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Abstract

Planar bicolored (plabic) graphs are combinatorial objects intro-
duced by Postnikov to give parameterizations of the positroid cells
of the totally nonnegative Grassmannian Gr≥0(n, k). Any two plabic
graphs for the same positroid cell can be related by a sequence of
certain moves. The flip graph has plabic graphs as vertices and has
edges connecting the plabic graphs which are related by a single move.
A recent result of Galashin shows that plabic graphs can be seen
as cross-sections of zonotopal tilings for the cyclic zonotope Z(n, 3).
Taking this perspective, we show that the fundamental group of the
flip graph is generated by cycles of length 4, 5, and 10, and use this
result to prove a related conjecture of Dylan Thurston about triple
crossing diagrams. We also investigate the diameter of the flip graph
for the top cell of Gr≥0(2k, k) and of a particular subgraph corre-
sponding to double wiring diagrams. In both cases we prove that the
diameter is at least 1

2k(k − 1)2, and conjecture that this is exact.
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1 Introduction
A flip graph for our purposes is the graph whose vertices form the set of all diagrams of a
particular class, and whose edges correspond to flips in these diagrams, which are mutations
which transform one diagram into a similar diagram with one small thing changed. There
are many natural questions to ask about a flips graph. Is it connected? What do its cycles
look like (what is the fundamental group)? What is its diameter, and which pairs of vertices
achieve that diameter?

Possibly the most famous example is that of triangulations of an n-gon, whose flip graph
forms the 1-skeleton of the Stasheff associahedron. Although not novel, a nice corollary of
our result is that the fundamental group of the 1-skeleton of the associahedron is generated
by cycles of length four and five. Another famous flip graph has domino tilings of a planar
region as its vertices; in [9] it is proved that the flip graph is connected (provided that the
region is simply connected) through a height function on tilings, which also gives formula for
computing the distance between tilings. Dylan Thurston [8] introduced triple crossing dia-
grams, which are a generalization of domino tilings, proved that the flip graph is connected,
and made a conjecture about the fundamental group of the flip graph. One of the results of
this paper is a proof of that conjecture.

We will study several different flip graphs, whose objects and flips are as follows:

• Fine zonotopal tilings of the cyclic zonotope Z(n, d), with flips corresponding to switch-
ing between the two tilings of Z(d+ 1, d).

• Reduced trivalent plabic graphs for a given connectivity, with flips corresponding to
the moves (M1)–(M3) in Figure 3.

• Reduced trivalent plabic graphs for a given connectivity, considered modulo the moves
(M1) and (M3). The flips are only given by the square move (M2).

• Triple crossing diagrams for a given connectivity, with flips being 2 ↔ 2 moves (see
Figure 4).

• Double wiring diagrams on k blue and k red wires as in Figure 5, with flips given by
the 2-moves and 3-moves in Figure 6.

The cyclic zonotope Z(n, d) is the Minkowski sum of n vectors in the plane x = 1 in
Rd in conxev position, and its fine tilings correspond to projections of the n-dimensional
hypercube into Rd. For a complete definition see section 2. In the case d = 2, these are the
well-studied rhombus tilings of the 2n-gon, which correspond to (single) wiring diagrams.
Wiring diagrams are ways to write the completely inverted permutation as a product of
elementary transpositions in Sn, and the flip operation is the Coxeter move.

Our main theorem regards generating sets for the fundamental group of the flip graphs
when considered as a 1-complex. Though we later phrase our theorems as proving that a
2-complex made out of the flip graph with certain 2-cells glued is simply connected, here we
will simply state the sizes of the cycles which generate the fundamental group.

Theorem 1.1. The fundamental groups for our flips graphs on the following objects are
generated by cycles with sizes as follows
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1. Fine zonotopal tilings of Z(n, d), by cycles of sizes 4 and 2d+ 4.

2. Reduced trivalent plabic graphs, by cycles of sizes 4, 5 (two types), and 10 (two types).

3. Reduced trivalent plabic graphs considered modulo black and white trivalent moves, by
cycles of sizes 4 and 5.

4. Triple crossing diagrams, by cycles of sizes 4, 5, and 10.

The first part is the subject of Section 2, and is a result of using Ziegler’s results on the
higher Bruhat order poset [10] to generalize the proof for d = 2 given by Henriques and
Speyer [4]. The second result is completely new to our knowledge, and uses the previous
result together with the relationship between fine zonotopal tilings and plabic graphs shown
by Galashin [3]. This relationship between their flips more firmly established in Section 3,
and the result is proven in Section 4. The last two are corollaries of the second, with the
fourth result proving a conjecture of Dylan Thurston [8, Conjecture 21], see Section 5. We
do not have a result about the fundamental group for double wiring diagrams, but at first
glance it appears cycles of lengths 4, 5, and 8 might suffice.

In the case d = 3, the fine zonotopal tiling flip graph is generated by squares and decagons.
The vertices of the decagons correspond to fine zonotopal tilings of Z(5, 3), one of which is
shown in Figure 1. The plabic graph cycles of length 5 and 10 appear in the cross-sections
of the tilings as shown.

Figure 1: A fine zonotopal tiling of Z(5, 3) with the tile τ({5},{3}) highlighted in green. The
four nontrivial cross-sections shown are planar duals to plabic graphs, and exhibit four of
the five types of 2-cells in Xσ(n,k) (see Theorem 4.5). Figure from Galashin [3]
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We then turn to double wiring diagrams, or slightly more generally, reduced trivalent
plabic graphs with connectivity σ(2k,k), up to moves (M1) and (M3). Here we investigate the
diameter of the flip graph. The plabic graphs each give a parameterization of the top cell
of the nonnegative Grassmannian Gr≥0(2k, k) [6], and the square moves (M2) give relations
between the parameterizations. The diameter then gives a bound on how far the relation
might be. Double wiring diagrams were introduced by Fomin and Zelevinsky [2] to give
a criterion for a totally positive matrix. The moves between double wiring diagrams give
relations between these criteria. [2, Conjecture 19] describes the form these relations might
take on, and the conjecture is checked for k ≤ 4 in [1]. Through personal communication,
we learn that Miriam Farber conjectures that the plabic graphs with complementary face
labels are exactly the pairs of vertices in the square flip graph at the maximum possible
distance, specifically 1

2
k(k − 1)2. Pavel Galashin has independently found an (unpublished)

proof that the diameter of the square flip graph is at least 1
2
k(k−1)2. In Section 6, we prove

this lower bound for both plabic graphs and double wiring diagrams, and agree with and
extend Farber’s conjecture to both cases.

Remark 1. This manuscript is not a completed version. In particular, there is a small hole
which was discovered extremely recently in the proof of Theorem 4.5, which the author has
not yet fixed. In its current state, the result is only proven for connectivities σ(n,k), rather
than any decorated permutation π:.

2 Cycles for Zonotopal Tilings
Definition 2.1. Let v1, . . . , vn ∈ Rd be any collection of distinct vectors on the dimension-d
moment curve parameterized by (1, t, t2, . . . , td−1) The cyclic zonotope Z(n, d) consists of all

points which can be written as
n∑
i=1

civi for some {ci}ni=1 ∈ [0, 1]n.

Following the definition used by Galashin [3], we define tilings of the cyclic zonotope as
collections of signed subsets. A pair X = (X+, X−) of disjoint subsets of [n] is a signed
subset of [n], and we also define X0 := [n] \ (X+ tX−). Then the signed subsets are exactly
the strings in {+,−, 0}n. For X a signed subset, the tile τX consists of all points which can
be written as

∑
i∈X+

vi +
∑
j∈X0

cjvj for some {cj}j∈X0 ∈ [0, 1]|X
0|.

Definition 2.2. A collection ∆ of signed subsets of [n] is called a fine zonotopal tiling of
Z(n, d) provided that

1. Z(n, d) =
⋃
X∈∆

τX ,

2. Whenever τX ∩ τY 6= ∅ for X, Y ∈ ∆, there exists Z ∈ ∆ such that τX ∩ τY = τZ is a
face of both τX and τY , and

3. For all X ∈ ∆, we have |X0| ≤ d.

When the third condition fails, ∆ is a zonotopal tiling but is not fine. Fine zonotopal
tilings ∆ of Z(n, d) can be related to each other through a series of mutations. Geometrically,
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these mutations consist of finding a tiling copy of Z(d + 1, d) inside ∆, which has only two
fine tilings, and flipping the way it is tiled. We will use the combinatorial definition in terms
of signed subsets. Suppose that S ∈

(
[n]
d+1

)
has elements i1 < · · · < id+1. For i ∈ S, let Xi be

the unique signed subset in ∆ for which X0
i = S \ {i}. Let S+

i := X+
i \ S and si := 1X+

i
(i).

Definition 2.3. A flip of the set S is available in a fine zonotopal tiling ∆ if S+
i = S+

j for
all i, j ∈ S and si` 6= si`+1

for all ` ∈ [n = d]. Performing the flip of the set S results in a
new fine zonotopal tiling ∆ for which all the signed subsets are identical except that all the
values of si have changed.

The flip graph is the graph which has fine zonotopal tilings as vertices and edges connect-
ing those tilings which are related by a single flip. It is a fact that any two fine zonotopal
tilings of Z(n, d) can be related by a series of flips, so the flip graph is connected, as we will
see.

Henriques and Speyer ([4, Proposition 3.14]) prove that the fundamental group of the
flip graph of Z(n, 2) as a 1-complex is generated by 4-cycles and 8-cycles, where the 4-cycles
correspond to pairs of commuting flips and the 8-cycles correspond to copies of Z(4, 2). In
this section we generalize this result to any dimension using Ziegler’s [10] results on the
higher Bruhat order. Ziegler [10] shows (with different language) that the flip graph for
Z(n, d) is isomorphic to the Hasse diagram for the higher Bruhat order graded poset B(n, k)
for k = d. We will not bother to define the higher Bruhat order, rather, we will state the
relevant results about it in the language of fine zonotopal tilings. Flips in zonotopal tilings
correspond to covering relations in B(n, d), and the functional φ used in [4, Proposition 3.14]
on tilings can be related to the rank function on B(n, 2).

Theorem 2.4 ([10, Theorem 4.1]). The edges of the flip graph for Z(n, d) form the Hasse
diagram for a graded poset with unique minimal and maximal elements ∆min and ∆max at
ranks 0 and

(
n
d+1

)
. The set of minimal-length paths of flips between ∆min and ∆max modulo

commutation of unrelated flips is in natural bijection with the elements of Z(n, d+ 1), such
that flips in tilings of Z(n, d+1) swap the order in which d+2 flips occur in the corresponding
path.

It follows from the above that Z(d + 2, d + 1) has only two fine zonotopal tilings, so
Z(d + 2, d) has only two paths from ∆min to ∆max up to commutation. There are also no
pairs of commuting flips in tilings of Z(d+ 2, d), so its flip graph must be a single (2d+ 4)-
cycle. We are now ready to characterize the cycles in the flip graph for zonotopal tilings.

Theorem 2.5. Let C(n, d) be the 2-complex formed by the flip graph for Z(n, d) with the
following 2-cells glued:

• Quadrilaterals, wherever there is a cycle of length four corresponding to commuting
pairs of flips

• (2d + 4)-gons, wherever there is a cycle of length (2d + 4) whose vertices are all re-
finements of a particular zonotopal tiling which is fine except for a single signed subset
which creates a tile isomorphic to Z(d+ 2, d).
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Then C(n, d) is simply connected.

Proof. We will use a technique similar to the proof in [4, Proposition 3.14], and use results
about the higher Bruhat order as a black box to generalize to higher dimensions.

Let γ = S1S2 · · ·Sm, where each Si is a flip which turns tiling ∆i into ∆i+1 and ∆1 =
∆m+1, be a loop in the flip graph for Z(n, d) which connects the tilings ∆1,∆2, . . . ,∆m+1 =
∆1. It suffices to show that γ can be continuously deformed to a point in C(n, d). All we
know is that the squares and the cycles corresponding to the (2d + 4)-gon from copies of
Z(d+2, d) are nullhomotopic, so our only tool is to replace paths in γ with their complement
in a square or (2d+ 4)-gon.

First suppose that γ is a cycle of length 2
(
n
d+1

)
that includes ∆min and ∆max. Since γ

connects the minimal and maximal elements twice in the shortest possible time, it can be
divided into two parts, α and β, each of which is a series of monotonic in terms of rank
flips in Z(n, d). Then by Theorem 2.4, α and β are each representative elements of some
equivalence classes of paths between ∆min and ∆max given by fine zonotopal tilings A and
B of Z(n, d + 1), respectively. The flip graph for Z(n, d + 1) is connected, so there exists a
sequence of flips to transform A into B. Along the way, commutation of flips in α is required
to get the right representative element of A, to allow the flips in Z(n, d+ 1) to be realized as
(2d+4)-gons in C(n, d). The flips in Z(n, d+1) involve d+2 tiles in a copy of Z(d+2, d+1),
which appear as d+ 2 flips in α, all inside a copy of Z(d+ 2, d). Therefore commutation of
flips moves α over a quadrilateral, while flips of A involve moves α over a (2d + 4)-gon. At
each step, a continuous deformation of α occurs, eventually transforming it to β, at which
point γ is trivial because it is ββ−1.

Now suppose γ is any arbitrary cycle as before. Then for each vertex ∆i in γ, draw a
path δi of length

(
n
d+1

)
between ∆min and ∆max which goes though ∆i, using Theorem 2.4.

Let’s say that δi = δ−i δ
+
i , where δ

+
i connects ∆min to ∆i, and then δ−i connects ∆i to ∆max,

both in the shortest possible time. Suppose that the loops Siδ+
i+1(δ+

i )−1 are all deformable
to point. Then after a continuous deformation we could compute to conclude the result

[γ] =
m∏
i=1

δ+
i (δ+

i+1)−1 = δ+
1

(
m∏
i=2

(δ+
i )−1δ+

i

)
(δ+
m+1)−1 = δ+

1 (δ+
m+1)−1 = 1.

Each flip Si is either an upward flip or a downward flip, depending on whether ∆i+1 has a
higher or lower rank than ∆i when seen in the higher Bruhat order. If it is an upward flip,
then δ−i (δ−i )−1Siδ

+
i+1(δ+

i )−1 is a cycle of minimal length which includes ∆min and ∆max, and
so is trivial in C(n, d) as we showed in the previous paragraph. If it is a downward flip, then
Si(δ

−
i )−1δ−i δ

+
i+1(δ+

i )−1 is similarly trivial. In either case, the new loop is certainly homotopic
to Siδ+

i+1(δ+
i )−1, completing the proof.

This result will be essential in Section 4 where we prove an analogous result for plabic graphs.

3 Plabic Moves in Zonotopal Tilings
Let G be an embedding of a planar graph in a disk with each vertex colored white or black
(adjacent vertices need not be different colors). Also add n black boundary vertices b1, . . . , bn
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in clockwise order outside of the disk, each with a single edge to one of the vertices of G.
This configuration is called a plabic graph and we refer to it by G (see Figure 2).

Definition 3.1. A strand si in a plabic graph G is a path which starts at bi, and proceeds
along the edges of G until it reaches some boundary vertex bj, according to the rules of the
road; when si reaches a white (resp. black) vertex v through edge e, it makes a sharp left
(resp. right) turn. That is, if the edges of v are shown in a circle, then si should traverse
the next edge clockwise (resp. counterclockwise) of e. The strand permutation of G is the
permutation πG ∈ Sn such that if si ends at bj then πG(i) = j.

We will only deal with a special class of plabic graph. A bad double crossing is when two
distinct strands both traverse edge e1 followed by edge e2.

Definition 3.2 (cf. [6, Theorem 13.2]). A plabic graph G is reduced if and only if

• For any edge e between non-boundary vertices, exactly two distinct strands si and sj
traverse e.

• G does not contain any bad double crossings.

• When πG(i) = i, the vertex bi is connected to a single isolated vertex of G.

The decorated strand permutation π:
G for G a reduced plabic graph is identical to πG

except that the fixed points of πG are decorated (black) if the single isolated vertex they are
connected to is black, otherwise they are undecorated (white).

Postnikov described how the boundary measurements for reduced plabic graphs provide
parameterizations for the positroid cells S≥0

M ⊂ Gr≥0(n, k) [6, Thm. 12.7]. The positroid
cell each plabic graph parameterizes depends only on its decorated permutation. The cyclic
permutation which sends i to i+ k (modulo n) corresponds to the top cell of Gr≥0(n, k) and
so is of special interest; we refer to the permutation by σ(n,k).

Pavel Galashin [3] shows that the k-th cross-section, 1 ≤ k ≤ n − 1, of fine tilings of
the three dimensional cyclic zonotope correspond to 3-valent reduced plabic graphs with
connectivity σ(n,k). Let ∆ be a fine zonotopal tiling of Z(n, 3). The cross-section Σk of
∆ with the plane x = k in R3 is a triangulation of an n-gon, possibly with some interior
vertices. The vertices of Σk are labeled by strings in {+,−}n with exactly k ‘+’ symbols, or
equivalently, by elements of

(
[n]
k

)
. For any triangle in Σk, either the union of the labels of the

vertices has k+1 elements, or the intersection of the labels of the vertices has k−1 elements,
depending on the location of the triangle has a cross-section of a single parallelepiped tile.
In the first case consider the triangle to be black, in the second case consider it white. Let
Gk be the planar dual to the triangulation Σk, and color the vertices of Gk according to the
color of the triangle to which it belonged.

Theorem 3.3 (Galashin [3]). Gk is a 3-valent reduced plabic graph with strand connectivity
σ(n,k). Further, for any 3-valent reduced plabic graph G with strand connectivity σ(n,k), there
exists a fine zonotopal tiling of Z(n, 3) for which Gk = G.

Dually, Σk is a triangulation of a plabic tiling, but we will stay in the language of plabic
graphs. The vertices of Σk appear in the faces of Gk, and so we will refer to their labels as
the face labels of Gk.
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Figure 2: A plabic graph (blue) with connectivity σ(5,2). The five strands and the graph’s
planar dual are also drawn. See http://math.mit.edu/~galashin/plabic.html

When Postnikov [6] introduced plabic graphs, he gave some moves to relate them. One
can check that the moves in Figure 3 preserve the strand connectivity and whether the plabic
graph is reduced.

Theorem 3.4 (Postnikov [6]). Any two reduced trivalent plabic graphs with the same con-
nectivity can be related by a sequence of the moves (M1), (M2), and (M3) in Figure 3.

We will primarily deal with trivalent plabic graphs and so only use (M1)–(M3), but the
contraction/uncontraction moves will be relevant for triple crossing diagrams. We would
like to see how these trivalent plabic moves relate to the three-dimensional cyclic zonotopal
flips. Galashin [3] observed that a zonotopal flip at height k performs a square move in Gk,
a white trivalent move in Gk−1, and a black trivalent move in Gk+1.

Lemma 3.5. For any zonotopal tiling ∆, the available flips are in bijective correspondence
with the available square moves in the plabic graphs {Gk}nk=1.

Proof. A proof does not completely appear in [3], so we will include one here. Take any
available flip S ∈

(
[n]
4

)
for ∆, say S = {a, b, c, d} with a < b < c < d. Let k := |S+

a | + 2.
Then the intersection τXa ∩ τXb

∩ τXc ∩ τXd
=: v is a vertex in ∆ which is in the cross-section

Σk. Further, the cross-sections of the tiles τXi
at level k are triangles in Σk which include

v as a vertex. The color of the triangle corresponding to Xi is determined by the whether
the plane x = k cuts the tile at a lower or higher part, and so depends only on the value
of si. Then the triangles from Xa, Xc are of one color and Xb, Xd have the other color, by
Definition 2.3. Finally, the intersections τXa ∩ τXb

, τXb
∩ τXc , τXc ∩ τXd

, τXd
∩ τXa all appear as
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Figure 3: Moves in plabic graphs, from Galashin [3]

edges connected to v in Σk, because each of these tiles is a quadrilateral with two vertices at
height k, one of which is v. Therefore Gk has a square move pattern formed by the vertices
in the four vertices from the four tiles. Performing this flip performs this square move and
no other square moves in any other layer.

It now suffices to invert this map. That is, take any available square move in any layer Gk,
and recover the unique flip which performs that square move. Well, the square move is formed
by four triangles in Σk, whose five vertices, when considered as strings in {+,−}n, agree in
all but four coordinates. This can be seen by noting that all five strings have exactly k ‘+’
symbols, and that when two vertices are adjacent they can only differ in two coordinates.
These four coordinates a < b < c < d form our set S, and if the flip corresponding to S is
available, then it must correspond to this square move in the map described in the previous
paragraph. It then suffices to check that S satisfies the conditions in Definition 2.3. Indeed,
S+
a = S+

b = S+
c = S+

d , because the vertices agree on all coordinates outside of S. Now, of the
four outer vertices, two are white and two are black, so two of a, b, c, d will have si = 1 and
two will have si = 0. Moreover, these colors are oriented in a cyclically alternating fashion,
and they also correspond to the signed subsets Xa, Xb, Xc, Xd in a cyclic fashion. Therefore
we must have Xa = Xc 6= Xb = Xd, so we can conclude that S is an available flip in ∆.

We would like to know when the other two plabic moves can be performed as well. A
white or black trivalent move depends on the existence of a square move in a neighboring
layer, so the following result about the relationship between the graphs Gk is helpful.

Lemma 3.6 (Galashin [3]). Let Σk be a colored and labeled triangulation for some tiling ∆.
Then Σk+1 is fixed up to the triangulation of the white regions and Sk−1 is fixed up to the
triangulation of the black regions.

Proof. By Galashin’s [3, Corollary 4.4], the vertex labels of Σk+1 and Σk−1 are completely
determined by Σk. The white triangles in Sk cut a tile of ∆ which is cut by a black triangle
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in Σk+1, and all black triangles in Σk+1 correspond to a white triangle in Σk. Similarly, the
black triangles in Σk give the white triangles in Σk+1. Therefore all the white and black
regions are determined in both Σk+1 and Σk−1, and indeed all that is left is the triangulation
of the white regions in Σk+1 and the black regions in Σk−1.

We would like to perform the plabic moves in each layer by doing flips in the tiling which
cause them. Unfortunately the appropriate flip isn’t always available, but luckily we can set
it up without changing the relevant layer. Let ∆ be a zonotopal tiling and Gk be a plabic
graph formed by a cross-section of ∆.

Lemma 3.7. Suppose M is a possible black (resp. white) trivalent move in Gk. Then there
exists a finite sequence of flips (S1, S2, . . . , Sm) in ∆, such that G` is unchanged by each of
the first m− 1 mutations for any ` at least (resp. at most) k, but the move M occurs on the
last mutation.

Proof. Complementing all of the labels of the vertices doesn’t change the structure of the
available flips but does change the colors of all of the regions, so it suffices to prove the result
when M is a black trivalent move. We proceed by induction on k. When k ≤ 2, there are
no legal black trivalent moves, so the claim holds vacuously. Now, the black trivalent move
corresponds to two black triangles in Σk, which by Lemma 3.6 creates two white triangles in
Σk−1, which are forced to border two black regions. If the black regions are triangulated such
that a square move is legal using the white triangles, then perform the corresponding flip
and we’re done. Otherwise, there exists a sequence of triangulation flips in the black regions
which would make the square move legal. By the inductive hypothesis, each of these flips
can be done through a finite sequence of mutations, each of which (except the last) leave
G` unchanged for all ` ≥ k − 1. The last flip in each sequence performs a black trivalent
move in Σk−1, so also leaves Sk unchanged. Therefore we can set up the square move in Σk−1

without changing Σk at all, so the induction is complete.

4 Main Result on Cycles
For a given decorated permutation π:, any two trivalent reduced plabic graphs with con-
nectivity π: can be related by a sequence of the moves (M1)–(M3). The flip graph Fπ: is
the graph whose vertices are trivalent reduced plabic graphs with connectivity π: and whose
edges connect plabic graphs related by a move. Cycles in the flip graph correspond to se-
quences of moves which leave the plabic graph unchanged. To understand these cycles we
would like to include them in a cycle of flips in a three-dimensional zonotopal tiling, which
we understand much better. The cross-sections of zonotopal tilings only correspond to the
connectivities σ(n,k), so we would like to extend any decorated permutation to one of these.
First we need to better understand the relationship between plabic graphs and positroid
cells.

Definition 4.1 ([6, Definition 16.1]). A Grassmann necklace I = (I1, I2, . . . , In) is a se-
quence of subsets of [n] of the same size such that for all i there exists j such that Ii+1 =
(Ii \ {i}) ∪ {j}, where as an index i is considered modulo n.
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Grassmann necklaces are in bijection with decorated permutations via juggling patterns
of period n and throws of height at most n, and all of these are in bijection with positroid
cells. Then we can state a useful result of Oh, Postnikov, and Speyer (for our purposes it
does not matter what it means for a collection to be weakly separated).

Theorem 4.2 ([5, Theorems 1.3 and 1.5]). Suppose M ⊂
(

[n]
k

)
is a positroid, I is the

corresponding Grassmann necklace, and π: the corresponding decorated permutation. Then
the maximal by inclusion weakly separated collections insideM all contain I and are exactly
the collections of face labels for the plabic graphs with connectivity π:.

Lemma 4.3. Let π: be a decorated permutation on n elements. Then Fπ: is a subgraph of
Fσ(n,k) for some k ∈ [n] depending on π:.

Proof. Fix π:, and let I and M be the corresponding Grassmann necklace and positroid.
Let G be any plabic graph with connectivity π:. Then by Theorem 4.2, the face labels of
G contain the sets in I and form a weakly separated collection C ⊂ M ⊂

(
[n]
k

)
for some

k ∈ [n]. Extend C to a maximal by inclusion weakly separated collection C ′ ⊂
(

[n]
k

)
in an

arbitrary fashion. Then since
(

[n]
k

)
is the positroid cell for the connectivity σ(n,k), we can

conclude from Theorem 4.2 that C ′ forms the collection of face labels for some plabic graph
G′ with connectivity σ(n,k). Now, C ′ contains I, which must form the boundary regions for
some subgraph of G′ which has the same face labels as G. Then any move in G can be
realized as a move in G′ in the region enclosed by the Grassmann necklace I. Because F{π:}
is connected, all edges in Fπ: can be realized by performing moves in Fσ(n,k) without changing
anything in G′ outside of the region enclosed by I, which completes the proof.

Remark: The previous proof could also have been formulated in the language of Grass-
mannian graphs, where the graph G would be seen to have helicity k [7]. We will not use
the machinery introduced for this proof again, so it was kept to a minimum where possible.

Now we only need to consider cycles in Fσ(n,k) , and can use the cycles in Z(n, 3). In order
to properly embed cycles as cyclic zonotopal flips, we need to extend Lemma 3.7.

Lemma 4.4. Let ∆ and ∆′ be two fine zonotopal tilings of Z(n, 3) which are identical on Gk

for some fixed k. Then there exists a series of flips, none of which alter Gk, which transform
∆ into ∆′.

Proof. It suffices to find such a sequence of moves which make ∆ match ∆′ on Σk+1 (without
ever changing Gk or any lower layer) and Σk−1 (without ever changing Gk or any higher
layer). Once this is done we can recursively match all of the layers to transform ∆ into ∆′.
By Lemma 3.6, ∆ and ∆′ already agree up to white (resp. black) triangulation on Σk+1

(resp. Σk−1). By the flip connectivity of triangulations, there exists a sequence of white
(resp. black) trivalent flips in Gk+1 (resp. Gk−1) which transform ∆ to completely match ∆′

on Σk+1 (resp. Σk−1). By Lemma 3.7, for each of these flips there exists a finite sequence
of flips which perform only this move in Gk+1 (resp. Gk−1, none of which change G` for any
` ≤ k (resp. ` ≥ k). Therefore all of these triangulation moves can be performed without
ever changing Gk or any lower (resp. higher) layer, as desired.

We are now ready to prove our main result.
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Theorem 4.5. Let Xπ: be the 2-complex given by the flip graph of trivalent reduced plabic
graphs with connectivity π:, with the following 2-cells glued to it:

• A quadrilateral, wherever there is a 4-cycle generated by two moves occurring in sepa-
rate parts of a plabic graph,

• A pentagon, wherever there is a 5-cycle generated by five white or five black trivalent
moves, such that all flips take place in a subgraph which forms a plabic graph with
connectivity σ(5,1) or σ(5,4),

• A decagon, wherever there is a 10-cycle consisting of 5 plabic moves alternating with 5
white or 5 black trivalent moves, such that all flips in the cycle take place in a subgraph
which forms a plabic graph with connectivity σ(5,2) or σ(5,3).

Then Xπ: is simply connected for all decorated permutations π:.

Proof. Fix any decorated permutation π:, and let γ = M1M2 · · ·Mm be a loop in X:
π con-

necting the plabic graphs G1
π: , G2

π: , . . . , Gm+1
π: = G1

π: . By Lemma 4.3, there exists k ∈ [n]
and plabic graphs G1

k, G
2
k, . . . , G

m+1
k = G1

k with connectivity σ(n,k) such that γ is a cycle in
Xσ(n,k) as well. We will show that can contract γ to a point in Xσ(n,k) , but unfortunately this
does not imply that it can be contracted in Xπ: . This proof is therefore incomplete, and the
reader should see Remark1.

Now we construct a loop Z(γ) in C(n, 3) such that the flips in Z(γ) cause exactly the
moves M1,M2, . . . ,Mm to occur in Gk, in that order. For i = 0, 1, . . . ,m− 1, there exists ∆i

whose cross-section at height k is exactly Gi+1
k . By Lemma 3.5 (if Mi+1 is a square move)

and Lemma 3.7 (if Mi+1 is a black or white trivalent move), there exists a sequence of moves
starting from ∆i which performs only the move Mi+1 in Gi+1

k . The resulting tiling ∆′i from
this sequence of moves is identical to ∆i+1 at height k, so by Lemma 4.4 there exists another
sequence flips, none of which cause a move in Gk, which turns ∆′i into ∆i+1, where i + 1 is
considered modulo m. Concatenating all these sequences of moves results in our loop Z(γ)
with the desired properties.

By Theorem 2.5, the loop Z(γ) is contractible to a point by moving it across the 2-cells
in C(n, k). We will show that these 2-cells correspond to 2-cells in Xσ(n,k) nicely, so that we
can also contract γ to a point.

The quadrilaterals in C(n, 3) are formed by two commuting flips in Z(n, k), which result
in either two moves in separate parts of Gk (a quadrilateral in Xσ(n,k)), one move being
performed twice in Gk (an edge in Xσ(n,k)), or no moves in Gk (a point in Xσ(n,k)). In all
cases, when Z(γ) is moved across a quadrilateral, the image of the quadrilateral in Xσ(n,k) is
a vertex, edge, or 2-cell which γ can also be moved across.

The only other 2-cells in C(n, 3) are decagons whose vertices correspond to the ten
refinements of an instance of Z(5, 3) inside Z(n, 3). Depending on where the plane x = k
intersects the copy of Z(5, 3), one of five things could happen in Gk as the ten flips in the
decagon are performed (see Figure 1).

1. If x = k does not intersect the copy of Z(5, 3) or only touches the top or bottom vertex,
no moves occur in Gk and the image of the decagon in Xσ(k,n) is a vertex.
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2. If x = k intersects the copy of Z(5, 3) at relative height 1, then five white trivalent
moves occur in a subgraph of Gk with connectivity σ(5,1). The image of the decagon
in Xσ(k,n) is a pentagon.

3. If x = k intersects the copy of Z(5, 3) at relative height 2, then five square moves
and five white trivalent moves occur in a subgraph of Gk with connectivity σ(5,2). The
image of the decagon in Xσ(k,n) is another decagon.

4. If x = k intersects the copy of Z(5, 3) at relative height 3, then five square moves
and five black trivalent moves occur in a subgraph of Gk with connectivity σ(5,3). The
image of the decagon in Xσ(k,n) is another decagon.

5. If x = k intersects the copy of Z(5, 3) at relative height 4, then five black trivalent
moves occur in a subgraph of Gk with connectivity σ(5,4). The image of the decagon
in Xσ(k,n) is a pentagon.

In all cases, when Z(γ) is moved across the decagon, the image of the decagon is a vertex
or 2-cell in Xσ(n,k) which γ can be moved across.

Finally, let Z(γ)′ be a deformation of Z(γ) by moving it across a 2-cell. We have consid-
ered all possible 2-cells in C(n, k) and shown that there always exists a cell in Xσ(n,k) which
γ can be moved across to create γ′ such that Z(γ′) = Z(γ)′. Therefore by contracting Z(γ)
to a point in C(n, k) step-by-step while adjusting γ along the way, γ is also contracted to a
point. We can conclude that Xσ(n,k) is simply connected.

We can consider any two reduced trivalent plabic graphs to be equivalent if they can be
related by only white and black trivalent moves. Then there is a square flip graph, whose
vertices are equivalence classes of plabic graphs for each connectivity π:, and whose edges
connect equivalence classes of graphs which have a pair of representative elements related
by a square move. By Theorem 3.4, the square flip graph is connected for every decorated
permutation π:. Our result can be restricted to the square flip graph as follows.

Corollary 4.6. Let Yπ: be the 2-complex given by the square flip graph for plabic graphs
with connectivity π:, with the following 2-cells glued to it:

• A quadrilateral, wherever there is a 4-cycle generated by two square moves occurring
in separate parts of a plabic graph,

• A pentagon, wherever there is a 5-cycle generated by five square moves which take place
in a subgraph which forms a plabic graph with connectivity σ(5,2) or σ(5,3).

Then Yπ: is simply connnected.

Proof. Any loop γ in Yπ: can be extended to a loop γ′ in Xπ: by adding the necessary extra
white and black trivalent moves. Contract γ′ to a point step-by-step by moving it across
the 2-cells in Xπ: . Each 2-cell in Xπ: corresponds to either a point or a 2-cell in Yπ: , so γ
may also be continuously deformed while maintaining the correspondence between γ and γ′.
Then once γ′ has been deformed to a point, so has γ. Therefore Yπ: is simply connected.
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5 Triple Crossing and Double Wiring Diagrams
Dylan Thurston [8] introduced triple crossing diagrams as a generalization of the domino
tilings and their flip operation. Just as the space of domino tilings is flip-connected [9], so
is the space of (minimal) triple crossing diagrams with a given connectivity [8]. We will
consider only what Thurston [8] calls minimal triple crossing diagrams, defined as when
introduced by Postnikov to study perfect orientations of plabic graphs [6].

Definition 5.1. Consider a disk with boundary vertices labeled b1, b
′
1, . . . , bn, b

′
n in clockwise

order. A triple crossing diagram with connectivity (strand permutation) π ∈ Sn consists of
n oriented strands drawn inside the disk which start at bi and end at b′π(i) for each i ∈ [n],
satisfying the following properties

1. Wherever two strands intersect, exactly three distinct strands meet in a triple crossing.

2. When considered in cyclic order, the orientation of the six rays from any triple crossing
alternates.

3. The diagram contains no bad double crossings, defined as when two distinct strands
both arrive at triple crossing c1 followed by triple crossing c2.

It follows from [8, Theorem 7] that this definition is equivalent to Thurston’s definition
for minimal triple crossing diagrams.

Similar to plabic graphs, triple crossing diagrams on n strands have a connectivity π ∈ Sn
given by the final positions of the strands. There is also a notion of flip in a triple crossing
diagram, the 2↔ 2 move, shown in Figure 4.

Figure 4: A 2↔ 2 move in a triple crossing diagram with a clockwise interior region. Figure
taken from Thurston [8]

Dylan Thurston [8, Theorem 5] proved that all minimal triple crossing diagrams with the
same connectivity can be related by a series of 2↔ 2 moves.

Postnikov gave the following correspondence between triple crossing diagrams and plabic
graphs. For any triple crossing diagram D, the plabic graph φ(D) has white vertices cor-
responding to triple crossings in D, black vertices corresponding to regions bounded by
counterclockwise-oriented strands that aren’t in the middle of a possible 2 ↔ 2 move, and
edges corresponding to counterclockwise regions bordered by triple crossings and to triple
crossing which could be involved in a 2↔ 2 move together.
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Lemma 5.2 ([6, Lemma 14.4]). The map φ described above gives a bijection between triple
crossing diagrams with strand connectivity π and reduced plabic graphs for the connectivity π
(fixed points undecorated) with all white vertices trivalent and no edges with both endpoints
black.

Such plabic graphs can be considered to be trivalent plabic graphs where the configuration
of the edges between black vertices is arbitrary (choose any sequence of uncontraction moves
on the black vertices with degree more than three). We observe that the flips in the two
contexts correspond nicely

Lemma 5.3. Let D and D′ be triple crossing diagrams related by a single 2 ↔ 2 move
in D. Then φ(D) and φ(D′) are related by a square move and several black contrac-
tion/uncontraction moves if the interior region of the 2 ↔ 2 move was oriented clockwise,
otherwise they are related by a single white trivalent move. Conversely, if G and G′ are
reduced plabic graphs with all white vertices trivalent, and no edges with both endpoints black
which are related by a single white trivalent move or a square move and several black con-
traction/uncontraction moves, then φ−1(G) and φ−1(G′) are related by a single 2↔ 2 move.

Proof. Examine how φ transforms 2↔ 2 moves and φ−1 transforms plabic moves locally.

Dylan Thurston [8] conjectured the following, which we now prove as a theorem

Theorem 5.4. Let Tπ be the 2-complex whose vertices are given by triple crossing diagrams
with connectivity π, edges given by 2 ↔ 2 moves, and the 2-cells created in the following
circumstances

• Quadrilaterals, where there are two commuting flips in different parts of the triple
crossing diagram.

• Pentagons, where there are instances of the triple crossing diagram with connectivity
σ(5,1) or σ(5,3).

• Decagons, where there are instances of the triple crossing diagram with connectivity
σ(5,2).

Then Tπ is simply connected for all permutations π.

Proof. Let γ be a cycle D1, D2, . . . , Dm+1 = D1 of triple diagrams with connectivity π related
by 2 ↔ 2 moves. Then let φ(γ) be the cycle G1, G2, . . . , GM+1 = G1 of plabic graphs in
Xπ constructed by Lemma 5.3 which contains φ(D1), φ(D2), . . . , φ(Dm+1) = φ(D1) in that
order. By Theorem 4.5, φ(γ) can be continuously deformed to a point in Xπ by moving it
across the cells in Xπ. By construction of Tπ and Lemma 5.3, the cells in Xπ correspond
to either points or cells in Tπ. In particular, if φ(γ)′ is a deformation of φ(γ) from moving
across a cell in Xπ, then there is a (possibly trivial) cell in Tπ which γ can be moved across
to create γ′ such that φ(γ′) = φ(γ)′. Then after deforming φ(γ) to a point in Xπ while doing
the corresponding deformations to γ, the cycle γ must also have been deformed to a point.
Therefore Tπ is simply connected.
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Postnikov [6] considers a special class of triple crossing diagrams, called monotone triple
crossing diagrams, and remarks that for the connectivity σ(2k,k) they are in bijection with
double wiring diagrams, introduced by Fomin and Zelevinsky [2]. One can think of double
wiring diagrams as two decompositions of the completely inverted permutation as products
of elementary transpositions interlaced, considered modulo some commutation rules, but we
will just consider them as strand diagrams. Consider the numbers 1, . . . , k to be blue and
the numbers k + 1, . . . , 2k to be red.

Definition 5.5. A strand configuration for a reduced plabic graph G with connectivity σ(2k,k)

is a double wiring diagram on k red and blue strands if strands i and j have exactly one
intersection whenever i and j are the same color.

We depict a double wiring diagram as having k strands of each color which run horizon-
tally except to cross an adjacent strand, when they move up or down a level (see figure 5).

Figure 5: A double wiring diagram for k = 3, adapted from [2].

For a double wiring diagram D on k strands of each color, let G(D) be the plabic graph
created by replacing blue crossings with a black vertex with an edge down to a white vertex
and red crossings with a white vertex down to a black vertex. All vertices lie on one of the k
rows and adjacent vertices in a row are connected. Then G(D) is a reduced trivalent plabic
graph with connectivity σ(2k,k), which has D as its strand diagram.

There are two types of moves on double wiring diagrams; the 3-move, which corresponds
to the Coxeter move in the reduced word representation of either single wiring diagram, and
the 2-move, which passes two crossings of different colors through each other (see Figure 6).

Figure 6: Moves in double wiring diagrams. The 3-move can also be performed with red.
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Lemma 5.6. Suppose D and D′ are double wiring diagrams related by a 3-move or a 2-move.
Then G(D) and G(D′) are related by a square move, possibly with some additional trivalent
moves.

Proof. Examine how the map G transforms 3-moves and 2-moves locally.

Unfortunately, the converse is false; many square moves cannot be realized in double
wiring diagrams, as many reduced plabic graphs do not correspond to a wiring diagram. For
the case k = 3 however, the flip graphs for double wiring diagrams and the square flip graph
for σ(6,3) are identical (see [1, Figure 13] and [2, Figure 10]).

6 Square Flip Graph Diameter
Consider the reduced plabic graphs with strand connectivity σ(2k,k). The square flip graph
is connected, and we wish to investigate its diameter. Paths between vertices of the square
flip graph relate the different parameterizations for the top cell of the totally nonnegative
Grassmannian Gr≥0(2k, k), so the diameter gives a bound on how complicated the relation-
ship can be. In this section we prove a lower bound on the diameter by constructing an
example, and conjecture that this bound is tight.

Any plabic graph can be described by its alternating strand diagram [6, Section 14]. We
will label the strands 1, 2, . . . , k, 1′, 2′, . . . , k′ in counterclockwise order around the disk. Call
the primed strands red and the unprimed strands blue. We also provide a specific ordering
on the strands, given by 1 < 1′ < 2 < 2′ < · · · < k < k′.

The strands can be pushed to the horizontal extremes without changing any of the
structure, so that all the blue strands are oriented from left to right and the red strands are
oriented from right to left. Each strand cuts the disk into a top and bottom halves relative
to that strand. Also, due to the connectivity of the graph being σ(2k,k), every pair of strands
must intersect an odd number of times. Say that a point of intersection not involving a
strand i (a crossing) lies above strand i if it is in the top half relative to i, otherwise say it
is below strand i. Fix a strand i and a pair of other strands j, ` which are the same color.

Definition 6.1. We call the pair (i, {j, `}) oriented if exactly one of the following is true:

• j < i < ` or ` < i < j

• An odd number of the crossings of strands j and ` lie above strand i.

Otherwise we call the pair (i, {j, `}) unoriented.

We aim to prove the following two facts about oriented pairs.

Lemma 6.2. There exists a plabic graph for the connectivity σ(2k,k) such that for every triple
of distinct strands i, j, ` with j, ` the same color, (i, {j, `}) is oriented. The plabic graph with
complementary face labels has all such pairs unoriented.

Lemma 6.3. Any square move in a reduced plabic graph changes the total number of distinct
oriented pairs (i, {j, `}) in the corresponding alternating strand diagram by at most four.
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Once these have been proven, we will be able to conclude the following lower bound.

Theorem 6.4. The square flip graph for connectivity σ(2k,k) has diameter at least 1
2
k(k−1)2.

Proof. There are 2k(k−1)2 distinct pairs (i, {j, `}) with i, j, ` distinct strands and j, ` either
both primed or both unprimed. The plabic graphs constructed in Lemma 6.2 then differ by
2k(k − 1)2 in the total number of distinct oriented pairs. By Lemma 6.3, each square move
can only reduce this difference by at most four, so it must take at least 1

2
k(k − 1)2 square

moves to connect the two, as desired.

We can also consider the flip graph whose vertices are double wiring diagrams on k red
and blue strands and whose edges connect diagrams related by a single 2-move or 3-move.
This is a subgraph of the square flip graph for connectivity σ(2k,k), but our result can be
extended to it as well.

Corollary 6.5. The double wiring flip graph on k red and blue strands has diameter at least
1
2
k(k − 1)2.

Proof. The plabic graphs constructed in the proof of Lemma 6.2 will be of the formG(D1), G(D2)
for some double wiring diagrams D1 and D2. By Lemma 5.6, any sequence of double wiring
diagram moves connecting D1 and D2 can be converted to a sequence of square moves con-
necting G(D1) and G(D2). Then by Theorem 6.4, this sequence must have length at least
1
2
k(k − 1)2.

If we consider the completely oriented and completely unoriented plabic graphs to be a
sort of minimal and maximal elements, one might hope that we could draw a path of length
1
2
k(k − 1)2 connecting them which passes through any other particular vertex of the square

flip graph, and thus prove that the diameter is exactly 1
2
k(k− 1)2. Unfortunately, this is not

the case, but nevertheless we still conjecture that our lower bound is tight.

Conjecture 6.6 (Miriam Farber). Both the square flip graph for connectivity σ(2k,k) and the
double wiring diagram flip graph on k red and blue strands have diameter exactly 1

2
k(k−1)2.

Moreover, the antipodal pairs in these graphs are exactly the plabic graphs with complemen-
tary face labels and the double wiring diagrams which are 180◦ rotations of each other.

Interestingly, the number 2k(k − 1)2 is not only the total number of possible oriented
pairs, but it is also the total number of face labels in each plabic graph, or the total number
of labels in the chamber minors of the double wiring diagrams (see [2]). We now move on to
the proofs of our two lemmas.

Proof of Lemma 6.2. The desired plabic graphs are given by a particular double wiring dia-
gram, which for k = 4 is depicted in figure 7. In general, if the rows are numbered 1 through
k− 1 from bottom to top, row x consists of x blue intersections and x red intersections, and
they alternate color from left to right, with a blue crossing appearing first. This completely
determines the double wiring diagram, because the relative orderings of the rows is forced
in order to meet Definition 5.5. Call this diagram D1. Take any triple of distinct strands
i, j, `. Each pair among the three intersect at exactly one point (check this). Further, the
three intersections form a triangle with exactly one strand running above the intersection
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Figure 7: Double wiring diagram D1 for k = 4 with all pairs oriented. The corresponding
plabic graph G(D1) is shown in black behind the double wiring diagram. In from top to bot-
tom starting from the upper-left, the endpoints of the strands should be labeled 1, 1′, . . . , 4, 4′

of the other two, and in the ordering on the far left, this strand must have started between
the other two. Since the strands on the far left are labeled from top to bottom in ascending
order according to our ordering 1 < 1′ < · · · < k < k′, it follows by checking Definition 6.1
that every pair (i, {j, `}) must be oriented.

Any double wiring diagram can be rotated 180◦ in order to get a new double wiring
diagram, because every pair of same-colored strands still cross. This is equivalent to reversing
the order of the occurrence of all of the inversions. Moreover, if an odd number of crossings
of strands j and ` lied above i before rotating, then after rotating and even number of these
crossings lie above i. Therefore ifD2 isD1 rotated by 180◦, then none of its pairs are oriented,
because the status of whether i is between j and ` is unchanged while the second bullet in
Definition 6.1 is always changed. The plabic graphs G(D1) and G(D2) has strand identical
to those in the wiring diagrams, so their pairs have the same orientations.

Remark: The choice we made that i < i′ was arbitrary; by switching all the colors of the
crossings in the double wiring diagrams D1 and D2 we get a pair with every pair oriented,
when we instead consider the ordering where i′ < i.

Proof of Lemma 6.3. Any square move involves exactly four strands, call them i, j, `,m as
labeled in the Figure 8 in counterclockwise order. The orientation of any pair (x, {y, z}) with
{x, y, z} ⊂ {i, j, `,m} distinct and y, z the same color is changed by the square move, while
any other pair has its orientation unchanged (check this). Choose an arbitrary strand, say `.
We will prove a slightly stronger claim than needed: the square move changes the number
of oriented pairs (`, {x, y}) with x, y ∈ {i, j,m} distinct and the same color by exactly one.
We are only considering the proof for the strand `, but this choice was arbitrary. Once this
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Figure 8: An arrangement of strands in a square move. The start points of i, j, `,m must be
in that cyclic (counterclockwise) order.

has been done, we can conclude that the total number of oriented pairs changes by either
0, 2, or 4 from the square move (in fact it is always 0 or 4).

Well, first suppose that there exists both strands of both colors in {i, j,m}. Then there
is actually only one such pair that can change. It does change, so the claim that the number
changes by exactly one holds. Then assume that i, j,m are all blue (we could have chosen red,
it doesn’t matter). We will show that the three pairs (`, {i, j}), (`, {j,m}), and (`, {i,m})
cannot have the same orientation. Then since the orientation of all three changes, the number
of oriented pairs will change by exactly one, as desired.

Note that the sides of the interior square must not be crossed by any strand for this to
be a legal square move. Further, in the diagram of the square move the source endpoints
are in the cyclic order i, j, `,m, and for each pair (i, j), (j, `), (`,m), (m, i) it is impossible for
the strands to have crossed previously without creating a bad double crossing. Therefore
the start points of i, j, `,m are in exactly that cyclic (counterclockwise) order.

Let’s look at the case where ` is red. Then since ` came from the right and i, j,m came
from the left, and the ordering increases going down the leftmost endpoints, and due to the
cyclic order of the endpoints i, j, `,m, we can conclude that m < i < j.

Call the side of ` which contains the depicted crossings of i, j and i, k the “left” side and
the other the “right” side. It is unknown whether the left is the same as the top or the
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bottom half of `. Since j,m must end in a position with j above m, they must cross an
odd number of times after crossing `. These crossings must occur to the right of `, because
neither j nor m may cross ` at a point to their respective lefts.

Also, there cannot be an odd number crossings between i, j or i,m which occur to the
right of ` without causing either a bad double crossing or an endpoint of a strand to end up
on the wrong side (check this). Then regardless of whether the right of ` is top or bottom,
for all three pairs to have the same orientation, either ` needs to be between i,m and i, j
but not j,m, or ` needs to be between j,m but not i, j or i,m. But m < i < j, so neither
of those are possible. We can conclude that the claim holds when ` is red (i.e., not the same
color as i, j,m), so now we suppose that ` is blue.

We still know the cyclic ordering of i, j, `,m, so the total ordering on the strands is a
cyclic permutation of i < j < ` < m. The strands are all the same color, so all four endpoints
must appear in an arc on the disk connecting two adjacent start points of the strands. If we
fix the start points of the strands and know which arc the endpoints lie in, then there is a
unique way up to adding pairs of extra crossings to wrap the endpoints into the appropriate
quadrant. Consider the cases

1. Arc (i, j). Then j < ` < m < i, and (i, j) is the only pair to cross an odd number of
times to the right of `.

2. Arc (j, `). Then ` < m < i < j and (j,m) is the only pair to cross an odd number of
times to the right of `.

3. Arc (`,m). Then m < i < j < ` and (j,m) is the only pair to cross an odd number of
times to the right of `.

4. Arc (m, i). Then i < j < ` < m and (m, i) is the only pair to cross an odd number of
times to the right of `.

The unique pair always being on the right (rather than left) is a result of putting the
square on the left of `; we could have put the square on the other side and gotten the opposite
results, but it makes no difference. In each case, whether ‘right’ is considered to be above
or below `, the three pairs do not have the same orientation. Therefore in all cases the
net number of oriented pairs involving ` changes by exactly one when the square move is
performed, as desired.

7 Acknowledgements
This work was done in the MIT Summer Program for Undergraduate Research (SPUR) pro-
gram, 2018. I thank my mentor Alexey Balitskiy for many helpful discussions and teaching
me about many of these topics, as well as noticing when my claims were false. I’d also
like to thank Alexander Postnikov and Pavel Galashin for suggesting such an interesting
and colorful project. Finally I thank Ankur Moitra and Davesh Maulik for their thoughtful
comments and for organizing SPUR.

21



References
[1] Patrick Dukes and Joe Rusinko. Commutation classes of double wiring diagrams. In-

volve, a Journal of Mathematics, 5(2):207–218, 2013.

[2] Sergey Fomin and Andrei Zelevinsky. Total positivity: tests and parametrizations. The
Mathematical Intelligencer, 22(1):23–33, 2000.

[3] Pavel Galashin. Plabic graphs and zonotopal tilings. To appear in Proceedings of the
London Mathematical Society, 2017.

[4] Andre Henriques and David E Speyer. The multidimensional cube recurrence. Advances
in Mathematics, 223:1107–1136, 2010.

[5] Suho Oh, Alexander Postnikov, and David E Speyer. Weak separation and plabic
graphs. Proceedings of the London Mathematical Society, 110(3):721–754, 2015.

[6] Alexander Postnikov. Total positivity, grassmannians, and networks. arXiv preprint
math/0609764, 2006.

[7] Alexander Postnikov. Positive grassmannian and polyhedral subdivisions. arXiv
preprint arXiv:1806.05307, 2018.

[8] Dylan P Thurston. From dominoes to hexagons. In Proceedings of the 2014 Maui and
2015 Qinhuangdao Conferences in Honour of Vaughan FR Jones’ 60th Birthday, pages
399–414. Centre for Mathematics and its Applications, Mathematical Sciences Institute,
The Australian National University, 2017.

[9] William P Thurston. Conway’s tiling groups. The American Mathematical Monthly,
97(8):757–773, 1990.

[10] Günter M Ziegler. Higher bruhat orders and cyclic hyperplane arrangements. Topology,
32:259–279, 1993.

22


	Introduction
	Cycles for Zonotopal Tilings
	Plabic Moves in Zonotopal Tilings
	Main Result on Cycles
	Triple Crossing and Double Wiring Diagrams
	Square Flip Graph Diameter
	Acknowledgements

