ωp+1[−p− 1])

and then applying τ≥2 we get

τ[2,p−1]F∗Ω
•
X → τ≥2F∗Ω

•
X → (Ωp[−p]→ Ωp+1[−p− 1])

and from this we see that the only possible nonzero differentials are from the first two rows to
the last two rows.

Writing down the possible differentials there are only 4 possible maps that avoid the middle part
which we know splits off the rest of the complex. We show thi maps below

E0,p+1 E1,p+1 · · · Ep,p+1 Ep+1,p+1

E0,p E1,p · · · Ep,p Ep+1,p

...
...

. . .
...

...

E0,1 E1,1 · · · Ep,1 Ep+1,1

E0,0 E1,0 · · · Ep,0 Ep+1,0

as we can see the maps go from E0,p+1 → Ep+1,1, E0,p → Ep+1,0, E0,p → Ep,1 and E1,p →
Ep+1,1. From this we see that from Poincaré duality E0,p ' Ep+1,1, E0,p+1 ' Ep+1,0 and
E1,p ' Ep,1 from which we get the desired conclusion, as we cannot have differentials from or
onto 0.
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