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Abstract

Model categories are a useful formalization of homotopy theory, and
the notion of Quillen equivalence between them expresses what it means
for two homotopy theories to be equivalent. Bousfield and Gugenheim
showed that the model categories of simplicial sets and of commutative
differential graded algebras over Q are close to Quillen equivalent, in that
there is a Quillen adjunction between them such that the induced ad-
junction on homotopy categories restricts to an equivalence on simply-
connected rational objects of finite rational type. We extend this to the
case of an action of a discrete group, showing that for any small category
C the induced Quillen adjunction between functors from C to simplicial
sets and functors from C to commutative differential graded algebras also
restricts to an equivalence on appropriately well-behaved objects. We also
explore equivariant rational homotopy theory from this perspective, for
the action of a finite group.



1 Introduction

Rational homotopy theory is the study of spaces considered up to ‘rational ho-
motopy equivalence’, where a rational homotopy equivalence is a map f : X →
Y such that f∗ : πn(X) ⊗ Q → πn(Y ) ⊗ Q is an isomorphism for all n. This
is a coarser notion of equivalence than the usual (weak) homotopy equivalence,
where f should induce an isomorphism on the homotopy groups themselves.1

However, ignoring the torsion information allows for an excellent algebraic de-
velopment of the resulting theory. In particular, under mild assumptions (for
example, simple connectivity), to a space X can be associated a ‘minimal’ com-
mutative differential graded algebra MX , such that MX

∼= MY if and only if X
and Y are rationally equivalent. Better still, MX can be constructed — often
fairly explicitly — using only the knowledge of X’s rational cohomology algebra.
For details, see [Hes07].

Given the great success of ordinary rational homotopy, it is natural to seek
an extension to the equivariant case. Equivariant homotopy theory essentially
replaces topological spaces, simplicial sets, and similar objects with functors
from some small ‘indexing’ category into the category of such objects. The
reasons for this are as follows. The equivariant Whitehead theorem indicates
that an equivariant map f : X → Y of G-spaces should be considered to be a
G-weak homotopy equivalence if the map fH : XH → Y H induced on fixed-
point spaces is an ordinary weak homotopy equivalence for any subgroup H of
G. Elmendorf’s theorem further explains that the resulting homotopy theory
is captured by Hom(Oop

G ,Top)proj.
2 Here, Top is the category of topological

spaces; OG is the orbit category of G, which can be defined as the full subcat-
egory of G-spaces which are transitive; and proj refers to a particular model
category structure placed on this category. Model categories are a useful for-
malism for homotopy theory; here, we use them to begin extending the results
of rational homotopy theory to the equivariant case.

1.1 Acknowledgments

I thank Robert Burklund for suggesting thinking about these ideas and for many
helpful conversations and clarifications. I also thank the MIT SPUR program,
for enabling this work to take place; in particular, Slava Gerovitch, for organizing
the program, and David Jerison and Ankur Moitra, for helpful general advice
about mathematics research.

1.2 Preliminaries and Notations

We assume the reader is familiar with the basics of ordinary category theory. We
write L a R : C � D to indicate that L : C → D is left adjoint to R : D → C.

1A simple example of a rational homotopy equivalence which is not a homotopy equivalence
is the n-fold cover of S1 by S1, for n > 1.

2For a more in-depth explanation of the significance of Elmendorf’s theorem, see the in-
troduction to [Ste10].
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A category is complete if it has all small limits and cocomplete if it has all
small colimits. We take Q to be our base field for all constructions, and all
chain/cochain complexes are cohomologically graded.

2 Model Categories

2.1 Definition

Model categories were originally defined by Quillen in 1967. They provide a
convenient way to manage the technical details of homotopy theory, especially
those related to lifting and extension problems.

We recall the definition of a model category, following Riehl [Rie09], and
introduce the examples relevant to rational equivariant homotopy theory.

Definition 2.1. Let C be a category and L,R two subsets of morphisms in C.
A functorial factorization into (L,R) is the following data: for each f : X → Y
in C, a choice of factorization f = r(f)`(f) with `(f) ∈ L and r(f) ∈ R, such
that for a commuting square

X

x

��

f
// Y

y

��
X ′

f ′
// Y ′

there are commuting squares

X

x

��

`(f)
// F (f)

r(f)
//

F (x,y)

��

Y

y

��
X ′

`(f ′)

// F (f ′)
r(f ′)

// Y ′

which are functorial in the appropriate sense, i.e. F (id, id) = id and F (x′x, y′y) =
F (x′, y′)F (x, y) for commuting rectangles

X

x

��

f
// Y

y

��
X ′

f ′
//

x′

��

Y ′

y′

��
X ′′

f ′′
// Y ′′.

Definition 2.2. A functorial factorization into (L,R) is a weak functorial fac-
torization if additionally L is the set of morphisms having the left lifting prop-
erty with respect to R and R is the set of morphisms having the right lifting
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property with respect to L. That is to say, r ∈ R if and only if for all ` ∈ L and
commuting solid squares

• //

`

��

•
r

��
• //

??

•
a dashed arrow exists making both triangles commute, and ` ∈ L if and only if
for all r ∈ R and solid diagrams as above, a dashed arrow exists.

The original definition of a model category used weak factorization systems
rather than weak functorial factorization systems, essentially requiring that fac-
torizations existed but were not necessarily given by a functor. We follow Hovey
[Hov91] in requiring the functorial factorization, which will exist in all the ex-
amples we work with.

Definition 2.3. A model category is a complete and cocomplete category C
equipped with three classes of morphisms: cofibrations, fibrations, and weak
equivalences; and equipped with two weak functorial factorizations:
into (cofibrations,fibrations ∩ weak equivalences),
and into (cofibrations ∩weak equivalences,fibrations); such that, in addition, if
any two of f , g, and fg are weak equivalences, so is the third (if defined).

The last property is also called ‘2-out-of-3’. This definition is deliberately
terse, although even a more explicit definition would hide the large amount of
homotopy theory that can be done working entirely within an arbitrary model
category. For example, this definition implies that all three classes are closed
under retracts, that is, in a diagram

A

f

��

//

idA

''
A′

f ′

��

// A

f

��
B //

idB

77B′ // B

if f ′ is a weak equivalence, fibration, resp. cofibration, then f is a weak
equivalence, fibration, resp. cofibration. (In this situation we say that f is a
retract of f ′.)

An acyclic cofibration is a cofibration that is also a weak equivalence; dually,
an acyclic fibration is a fibration that is also a weak equivalence. If A→ B is a

weak equivalence, we may write A
' //B .

We think of the cofibrations as ‘well-behaved injections’, the fibrations as
‘well-behaved surjections’, and the weak equivalences as ‘maps which are iso-
morphisms in homotopy’. This last notion is made precise by the homotopy
category of a model category.
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Definition 2.4. The homotopy category Ho C of a model category C is the
localization of C at its weak equivalences.

It is characterized by a universal property: for all categories D, the category
Hom(Ho C,D) of functors from the homotopy category must be naturally equiv-
alent to the full subcategory of Hom(C,D) consisting of those functors F such
that whenever f is a weak equivalence in C, F (f) is an isomorphism in D. The
existence, and convenient ways to work with, the homotopy category can be es-
tablished using model category theory; for now, we’ll assume it exists and work
with it via its universal property. Note that the universal property implies in
particular a functor C → Ho C which sends weak equivalences to isomorphisms.
We’ll write this, when it needs to be written, as c 7→ [c]. For convenience, we’ll
assume that this functor is an isomorphism on objects; if we construct a cate-
gory with the objects of C where a map c→ c′ is, by definition, a map [c]→ [c′]
in Ho C, this will again satisfy the universal property, so we may as well assume
Ho C is this to begin with.

2.2 Examples

Example (Topological spaces). The category Top of topological spaces, with
Serre fibrations as the fibrations and maps inducing isomorphisms on all ho-
motopy groups as weak equivalences, can be given a model category structure.
Note that from these two pieces of data, the cofibrations are determined: they
are the maps having the left lifting property with respect to Serre fibrations
that induce isomorphisms on homotopy groups.

Example (Simplicial sets). The category sSet of simplicial sets can be given
a model structure with weak equivalences consisting of those maps whose geo-
metric realization is a weak equivalence of topological spaces and cofibrations
consisting of monomorphisms. Dually to the previous example, the fibrations
are determined by these two choices; the fibrations in this model structure are
usually called Kan fibrations.

Example (Cochain complexes). The category Ch of nonnegatively graded
chain complexes over Q can be given a model structure where cofibrations are
degreewise injections except possibly in degree zero, fibrations are degreewise
surjections, and weak equivalences are maps which induce isomorphisms in ho-
mology.

2.2.1 Model structures on functor categories

Another important class of examples arise as follows: if C is a model category
and A is any small category, the category Hom(A, C) of functors from A into C
can be equipped with several model structures. We’ll consider two, the injective
and projective structures. In each of these, the weak equivalences are objectwise
weak equivalences; that is, a natural transformation η : F ⇒ G : A → C is a
weak equivalence just when ηa : Fa → Ga is a weak equivalence for all a. In
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the projective model structure, the fibrations are the objectwise fibrations; in
the injective model structure, the cofibrations are the objectwise cofibrations.
These model structures do not always exist, but if they do exist are unique. The
two model structures are related by the next lemma.

Lemma 2.5. A fibration in the injective model structure is a fibration in the
projective model structure; dually, a cofibration in the projective model structure
is a cofibration in the injective model structure.

Proof. It suffices to show the first half; the second half will then follow, since a
projective cofibration has LLP with respect to all acyclic projective fibrations,
hence in particular with respect to all acyclic injective fibrations, and so is an
injective cofibration.

Given an injective fibration η : F → G, we want to show that each compo-
nent ηa is a fibration, i.e. that ηa has RLP with respect to all acyclic cofibrations.
Given a lifting problem

c
p
//

h '
��

Fa

ηa

��
c′

q
// Ga

with h an acyclic cofibration, we consider the corresponding diagram in Hom(A, C)

C(a,−)⊗ c

C(a,−)⊗h '
��

p̃
// F

η

��
C(a,−)⊗ c′

q̃
// G.

Here, S ⊗ c is the coproduct of S-many copies of c. The map p̃ is defined so
that p̃a′ : C(a, a′) ⊗ c → Fa′ is F (f)p on the copy of c corresponding to some
f : a → a′; the map q̃ is defined similarly. Commutativity of the square is the
requirement that for any a′ and f : a → a′, we have ηa′F (f)p = G(f)qh : c →
Ga′, which holds since G(f)qh = G(f)ηap = ηa′F (f)p by the previous square
and naturality. In order to apply the lifting property of η, then, we need only
that C(a,−)⊗h is an acyclic injective cofibration. This in turn just means that
each component C(a, a′) ⊗ h is an acyclic cofibration. But it’s easy to show
that an arbitrary coproduct of acyclic cofibrations is an acyclic cofibration; to
show that S ⊗ h has the left lifting property with respect to all fibrations, for
example, one need only observe that a lifting problem for S ⊗ h is essentially
many lifting problems for h, indexed by elements of S, and that solving all
these independently is possible (since h is an acyclic cofibration) and sufficient.
Therefore there’s a natural transformation f̃ : C(a,−) ⊗ c′ → F with ηf̃ = q̃
and f̃(C(a,−) ⊗ h) = p̃. Considering the components at a, we have ηaf̃a = q̃a
and f̃a(C(a, a)⊗ h) = p̃a. Looking at this on the copy of c corresponding to the
identity on a, we see that ηaf = q and fh = p, where f is f̃a restricted to the
copy of c′ corresponding to the identity. This means f solves our original lifting
problem, so we’re done.
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3 Commutative differential graded algebras

3.1 Basic notions

The last example of a model category which will be important for us is the
model category of commutative differential graded algebras. Before introducing
it, however, we introduce commutative differential graded algebras themselves.

Definition 3.1. A commutative differential graded algebra, or CDGA, over Q is
a commutative monoid in the category of nonnegatively graded chain complexes
over Q (with the Koszul symmetric monoidal structure).

More explicitly, such an algebra is a graded unital Q-algebra equipped with
a differential of degree +1, required to obey the graded commutativity xy =
(−1)deg(x)deg(y)yx and graded Leibniz identity d(xy) = (dx)y+(−1)deg(x)x(dy).
We write Ak for the degree-k piece of a CDGA A. We denote the category of
CDGAs by CDGA.

There is a left adjoint, denoted Λ, to the forgetful functor from CDGAs
to cochain complexes, which forms the free commutative differential algebra
generated by a cochain complex. The category of CDGAs also has coproducts;
the coproduct of A and B is written A⊗B, and we have (A⊗B)k = ⊕i+j=kAi⊗Q
Bj , with multiplication (a⊗b)(a′⊗b′) = (−1)deg(a′)deg(b)aa′⊗bb′ and differential
d(a⊗ b) = da⊗ b+ (−1)deg(a)a⊗ db. With these notions, we can introduce an
important class of morphisms of CDGAs.

Definition 3.2. A map f : A → B of CDGAs is a relative Sullivan algebra if
the underlying graded algebra of B is isomorphic to that of A ⊗ ΛV , in a way
that makes the map underlying f into the canonical inclusion a 7→ a ⊗ 1; and,
further, there exists a basis vi of V indexed by some well-ordered set I, such
that for all i, we have that dvi is in the subalgebra of B generated by A and vj
for j < i.

An algebra B is called a Sullivan algebra if the map Q → B is a relative
Sullivan algebra.

Intuitively, a relative Sullivan algebra is one that can be built up from A
by successively attaching generators that make already-existing cocycles into
coboundaries. An example of a non-Sullivan algebra is Q[x, y, z], a free algebra
on three generators of degree one, where dx = yz, dy = zx, and dz = xy.

Definition 3.3. A relative Sullivan algebra is minimal if the basis vi can be
chosen so that i < j implies deg(vi) ≤ deg(vj).

Intuitively, a minimal relative Sullivan algebra doesn’t add add any cocycles
which it then makes into coboundaries (thus leaving the cohomology as it was
before). An example of a non-minimal Sullivan algebra is Q[xk, dxk], a free
algebra on one generator of degree k, whose differential is a generator in degree
k + 1.
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3.2 Model structure

The model structure on CDGAs is obtained using a transfer theorem, which is
stated as theorem 3.6 of [GS06]; given an adjunction F a G : C � D between
complete and cocomplete categories, it gives conditions under which a model
category structure on C induces a model category structure on D. In this ‘pro-
moted’ model structure, a map h is a weak equivalence resp. fibration if Gh is
a weak equivalence resp. fibration. Specifically, one must require that:

1. If a map c in D has the left lifting property with respect to all fibrations
(that is, maps h with Gh a fibration in C), then it is a weak equivalence
(that is, Gc is a weak equivalence in C). This certainly must hold if
the model structure is to exist, because maps with the LLP with respect
to all fibrations should be precisely the acyclic cofibrations of the model
structure.

2. G commutes with colimits which are indexed by an ordinal. These are
also called sequential colimits.

3. The model category structure on C is cofibrantly generated, which means
there are sets I, J of cofibrations and acyclic cofibrations respectively,
which generate the model structure in the sense that a map is a fibration
resp. acyclic fibration if and only if they have the right lifting property
with respect to all morphisms in J resp. I, and which satisfy the additional
condition that the Hom-functor C(X,−) commutes with sequential colim-
its of cofibrations resp. acyclic cofibrations whenever X is the domain of a
morphism in I resp. J . For this last condition, we also say that domains
of maps in I are small with respect to cofibrations, and domains of maps
in J are small with respect to acyclic cofibrations; intuitively, they’re too
small to be stretched across all of the layers of an infinite union at the
same time.

That these hypotheses apply to the case of cochain complexes and CDGAs, with
the free algebra/underlying cochain complex adjunction, is stated in [Hes07],
along with a characterization of the resulting model structure on CDGAs: the
weak equivalences are the maps which are isomorphisms on homology, the fibra-
tions are the degreewise surjections, and the cofibrations are retracts of relative
Sullivan algebras.

Sometimes we’ll work with the category of augmented CDGAs, denoted
CDGA+. This is the overcategory CDGA/Q over the initial object. By the
dual of ([Hov91], 1.1.8) this has a model category structure where a map is a
cofibration, fibration, or weak equivalence if its underlying map in CDGA is
such.
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4 Quillen adjunctions

4.1 Definition

We return to the general theory of model categories. First, note that the axioms
of a model category enjoy a duality, which extends categorical duality; if C is
a model category, the opposite of its underlying category inherits a canonical
model structure with fibrations equal to the cofibrations of C and vice versa,
and the same weak equivalences. Therefore, having introduced some notion or
proven some proposition valid for all model categories, its dual follows formally.

For example, we define an object X in a model category to be cofibrant if the
unique map from the initial object of C to X is a cofibration. The dual notion
is that an object X is fibrant if the unique map from X to the terminal object
of C is a fibration. The functorial factorization into a cofibration followed by an
acyclic fibration, applied to the map from the initial object to X, gives an object
CX which depends functorially on X, and a map cofX : CX → X which is a
(component of a) natural transformation. This is called cofibrant replacement ;
as the name suggests, CX is cofibrant, since the map from the initial object
to CX is the cofibration part of the factorization of the map from the initial
object to X; and CX → X is a weak equivalence (in fact, an acyclic fibration)
again by properties of the factorization. Dually, we have fibrant replacement,
fibX : X → FX. A guiding principle is that, in order for the set of maps from
X to Y to be ‘correct’, we ought to have X cofibrant and Y fibrant.

We now consider the most common notion of a morphism between model
categories, a Quillen adjunction.

Definition 4.1. A Quillen adjunction from the model category C to the model
category D is a pair of adjoint functors L a R : C � D such that L preserves
cofibrations and R preserves fibrations.

From this, it follows that L preserves acyclic cofibrations and R preserves
acyclic fibrations; each of these only requires some contemplation of the equiv-
alence between lifting problems of the form

LX //

��

Y

��
LZ // W

and those of the form
X //

��

RY

��
Z // RW.

Less obviously, but importantly, it follows from the above that L preserves
weak equivalences between cofibrant objects and R preserves weak equivalences
between fibrant objects.
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Lemma 4.2 (Ken Brown’s lemma). If a functor between model categories pre-
serves acyclic cofibrations between cofibrant objects, it preserves all weak equiv-
alences of cofibrant objects. Dually, if a functor between model categories pre-
serves acyclic fibrations between fibrant objects, it preserves all weak equivalences
of fibrant objects.

Proof. See Lemma 1.1.12 in [Hov91].

4.2 Derived adjunction

The previous fact allows the construction of the derived adjunction of a Quillen
adjunction. This is an adjoint pair HoL a HoR : Ho C � HoD between
homotopy categories, given as follows.

First, define a functor C → HoD to be the composite

C
C
// C

L
// D

[−]
// HoD,

and observe that this sends weak equivalences to isomorphisms. If c → c′ is a
weak equivalence, then Cc→ Cc′ is a weak equivalence by 2-out-of-3 applied to

Cc //

'

��

Cc′

'
��

c '
// c′

since the vertical maps are also weak equivalences. Then Cc → Cc′ is a weak
equivalence of cofibrant objects, so by Ken Brown’s lemma (4.2) L sends it to a
weak equivalence LCc→ LCc′; and by the definition of the homotopy category
this implies that [LCc] → [LCc′] is an isomorphism. Thus, our composite
functor essentially factors through Ho C: there is a functor HoL : Ho C → HoD
with (HoL)[c] ∼= [LCc] naturally in c. Arguing dually, we see also the existence
of HoR : HoD → Ho C. Now for the adjunction between HoL and HoR.
We’ll do this by constructing the unit and counit and showing they obey the
appropriate identities. For the unit, we want for each [c] a natural map η[c] :
[c] → HoR(HoL[c]) in Ho C. By the natural isomorphisms above, this may as
well be viewed as a map [c]→ [RFLCc]. We can take this to be the composite
of

[c]
[cofc]−1

// [Cc]
[ηCc]

// [RLCc]
[R(fibLCc)]

// [RFLCc].

Dually, the counit can be defined as ε[d] = [fibd]
−1[εFdL(cofR(Fd))]. Checking

that the composites (HoR)(ε[d])ηHoR[d] and εHoL[c](HoL)(η[c]) are identities is
a tedious but routine verification, using the above definitions and the corre-
sponding identities of the original adjunction. For a presentation of the derived
adjunction which focuses on the bijection between hom-sets rather than the unit
and counit, see lemma 1.3.10 of [Hov91].
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We’ll be interested in cases where η[c] and ε[d] are isomorphisms in the homo-
topy category, and in particular when R(fibLCc)ηCc is a weak equivalence (and
the dual for ε), which implies that η[c] is an isomorphism. The most extreme
case is when this always holds; note that it suffices to state it for an arbitrary
cofibrant object, since c does not directly appear in R(fibLCc)ηCc, only Cc.

Definition 4.3. A Quillen adjunction L a R : C � D with unit η and counit ε
is a Quillen equivalence if for all cofibrant c, the map R(fibLc)ηc : c→ RFLc is
a weak equivalence, and for all fibrant d, the map εdL(cofRd) : LCRd → d is a
weak equivalence.

If L and R form a Quillen equivalence, it easily follows that HoL a HoR is
an adjoint equivalence of categories between Ho C and HoD.

4.3 Functoriality of model structures on functors

If C and D are model categories, and L a R a Quillen adjunction between them,
then for any small category A, postcomposition with L and R induces a Quillen
adjunction between Hom(A, C)inj and Hom(A,D)inj, if both exist; similarly for
the projective model structure. If L a R is indeed a Quillen equivalence, then
the induced adjunction is also a Quillen equivalence. This is A.2.8.6 in [Lur09].

4.4 Examples

Example. There is a Quillen equivalence sSet � Top, where the left adjoint is
geometric realization and the right adjoint is the singular simplicial set functor.

Example. The content of lemma 2.5 is essentially that the identity functor
on Hom(A, C) forms both halves of a Quillen equivalence Hom(A, C)proj �
Hom(A, C)inj.

The most important example for us is a Quillen adjunction sSet � CDGAop.
This is not a Quillen equivalence, but we can identify sets of objects for which
the unit and counit are isomorphisms in the homotopy category. The adjunction
is defined by a simplicial CDGA, which we’ll denote A. For each k in the simpli-
cial indexing category ∆, define Ak to be the algebra which is free on generators
t0, . . . , tk of degree zero and dt0, . . . , dtk of degree one, with the notationally-
suggested differential, and the additional relations

∑
i ti = 1 and

∑
i dti = 0.

These are essentially the differential forms on the standard k-simplex which are
given by rational polynomials in the standard coordinates on the simplex. Since
the face and degeneracy maps between the standard simplices are also appro-
priately polynomial, pullback along them gives maps between the different Ak
which make A into a simplicial CDGA; for an explicit description of these maps,
see [Hes07], 1.19.

The fact that A carries two different, but compatible, structures means that
it can be used to convert from one to the other; if X is a simplicial set, then
we have a family of Q-modules sSet(X,Ai), which collectively form a CDGA
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which we’ll denote A(X). Similarly, if B is a CDGA, then CDGA(B,Ak) fit
together into a simplicial set, which we’ll denote S(B). We have isomorphisms

sSet(X,CDGA(B,A)) ∼= sCDGA(X ×B,A) ∼= CDGA(B, sSet(X,A))

where sCDGA is the category of simplicial CDGAs, i.e. functors ∆op →
CDGA. This shows that S and A are adjoint on the right. We prefer to
view this as an adjunction A a S : sSet � CDGAop. This is shown to be
a Quillen adjunction in [BG76], but for it to be a Quillen equivalence is un-
fortunately too much to hope for; intuitively, CDGAs over Q can only capture
‘rational’ information, and the fact that the Eilenberg-MacLane space K(G,n)
is not equivalent to the point for a torsion group G is ‘invisible’ to the rational
world.

However, Bousfield and Gugenheim do show (theorem 10.1) that the derived
unit and counit are weak equivalences, with some assumptions on the object.
They state this only for fibrant and cofibrant objects, but this is sufficient to
show it for all objects, since in Ho C any [c] is isomorphic to some [c′] with c′

fibrant and cofibrant, and the unit/counit are natural transformations. The
specific conditions are these:

• If a simplicial set is connected, rational (meaning all of its homotopy
groups are rational vector spaces), nilpotent, and of finite rational type
(meaning its homology over Q is finite dimensional in each degree), then
the derived unit is a weak equivalence in sSet, hence an isomorphism in
the homotopy category.

• If a CDGA is cohomologically connected (meaning that H0 ∼= Q), finite
type (meaning that it is weakly equivalent to a CDGA which is finite-
dimensional in each degree), then the derived counit is a weak equivalence
in CDGA, hence an isomorphism in the homotopy category.

Nilpotence is a condition involving the fundamental group; for the rest of what
follows, we replace it with the stronger simple connectivity, i.e. that the fun-
damental group vanishes. This means that we also require cohomological 1-
connectivity of CDGAs, i.e. that H0 = Q and H1 = 0. Informally, what we
have is a ‘partial equivalence’, meaning an equivalence between appropriately-
chosen pieces of the homotopy categories. Another important fact about the
situation is that a simplicial set obeying the above conditions is sent by the
adjunction to a CDGA obeying the above conditions, and vice versa; this is also
part of theorem 10.1 in [BG76].

This adjunction also extends to a Quillen adjunction sSet+ � CDGAop
+ be-

tween pointed simplicial sets and augmented CDGAs. A corresponding ‘partial
equivalence’ result for these is also part of theorem 10.1 in [BG76].

5 Functoriality of partial equivalences

In the non-equivariant case, Bousfield and Gugenheim’s result tells us that when
working with spaces/simplicial sets obeying the appropriate conditions, applying
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A and passing to CDGAs loses no information. Equivariantly, we know that the
geometric information of a G-space X can be represented as a functor from Oop

G

to Top or sSet which records the fixed-point spaces of each subgroup; so we’d
like to have a relation between Hom(Oop

G , sSet) and Hom(Oop
G ,CDGA). We’ll

abstract the details of the situation away, and consider a general setup where a
‘partial equivalence’ type result is known.

Therefore suppose C and D are model categories, L a R : C � D is a Quillen
adjunction, and C0, D0 are full subcategories of C, D respectively, such that the
following hold.

• If an object of C is weakly equivalent to an object of C0, then it is already
in C0; similarly, if an object of D is weakly equivalent to an object of D0,
then it is already in D0.

• LC0 ⊆ D0 and RD0 ⊆ C0.

• If c0 ∈ C0 is cofibrant, then the unit of the derived adjunction, η : c0 → RFLc0,
is a weak equivalence. Dually, if d0 ∈ D0 is fibrant, then the counit of the
derived adjunction, ε : LCRd0 → d0, is a weak equivalence.

The last condition says that the derived adjunction between homotopy cat-
egories restricts to an adjoint equivalence on the full subcategories defined by
C0 and D0.

From all this, we conclude the following.

Lemma 5.1. With the assumptions above, for any small category A, if the pro-
jective model structures on Hom(A, C) and Hom(A,D) exist, then the induced
derived adjunction between their homotopy categories restricts to an adjoint
equivalence on the full subcategories defined by Hom(A, C0) and Hom(A,D0);
and the same holds if ‘projective’ is replaced by ‘injective’.

Proof. We treat the case of the projective model structure; the injective case
follows by a dual argument.

As previously, it suffices to prove that the unit resp. counit are weak equiva-
lences when the objects in question are cofibrant resp. fibrant, since the inclusion
of cofibrant resp. fibrant objects into the homotopy category is an equivalence
of categories.

First, given d0 : A → D0 which is projectively fibrant, we want to show
that L ◦C(Rd0)→ d0 is a weak equivalence. Note that C(Rd0) is the cofibrant
replacement of the functor R ◦ d0, not fibrant replacement composed with the
functor R ◦ d0; that need not be a projectively cofibrant functor. The map
is a weak equivalence just when for each a, L(C(Rd0)(a)) → d0(a) is a weak
equivalence. Now, the map C(Rd0) → Rd0 is a projective acyclic fibration,
hence its components are all acyclic fibrations. Similarly, C(Rd0) is projectively
cofibrant, hence all its components are cofibrant by lemma 2.5. Thus, in the
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diagram

Rd0(a) CRd0(a)
'oo

ww
(C(Rd0))(a)

'

OO

the dashed arrow exists and, by two-out-of-three, is a weak equivalence. Indeed,
it is a weak equivalence between cofibrant objects, so by Ken Brown’s lemma
(4.2), L carries it to a weak equivalence. Thus we have a diagram

d0(a) L((C(Rd0))(a))oo LCRd0(a).oo

The composite is the counit of the ordinary derived adjunction at d0(a), which
is a weak equivalence by assumption since d0(a) is fibrant. The second map is
a weak equivalence, from what we’ve just said. Thus by two-out-of-three, the
first map is a weak equivalence, which is what we wanted.

Now, given c0 : A → C0 which is projectively cofibrant, we want to show
that c0 → R ◦ F (Lc0) is a weak equivalence. Since fibrant replacement in the
projective model structure may be done objectwise, we assume we’ve chosen
it to be that way. Since weak equivalence is also defined objectwise, we just
have to prove that for all a, c0(a)→ RFLc0(a) is a weak equivalence, which is
immediate by assumption since c0(a) is always cofibrant.

To complete the application of this to A a S : sSet � CDGAop, it only
remains to show that the projective model structures on Hom(A, sSet) and
Hom(A,CDGAop) exist, for a small category A.

The category of simplicial sets is a cofibrantly generated model category
([Hov91], 3.6.5), with generating cofibrations the inclusions of the boundary
of the n-simplex into the n-simplex and generating acyclic cofibrations the in-
clusions of ‘horns’, that is the boundary of the n-simplex with an additional
(n − 1)-face removed, into the n simplex. Since all simplicial sets are small
([Hov91], 3.6.5), in particular all the domains of these generating morphisms,
and hence by [Bay+14], prop. 4.5, the projective structure on Hom(A, sSet)
exists for any small category A.

Although it does not directly bear on the adjunction of A and S, we note
here that Top is also cofibrantly generated ([Hov91], 2.4.19), with generating
cofibrations the inclusion of n-spheres into (n+ 1)-disks, and generating acyclic
cofibrations the inclusions of the n-disk Dn into one end of the cylinder Dn× I,
where I is the unit interval. Since all topological spaces are small with respect to
inclusions ([Hov91], 2.4.1), in particular so are the domains of these generating
morphisms, and so we can use the same proposition as before to conclude that
the projective model structure on Hom(A,Top) exists for any small category
A.

For the case of CDGAop, things are less straightforward. The model cat-
egory CDGA is cofibrantly generated, but its opposite cannot be expected to
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be. However, we notice the duality of functor categories

Hom(A,Bop) ∼= Hom(Aop, B)op.

SupposeB is a model category and the injective model structure on Hom(Aop, B)
exists, and use it to define a model structure on Hom(A,Bop) using model-
categorical duality and the above isomorphism. A natural transformation η :
F ⇒ G : A → Bop will be a fibration in this model structure if and only
if it is a cofibration in Hom(Aop, B)inj, if and only if each component is a
cofibration in B, if and only if each component is a fibration in Bop. Simi-
larly, a natural transformation will be a weak equivalence if and only if each
component is a weak equivalence in Bop. This means that, for B a model
category, if the injective model structure on Hom(Aop, B) exists, then the pro-
jective model structure on Hom(A,Bop) exists. We’ll verify that the injective
model structure indeed exists when B = CDGA, which will complete our
chain of categories connected by Quillen adjunctions (which we know how to
restrict to equivalences): we can go from Hom(A,Top)proj to Hom(A, sSet)proj

to Hom(A,CDGAop)proj
∼= (Hom(Aop,CDGA)inj)

op.
For the injective model structure on Hom(Aop,CDGA) to exist, it suffices

by proposition A.2.8.2 in Lurie [Lur09] that CDGA be a combinatorial model
category. This means it is a cofibrantly generated model category which is locally
presentable as a category. We know that CDGA is cofibrantly generated; see,
for example, [Hes07]. Essentially, Ch is cofibrantly generated, and transferring
a model structure across an adjunction preserves cofibrant generation.

To define local presentability, we need the notion of a λ-directed colimit, for
a cardinal λ.

Definition 5.2. A λ-directed poset is a poset in which every subset of size
strictly less than λ has an upper bound. A λ-directed colimit is a colimit indexed
over a λ-directed poset.

Definition 5.3. A cocomplete category C is locally presentable if, for some
regular cardinal λ, there is a set S of objects such that s ∈ S implies that
C(s,−) preserves λ-directed colimits, and every object of C is a λ-directed
colimit of objects of S.

This definition follows [AR94].

Lemma 5.4. The category of CDGAs is locally presentable, with λ = ℵ0 and
S the set of finitely generated algebras.3

Proof. First, a map from a finitely generated algebra F to colimiAi is speci-
fied by finitely many elements of colimiAi corresponding to the images of the
generators (which may be required to satisfy some relations). By inspection,
an element in a colimit of algebras is, possibly nonuniquely, a polynomial in
elements which are in the images of the canonical maps Ai → colimiAi. But

3Technically, for this to be a set, we should choose one representative of each isomorphism
class of finitely generated algebras, and let S be the set of all chosen representatives.
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for an ℵ0-directed colimit, this means that it comes from a single Ai — take i
to be an upper bound, in the indexing poset, of the finitely many i’s involved
in the polynomial. Then, take an upper bound of these is for the finitely many
generators of F . Our map will factor through this Ai → colimiAi. This means
that Hom(F,−) commutes with ℵ0-directed colimits.

Second, an algebra is the colimit of its finitely generated subalgebras; it is
easy to see that this is a ℵ0-directed colimit, and the statement itself amounts
to saying that a map A→ B of algebras is equivalently a choice of maps F → B
for all finitely generated subalgebras F of A, such that these choices agree on
intersections. This is certainly true.

All of the arguments above go through just as easily for pointed simplicial
sets and augmented CDGAs.

6 Actions of discrete groups

Here, we look at actions of discrete groups from the model categorical perspec-
tive. We’ll be working with systems of augmented CDGAs, that is, functors
OG → CDGA+, and systems of cochain complexes, that is, functorsOG → Ch.
We often consider the objectwise cohomology of such objects; if A is a system
of cochain complexes or augmented CDGAs, then H∗(A) is a system of graded
rational vector spaces. (In the latter case, it is also a graded algebra.) We con-
sider these functor categories to be equipped with the injective model structure;
there is a Quillen adjunction between the two, the left adjoint Λ+ of which is
the free algebra functor, with the augmentation that kills all the generators (but
not the unit) and the right adjoint U of which is the underlying cochain complex
except in degree zero, where it is the submodule consisting of those elements
whose augmentation is zero.

If V is a system of vector spaces, we denote V considered as a cochain
complex of systems concentrated in degree k by K(V, k).

Definition 6.1. A functor I from OG to vector spaces is injective if for all
inclusions of functors F → G and natural transformations f : F → I, there is a
natural transformation g : G→ I which extends f .

Definition 6.2. Suppose f : A→ B is a map of cochain complexes. Following
Griffiths and Morgan [GM13], define the cochain complex Mf by Mn

f = An ⊕
Bn−1 with differential d(a, b) = (da, f(a)−db). Its cohomology is, by definition,
the relative cohomology of f . This cohomology is usually written H∗(A,B)
rather than H∗(f), even though it depends strongly on f , because H∗(f) could
also refer to the induced map H∗(A)→ H∗(B).

Since this definition is functorial, it also makes sense for maps of functors
to cochain complexes. The maps b 7→ (0,−b) and p : (a, b) 7→ a both commute
with coboundaries, and they induce a long exact sequence. Again, all this is
functorial.
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Also, note that if A and B are both injective in each degree, so is Mf , being
a direct sum of those two; the differential is irrelevant. Finally, we write M(A)
for MidA

.

Definition 6.3. A dual Postnikov tower for a 1-connected system of augmented
CDGAs A is a collection of maps Ai → A for i ≥ 0, together with maps of maps

Ai+1

!!
A

Ai

==

OO

,

such that A0 = A1 = Q, the induced map colimAi → A induces an isomorphism
in objectwise cohomology, and for all i, the map Ai → Ai+1 is given by a pushout
of the form of the right hand square in

Λ+(K(V, i+ 2))

��

// Λ+(V ′) //

��

Ai

��
Λ+(Σ−1M(K(V, i+ 2))) // Λ+(Σ−1M(V ′)) // Ai+1.

Here, V ′ is a fibrant replacement for K(V, i+2) in systems of cochain complexes,
and Σ−1X is defined by (Σ−1X)i = Xi+1.

Note that colimAi → A being a quasi-isomorphism is equivalent to Ai → A
being an isomorphism in degrees ≤ i for all i, since these cohomologies cannot be
changed by higher-degree additions. Also, it implies that Hi+1(Ai)→ Hi+1(A)
is an injection, since Hi+1(Ai) → Hi+1(Ai+1) is. Considering the long exact
sequence in relative cohomology, in turn, reveals that Hk(Ai, A) = 0 if k ≤ i+1.

To see that Λ+(V ′)→ Λ+(Σ−1M(V ′)) is always a cofibration, note that one
can first attach the cocycles, and then attach everything else; this shows it to
be a relative Sullivan algebra. So Ai → Ai+1 is the pushout of a cofibration,
hence a cofibration; hence each Ai is cofibrant, as is their colimit.

Lemma 6.4. Suppose that A is such that Ak is an injective functor for all
k < n, and Hk(A) = 0 for k < n. Then Bn(A) is injective, and so the exact
sequence 0→ Bn(A)→ Zn(A)→ Hn(A)→ 0 is split.

Proof. Suppose k < n; we’ll show that Bk(A) injective implies Bk+1(A) injec-
tive. This will suffice, since B0(A) = 0 is clearly injective. Since Hk(A) = 0, we
have Bk(A) ∼= Zk(A), so the exact sequence 0→ Zk(A)→ Ak → Bk+1(A)→ 0
expresses Bk+1(A) as a quotient of an injective by an injective. This implies
it’s injective. (To show this, note that the sequence is split.)
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Note that A being injective, as a functor to graded vector spaces, means
that each Ak is injective as a functor to vector spaces. This is especially useful
in light of the following.

Lemma 6.5. Suppose A→ B is a fibration (in the injective model structure on
systems of CDGAs). Then its kernel, considered as a functor to graded vector
spaces, is injective.

Proof. Write K for the kernel, and suppose we’re given V ↪→ W and a map
V → K of functors to graded vector spaces. By free-forgetful adjunction, this
gives a diagram

Λ+(V, dV )� _

��

// A

��
Λ+(W,dW )

0
// B

of functors to CDGAs. Here, Λ+(V, dV ) is the free augmented CDGA on the
cochain complex which is V i ⊕ V i−1 in degree i, with the obvious differential.
We want to show the left-hand arrow is an acyclic cofibration. Both of these
conditions are checked objectwise, since we’re using the injective model struc-
ture; it’s clear that it’s a weak equivalence, since the cohomology of Q(V, dV )
vanishes no matter what V is. To show that it is a cofibration at some object
G/H of OG, that is, that Λ+(V (G/H), dV (G/H)) ↪→ Λ+(W (G/H), dW (G/H))
is a relative Sullivan algebra, pick a complement of V (G/H) in W (G/H) and
a well-ordered basis {wα} for it; then add, first all the dwα, then all the wα.
It’s clear that this is a relative Sullivan algebra. Note that none of this needs
to respect the action of automorphism groups in OG, or anything like that; the
definition of Sullivan algebra requires only the existence of a basis of a certain
form, not a choice of one. Since the map is an acyclic cofibration, there’s a
map solving the lifting/extension problem; by free-forgetful adjunction again,
one sees that it corresponds to a map W → A which extends V → K → A and
is zero when composed with A→ B; that is, it’s a map W → K which extends
V → K. This is as desired.

Lemma 6.6. Suppose a map of (systems of) cochain complexes is injective in
positive degrees and a quasi-isomorphism. Then it is injective in degree zero.

Proof. Say f : A→ B is such a map, and a0 ∈ A0 is such that f(a0) = 0. Then
df(a0) = f(da0) = 0, and so da0 = 0 since f is injective in degree 1. That
is, a0 ∈ Z0A is a cocycle. But f is an isomorphism on cocycles, so f(a0) = 0
implies a0 = 0.

Proposition 6.7. Every fibrant, cohomologically 1-connected system of algebras
has a dual Postnikov tower.

Proof. We’ll build it inductively, preserving the invariant that each stage Ai has
an underlying cochain complex UAi which is degreewise injective. The constant
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functor Q itself suffices for stages 0 and 1, and is cofibrant. Its underlying
cochain complex UQ is zero, hence degreewise injective.

Suppose it’s already been successfully constructed up to stage n. Then
Lemma 6.4 applies to the relative system of cochain complexes M of An →
A; the relative object M is degreewise injective since in each degree, it’s a
direct sum of a degree of An and one of A, each of which is injective, the
latter by lemma 6.5. Choose a splitting s, and consider the resulting map
V = Hn+2(M) → Zn+2(M) → Zn+2(An). Also, choose a fibrant replacement
V ′ of K(V, n + 2) which is zero in degrees less than n + 2; this is possible by
desuspending n+ 2 times to obtain K(V, 0), fibrantly replacing that, and then
resuspending the result n + 2 times (i.e. applying the functor Σn+2 defined by
(Σn+2X)i = Xi−(n+2)). Our data so far fits into the following diagram.

Λ+(K(V, n+ 2))

s

++//

��

Λ+(V ′)

��

M // An

��

Λ+(Σ−1M(K(V, n+ 2)))

..

// Λ+(Σ−1M(V ′))

A

where the left square is in the image of Λ+ and is comprised of cofibrations.
Now we need to find a map s′ : V ′ →M making

K(V, n+ 2)

��

s
// M

V ′
s′

99

commute. We can do this degreewise using M ’s degreewise injectivity (which
follows from that of An and A); in degree n + 2, this is just the fact that
V → V ′n+2 is an inclusion (by 6.6), while in higher degrees the inclusion is that
of im d into V ′i. (The fact that K(V, n+ 2)→ V ′ is a quasi-isomorphism is also
needed, to make sure the maps im d → M i are well-defined.) This gives us a
diagram

Λ+(K(V, n+ 2)) '
//

��

Λ+(V ′)

��

s′
// M // An

��

��

Λ+(Σ−1M(K(V, n+ 2))) '
//

..

Λ+(Σ−1M(V ′))

++

// An+1

!!
A
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where the right square is a pushout. Note that in each degree, An+1 is a direct
sum of tensor products of components of An and V ′, both of which are injective;
hence An+1 is injective in each degree, by proposition 7.36 in Scull [Scu01].

For k ≤ n, we know by assumption that Hk(in) is an isomorphism, and
it’s clear by degree considerations that Hk(An → An+1) is an isomorphism, so
Hk(An+1 → A) is an isomorphism. Now, for the rest, we have overlapping com-
mutative diagrams with exact rows. (This follows the argument from Griffiths
and Morgan [GM13].)

0

��

// Hn+1(An)

∼=
��

� � // Hn+1(An+1)

��

// Hn+2(An, An+1)

��

// Hn+2(An)

∼=
��

0 // Hn+1(An) �
� // Hn+1(A) // Hn+2(An, A) // Hn+2(An)

By the 5-lemma, to show the middle map is an isomorphism, it suffices to
show the fourth map is an isomorphism. This fourth map is the map which
sends the class of (an+2, an+1) to the class of (an+2, in+1an+1). Let’s look
at the domain more closely: for (an+2, an+1) to be a relative cocycle means
precisely that dan+1 = an+2. Considering the pushout square above, we can
see that An+1

n+1 = An+1
n ⊕ V ′n+2, since there’s nothing in degrees 1 to n + 1 of

V ′. So, writing an+1 = a′n+1 + v, we have an+2 = da′n+1 + dv. If we add the
coboundary d(a′n+1, 0) to this cocycle, the result is of the form (dv, v). One
can check that no coboundary is of this form. However, not all v are suitable;
in order for the coboundary of v, when considered as an element of An+1

n+1, to
land in An+2

n , we must have that v is a cocycle, when considered as an element
of V ′n+2. These cocycles are precisely V , however, so the cohomology under
consideration is isomorphic to V itself. Starting from V and following, first this
isomorphism, then the vertical map, we take v to the class of (dv, v) to the class
of (dv, in+1v) = sv. But the class of sv is v itself, by definition of s! Thus this
map is an isomorphism and hence so is the induced map on Hn+1.

Finally, we want the map on Hn+2 to be an injection.

Hn+2(An, An+1)

∼=
��

// Hn+2(An)

∼=
��

// Hn+2(An+1)

��

// Hn+3(An, An+1)

��
Hn+2(An, A) // Hn+2(An) // Hn+2(A) // Hn+3(An, A)

By the 4-lemma, it suffices for the fourth map in the above diagram to be
an injection. Again, let’s look closely at its domain; it’s comprised of classes
of pairs (an+3, an+2) with an+3 ∈ An+3

n and an+2 ∈ An+2
n+1, with the relation

an+3 = dan+2. Now, An+2
n+1 is An+2

n ⊕ V ′n+3, since A1
n = 0. As before, we can

add a coboundary of the form d(x, 0) to eliminate the first component, so we
essentially have v ∈ V ′n+3 with dv = 0 in V ′. Now, since Hn+3(V ′) = 0, we get
that v = dv′, and this implies that in fact our arbitrary cocycle is a coboundary.
So the domain of the fourth map is just zero, and it is an injection.
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Note that the arguments with elements above are valid, even in the functor
category; one can use generalized elements, or perhaps appeal to the Freyd-
Mitchell embedding theorem.

This construction is essentially the same as that in Scull [Scu01]; we’ve
used the injective structure on the model category to provide us with injective
resolutions ‘for free’. Therefore, in the finite case, the properties that Scull
proves hold of the colimit; for example, if Ai and Bi are towers for systems of
algebras A and B, any weak equivalence colimAi → colimBi is homotopic to an
isomorphism. (Note that homotopy between maps, as considered in Scull, is an
instance of the general notion of homotopy in a model category; for which, see
e.g. [Hov91], 1.2.4.) This implies that this colimit, called the minimal model of
A, is an algebraic structure whose isomorphism classes correspond to homotopy
classes of spaces; such structures are, in a sense, the ultimate goal of homotopy
theory. It is interesting to consider whether the use of model categories could
simplify or clarify the proofs of these important properties of minimal models.

7 General group actions

The material of the previous section had very little dependence on the group G;
indeed, we could repeat essentially the same discussion for Hom(A,CDGA)inj

for any small category A. Unfortunately, for a non-discrete topological group,
one must consider categories of topologically enriched functors rather than func-
tors.

To illustrate this, consider the ‘naive’ equivariant homotopy theory, by which
we mean the homotopy theory in which an equivariant map is considered to be
an equivalence if it is an ordinary weak equivalence, with no condition that it
induce weak equivalences on fixed-point spaces. In the discrete case, this means
we are talking about the model category Hom(BG,Top)proj, where BG is the
category with a single object ∗ and morphisms G; it’s easy to verify that a
functor in this category is precisely a G-space, and the notion of equivalence
is as previously stated. However, for a general group G, functors BG → Top
correspond to a space X and a not-necessarily-continuous monoid homomor-
phism G → Top(X,X). Otherwise put, the action map G × X → X is not
necessarily continuous in the first variable. In order to correct this, we can
recognize that Top and BG are both topologically enriched categories, that is,
categories where each hom-set is a topological space and composition is a contin-
uous function between spaces. Considering topologically enriched functors then
recovers the correct notion of a G-space. However, the relationships that we
know between the categories Top, sSet, and CDGAop only hold on the level
of ordinary categories, not enriched ones; therefore, in order to exploit them,
we want to find a description of the category of enriched functors BG → Top
that only uses Top as an ordinary category. For the naive homotopy theory,
this is in fact possible: the category of enriched functors, which we’ll denote
HomTop(BG,Top)proj since the enrichment is over Top, is Quillen equivalent
to the overcategory Top/BG (which becomes a model category by declaring a
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morphism to be a weak equivalence, fibration, or cofibration if its underlying
morphism in Top is). This non-bolded BG is the base space of the univer-
sal bundle EG → BG. The right Quillen functor, from HomTop(BG,Top) to
Top/BG, sends X to X ⊗G EG, the quotient of X × EG by the diagonal ac-
tion g(x, e) = (gx, ge), equipped with the map that collapses X to a point,
X⊗GEG→ ∗⊗GEG = EG/G = BG. The left Quillen functor, in the other di-
rection, sends X → BG to the pullback X×BGEG, with the action of G on EG.
Verifying that these are an adjunction of ordinary categories is a straightforward
exercise, using the fact that EG→ BG is a principal bundle.

Lemma 7.1. The functor −⊗G EG preserves fibrations.

Proof. Suppose we have an equivariant Serre fibration f : X → Y ; we want
X⊗GEG→ Y ⊗GEG to be a Serre fibration. By definition of a Serre fibration,
this means that every lifting problem of the form

Dn
g
//

(id,0)

��

X ⊗G EG

f⊗GEG

��
Dn × I

h
// Y ⊗G EG

should be solvable. (Here Dn is the n-dimensional disk and I is the closed unit
interval.) We can translate this into a diagram in Top/BG by equipping Dn

with the map pXg : Dn → X⊗GEG→ BG and equipping Dn×I with the map
pY h : Dn×I → Y ⊗GEG→ BG. Then, by the usual adjunction, it corresponds
to an equivariant problem

Dn ×BG EG //

(id,0,id)

��

X

f

��
(Dn × I)×BG EG // Y

However, of course, pXg and pY h are null-homotopic, since Dn and Dn × I
are contractible. Since homotopic maps define isomorphic bundles when pulled
back, there are equivariant homeomorphisms Dn×BG EG ∼= Dn×G and (Dn×
I)×BG EG ∼= Dn× I ×G. These can indeed be chosen so that the induced map
is the inclusion at 0. Since equivariant maps A×G→ X correspond with non-
equivariant maps A→ X, this means that it suffices to solve a non-equivariant
lifting problem

Dn //

(id,0)

��

X

f

��
Dn × I // Y

which is possible since f is a Serre fibration.
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It is shown in lemma 4.1 of [KW17] that both of these functors preserve weak
equivalences, hence that they form a Quillen adjunction (we already know the
right member preserves fibrations and weak equivalences, which means that it
in particular preserves fibrations and acyclic fibrations, which is sufficient). The
cited lemma also shows that this induces an equivalence on homotopy categories;
that is, it is a Quillen equivalence. (Note that X×EG is a cofibrant replacement
for the G-space X.)

This description, as the homotopy theory of Top/BG, allows us to apply
our prior sequence of Quillen adjunctions, after proving some lemmas about
overcategories. By [Hir05], if C is a model category, there is a model structure
on C/X for any object X in which a map is a fibration, cofibration, or weak
equivalence if its underlying map in C is so.

Lemma 7.2. Suppose C and D are model categories, with Y a fibrant object
in D, and suppose L a R : C � D is a Quillen adjunction. Then there is a
Quillen adjunction C/RY � D/Y , which is a Quillen equivalence if the original
adjunction is.

Proof. The left adjoint sends c → RY to the composition Lc → LRY → Y ,
while the right adjoint simply sends d → Y to Rd → RY . That these functors
are adjoint is a simple check. It’s clear that the right adjoint preserves fibrations
and acyclic fibrations; hence the pair is a Quillen adjunction.

For the part about Quillen equivalences, first suppose c→ RY is cofibrant,
that is, c is cofibrant as an object of C. We want to conclude that the unit of the
derived adjunction is a weak equivalence. Consider the fibrant replacement of
Lc→ LRY → Y in D/Y . It amounts to a choice of object d and maps making
the diagram

Lc

��

// d

��

LRY

""
Y

commute, such that Lc → d is an acyclic cofibration and d → Y is a fibration.
Since Y is fibrant, this implies that d is also fibrant, so d is another choice for
the fibrant replacement of Lc in D. Arguing as in lemma 5.1, Lc → d factors
through FLc, and the map FLc → d realizing this factorization is a weak
equivalence of fibrant objects. The map c→ RLc→ Rd, which is what we want
to conclude is a weak equivalence, therefore factors as c→ RLc→ RFLc→ Rd.
We know c→ RLc→ RFLc is a weak equivalence, by assumption, since it’s the
unit of the ordinary derived adjunction; and we know RFLc → Rd is a weak
equivalence, because R preserves weak equivalences between fibrant objects.

Finally, suppose that d → Y is fibrant, that is, d → Y is a fibration in D.
Since Y is fibrant, this also implies that d is fibrant. We want the counit of the
derived adjunction to be a weak equivalence. Consider the cofibrant replacement
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of Rd→ RY in C/RY . It amounts to a choice of object c and maps making the
diagram

c //

  

Rd

||
RY

commute, such that c is cofibrant in C and c → Rd is an acyclic fibration.
Again, it’s clear that CRd, with the obvious maps, defines a possible choice of
cofibrant replacement; so the derived counit map Lc → LRd → d factors as
Lc → LCRd → LRd → d, the first piece of which is a weak equivalence by
Ken Brown’s lemma (4.2), and the second piece of which is the ordinary derived
counit, which we know to be a weak equivalence.

This proof makes it clear that, in a situation where the derived unit and
counit are only sometimes weak equivalences, a ‘partial equivalence’ result anal-
ogous to 5.1 still holds.

Definition 7.3. A model category is right proper if the pullback of a weak
equivalence along a fibration is a weak equivalence.

Lemma 7.4. Suppose C is a model category and X,Y are two objects of C,
and f : X → Y a map. Then there is a Quillen adjunction C/X � C/Y ,
where C/X → C/Y is composition with f and C/Y → C/X is pullback along f .
Further, if f is a weak equivalence and C is right proper, this pair is a Quillen
equivalence.

Proof. It’s clear that the two functors are adjoint and that composition preserves
cofibrations and acyclic cofibrations, so there is indeed a Quillen adjunction.

For the statement about Quillen equivalence, it will be more convenient for
us to use the following alternate characterization: a Quillen adjunction is a
Quillen equivalence if whenever c is cofibrant and d is fibrant, Lc→ d is a weak
equivalence if and only if c → Rd is a weak equivalence. In this case, a map p
corresponds with a map q in this way precisely when they fit into the diagram

c

p

&&
q
//

��

P

��

// d

��
X '

// Y

where the right square is a pullback. If d→ Y is fibrant, that is, is a fibration,
then by right properness P → d is a weak equivalence, and 2-out-of-3 shows
that p is a weak equivalence if and only if q is.

To apply this to our case, we start with the fibrant BG in Top, and consider a
fibrant replacement MBG ← A(Sing(BG)) in CDGAop.4 We may in particular

4So, the arrow in this sentence goes the opposite direction that the actual map of algebras
does.
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take this to be a minimal model. By the results of Bousfield and Gugenheim, the
adjunct Sing(BG)→ S(MBG) of this map is also a weak equivalence, if we knew
that Sing(BG) is rational, 1-connected, and of finite rational type. These last
two conditions are true for many connected Lie groups, but BG is not usually
rational; however, we can replace it for this purpose with its rationalization,
which is a rational space rationally equivalent to it, and for rational spaces
X, maps to the rationalization correspond with maps to BG itself. Thus, we
ultimately get a duality between 1-connected finite type G-spaces considered
up to ‘naive’ equivariant rational homotopy equivalence and 1-connected finite
type CDGAs equipped with a map from MBG.

For the true, non-‘naive’ homotopy, the situation is more complicated still:
OG not only carries a natural topology on its hom-sets, but on its object set as
well. (Intuitively, in this topology, the object G/aHa−1 should be close to G/H
whenever a is close to the identity.) Multiple objects also means that one needs
to consider ‘actions’ which go from one space to another rather than staying in
the same space, and we do not yet know how to capture as we did for the naive
homotopy. Recording this information in a way that uses only the ordinary
categorical structure on Top is an interesting challenge which, if accomplished,
would yield a category of algebraic objects — likely, functors from some cate-
gory into CDGAs, or an undercategory thereof — together with a functor from
G-spaces into this category, which remembers all rational homotopy-theoretic
information about 1-connected spaces. Once this algebraic category is identified,
we can hope to identify ‘minimal’ objects whose isomorphism types correspond
to homotopy types, as in the non-equivariant case.
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