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Abstract. It is well known that in R2, there exist so-called Kakeya sets, which
are compact measure zero sets containing a unit line segment in every direction.
It is also well known that for d ≥ 3, a compact set with a unit d − 1 disk in
every direction cannot have measure zero. For E ⊂ Rd, d ≥ 3 and A ∈ R, we
first consider bounds on the measure of sets ΓA(E) of directions on Sd−1 for which
there is a hyperplane slice of E with d− 1 dimensional measure larger than A. In
particular, we study certain families of ellipsoids in R3 to compare the size of their
ΓA(E) sets to previously known bounds. Then, in an attempt to develop tools to
analyze ΓA(E), we use a maximal operator related to the Kakeya maximal function
and derive estimates that elucidate some properties of Kakeya-like sets containing
a unit d− 1 disk normal to every direction.
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1. Background

Our problem is motivated by the exposition in [2] on Kakeya sets, which we sum-
marize below. We begin with a regularity property enjoyed by all subsets of Rd of
finite measure, when d ≥ 3. We let µd denote the Lebesgue measure on Rd, dropping
the subscript when there is no ambiguity. In addition, for e ∈ Sd−1, t ∈ R, we let Pe,t
denote the hyperplane with normal e and a signed distance t from the origin. That
is,

Pe,t := {x ∈ Rd | 〈x, e〉 = t}.
Furthermore, for E ⊂ Rd we let

Ee,t = E ∩ Pe,t

Finally, we let σ denote the uniform measure on Sd−1, defined as

σ(F ) = dµd

 ⋃
λ∈[0,1]

λF


where F ⊂ Sd−1. With these definitions in mind, we present the following theorem,
found in [2]:

Theorem 1.1. Suppose E is a set of finite measure in Rd, with d ≥ 3. Then for
almost every e ∈ Sd−1:

(1) Ee,t is measurable for all t ∈ R
(2) µd−1(Ee,t) is continuous in t ∈ R.

This theorem has an important corollary regarding measure zero sets in Rd≥3:

Corollary 1.2. Suppose E is a set of measure zero in Rd with d ≥ 3. Then, for
almost every e ∈ Sd−1, the slice Ee,t has measure zero for all t.

When d = 2, however, this is remarkably not true, due to the existence of a Kakeya
(Besicovitch) set in R2, satisfying the following:

Theorem 1.3. There exists a set K ⊂ R2 such that
(1) K is compact
(2) µ(K) = 0

(3) Contains a unit line segment in every direction.

In general, we can define the notion of a Kakeya set in Rd as follows:
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Definition 1.4. A Kakeya set or Besicovitch set K in Rd is a measure zero
compact set containing a translate of a unit line segment in each direction ; that
is, for every e ∈ Sd−1, there is some v ∈ Rd such that for L = {λe | λ ∈ [0, 1]},
K ∩ (L+ v) = L+ v.
Analogously, a (d, n)–Kakeya set K is a measure zero compact set containing a
translate of every n < d dimensional unit disk.

Notice that Corollary 1.2 implies there exist no (d, d − 1)-Kakeya sets. Whether
other (d, n)-Kakeya sets exist remains an open question. Nonetheless, there certainly
are compact sets containing a unit d−1 disk in every direction; Corollary 1.2 simply
prohibits them from having zero measure. A closed unit ball for instance trivially
fulfills this criteria. In this paper, we will be interested in this class of sets, which
we call Kakeya-like sets.

1.1. The Radon Transform and Theorem 1.1. The Radon transform, denoted
by R, for an appropriate function f , is defined by

Rf(e, t) :=

∫
Pe,t

f dµd−1.

The radon transform is relevant to this discussion because, for measurable sets E,
we have

R(1Ee,t)(e, t) = µd−1(Ee,t).

Notice that if f is continuous and has compact support, the radon transform behaves
nicely: it exists and is continuous for all (e, t) ∈ Sd−1 × R and has compact support
in t. Thus, we can prove all our key results for functions of compact support, and
use standard density arguments to extent them to L1 ∩ L2 functions.

Theorem 1.1 is proven using estimates involving the following "maximal" radon
transform:

R∗f(e) := sup
t
|Rf(e, t)|

In particular, the next theorem provides the principal tool for proving Theorem 1.1:

Theorem 1.5. Suppose f is continuous and has compact support in Rd, d ≥ 3. Then

‖R∗f(e)‖L1(Sd−1) ≤ cd(‖f‖L1(Rd) + ‖f‖L2(Rd))

for some constant c > 0 depending only on d.
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Theorem 1.5 is important to us because it provides us with a bound on measure
of ΓA(E). We describe this in greater detail in section 2.

1.2. The Kakeya Maximal Function. Suppose K ⊂ Rd is a Kakeya set, and
let Kδ be its δ-neighborhood. If we let `(e) ⊂ K be the unit line segment in the
e ∈ Sd−1 direction contained within K, then its δ neighborhood `δ(e) is essentially a
tube in the e direction with width 2δ in all orthogonal directions. As such, Kδ can be
regarded as a union of these tubular objects. Integrating the characteristic function
1Kδ gives us a notion of the size of this neighborhood, and letting δ → 0, we can
hope to draw conclusions about the "fullness" of the Kakeya set itself. The main
tool in making this precise is the Kakeya maximal function, which we now define.

Definition 1.6. Let f ∈ L1
loc(Rd), and define the Kakeya maximal function

f ∗δ (e) : Sd−1 → R as

f ∗δ (e) := sup
T

1

µ(T )

∫
T

|f(x)|dx,

where the supremum is taken over all 1× δ × ...× δ tubes T in the e direction.

The Kakeya maximal function is the subject of this area’s most important conjec-
ture, the Kakeya Maximal Function Conjecture:

Conjecture 1.7 (Kakeya Maximal Function Conjecture). For any ε > 0, there exists
some constant Cε so that

‖f ∗δ ‖Ld(Sd−1) ≤ Cεδ
−ε‖f‖Ld(Rd)

This conjecture has wide-ranging consequences, the most famous of which is the
Kakeya Conjecture :

Conjecture 1.8. Let K ⊂ Rd be a Kakeya set. Then it has full Hausdorff dimension.

Both remain unsolved for d ≥ 3. The case d = 2 is settled by the following
estimate, due to Córdoba:

Theorem 1.9 (Córdoba). In R2, we have

‖f ∗δ ‖L2(S1) .
√

log(δ−1)‖f‖L2(R2).(1)

In addition to settling the Kakeya Maximal Function conjecture in R2, this esti-
mate allows us to derive the following lower bound the measure of Kδ in terms of δ,
by setting f = 1Kδ :
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Corollary 1.10. For a Kakeya set K ⊂ R2 with δ−neighborhood Kδ,

1

log(δ−1)
. µ(Kδ).(2)

Inspired by this result, we wished to derive a bound of this form for a related class
of sets by seeking an estimate like Córdoba’s in (1) with a related maximal function.
In the next section, we describe the problem in greater detail.

2. Problem Statement and Summary of Results

Let Md be the collection of measurable subsets of Rd≥3 with unit measure. For
E ∈Md consider the following set:

ΓA(E) := {e ∈ Sd−1 | sup
t
µ(Ee,t) > A}

and notice

ΓA(E) = {e ∈ Sd−1 | R∗(1E)(e) > A}.

Then define for a subcollection F ⊂Md

γ(F , A) = supσ(ΓA(E))

Theorem 1.5 and Chebychev’s inequality give us the following bound on the measure
of ΓA(E):

σ(ΓA(E)) ≤ cd(µ(E) + µ(E)1/2)

A

Therefore, we have the bound

γ(Md, A) ≤ cd
A

(3)

The principal goal of this project was to analyze how good of a bound this is.

2.1. Experiments with a family of Ellipsoids. To simplify the discussion, we
first analyze the family E of ellipsoids in R3 of unit volume and with equation x2

L2 +
y2

r2
+ z2

r2
= 1, where L > r > 0 and 4/3πLr2 = m. Letting EL denote such an ellipsoid,

we derive the following bound:

σ(ΓA(EL)) .
1

LA
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For any given A, if we seek to restrict L so that σ(ΓA(E)) > 0, we observe that A
cannot be larger than the measure of the slice through the origin along the ellipsoid’s
major axis; this tells us we must have A2 . L, and so we obtain the upper bound

γ(E , A) .
1

A3

We detail these computations in section 3.

Our next approach to understand ΓA(E) lies with estimates of a maximal function
related to the Kakeya maximal function and to the Radon transform.

2.2. Estimates with a Kakeya-like maximal function. Before being introduced
to the Kakeya Maximal function, we encountered a direct proof of Corollary 1.10, as
presented by Larry Guth, that does not reference the Kakeya Maximal function. He
suggested we try to adapt this proof to Kakeya-like sets in Rd in the hopes of finding
a positive lower bound for the measure of such sets. We sketch his proof:

Proof Sketch of Corollary 1.10. For each unit line segment in K, its δ-neighborhood
is essentially a tube with unit length and with width δ. We make a δ-net on S1 by
taking δ−1 of these tubes, call them T1, T2, . . . such that Ti and Tj are at an angle of
|i− j|δ to each other. We see then by Cauchy-Schwartz that

1 =

(∫ ( δ−1∑
i

1Ti

)
1Kδ dµ

)2

≤
∫ ( δ−1∑

i

1Ti

)2

dµ

∫
1

2
Kδ
dµ = µ(Kδ)

δ−1∑
i,j

µ(Ti ∩ Tj),

thus giving
1∑

i,j µ(Ti ∩ Tj)
≤ µ(Kδ).(4)

We now proceed to estimate the denominator in (4). Because the angle between
Ti and Tj is δ, the parallelogram Ti ∩ Tj has height δ and base . δ

|i−j|δ . Thus
µ(Ti ∩ Tj) . δ

|i−j| . Hence,

δ−1∑
i,j

µ(Ti ∩ Tj) .
δ−1∑
i,j

δ

|i− j|
. δ−1

δ−1∑
z=1

δ

z
. log(δ−1).

This proves the claim �
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Letting K now denote a Kakeya-like set, we wished to derive a sharp bound of the
form

Lδ . µ(Kδ)(5)

where Lδ → l > 0, thus allowing us to nontrivially bound the size of µ(K) from
below. Such an estimate would offer a direct, quantified proof of Corollary 1.2,
which we hoped could be used in order to derive a better bound for ΓA(E).

We hoped to do this via a similar calculation to that presented in Guth’s direct
proof of (2). After a few attempts in R3, we decided to approach the problem more
theoretically, via the use of maximal functions. Specifically, we define a maximal
function Mδf(e) which uses thin cylinders with normals in each e ∈ Sd−1 instead of
using tubes as in the definition of f ∗δ . We then sought to derive an L2 estimate of
the form

‖Mδf‖L2(Sd−1) . Aδ‖f‖L2(Rd)(6)

that could give (5) as a corollary. In Section 5, however, we prove that if we have an
estimate as in (6) then, though we still arrive at an estimate like (5) as a corollary,
we can only do so with Lδ → 0 as δ → 0, which means this approach cannot lead
to a nontrivial, and much less a sharp, lower bound on the measure of Kakeya-like
sets. Nevertheless, we prove that (6) holds with Aδ =

√
log(δ−1), and interpret this

result in terms of the fullness of what we call weak Kakeya-like sets, which we define
in section 5.

3. Ellipsoid Computations

Let EL ∈ E be a skinny ellipsoid with equation x2

L2 + y2

r2
+ z2

r2
= 1, where L > r and

µ(EL) = 1. Letting p = (1, 0, 0), which is direction of the principal axis, the largest
possible slice (with measure πrL) occurs at Ee,0 for any e orthogonal to p. That is,
ΓπrL(E) is the 1-sphere S2

p,0 := S2∩Pp,0. Given the symmetry present in E, we know
that for A < πrL, ΓA(E) forms a band with uniform width on S2 around S2

p,0. As
such, letting ρ be the natural metric on S2, there is a constant θ

ΓA(EL) := {x ∈ S2 | ρ(x, S2
p,0) ≤ θ}.

Now fix z = (0, 0, 1). Observe that the intersection of ΓA(E) with the plane span(p, z)

will form an arc of length 2θ, with center z. Hence θ is the angle between z and
the rightmost point on the arc. To find σ(ΓA(E)), we must carry out the following
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computation: ∫ θ

−θ
2π cos(x) dx ∼ sin θ

We make use of the following formula for the area of the intersection between a
general ellipsoid and a plane through the origin, found in [5]:

Fact 1. Suppose e = (ξ1, ξ2, ξ3) ∈ S2, and let F ⊂ R3 be an ellipsoid with equation
x2

a2
+ y2

b2
+ z2

c2
= 1. Then the area of the slice Fe,0 is given by

µ(Fe,0) =
πabc√

a2ξ2
1 + b2ξ2

2 + c2ξ2
2

Suppose e = (ξ1, 0, ξ2) is the rightmost point mentioned above. Using this formula,
we get that

A =
πr2L√

L2ξ2
1 + r2ξ2

2

But ξ1 = sin(θ) and ξ2 = cos(θ), and so, recalling that r2L ∼ m, the above becomes

L2 sin2(θ) +
1

L
(1− sin2(θ)) ∼ 1

A2

⇒ sin2(θ) ∼
1
A2 − 1

L

L2 − 1
L

.
1

A2L2

and we obtain

ΓA(EL) .
1

AL

As we noted in the introduction, in order for ΓA(E) to have positive measure, we
must have A2 . L, and thus we arrive at the bound

γ(E , A) .
1

A3
.

The Chebychev bound on the other hand gives

γ(E , A) .
1

A
,

and so clearly the Chebychev bound is a poor one for γ3(E , ·). Unfortunately, this
calculation offers little insight as to how to produce better bounds for γ3 or γd in
general, and so we turn now to our next topic.
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4. L2 Estimates for a Kakeya-like maximal function

The maximal operator we consider is related to the radon transform and to the
Kakeya maximal operator. First, for each e ∈ Sd−1 and v ∈ Rd, we define the cylinder

Cδ
e (v) := {x ∈ Rd | −δ ≤ 〈x− v, e〉 ≤ δ and proje⊥ x ≤ 1}

These cylinders take the place of tubes in our maximal function, which we define as
follows:

Mδf(e) := sup
v

1

µ(Cδ
e (v))

∫
Cδe (v)

|f(x)| dx

Our main result is the following:

Theorem 4.1. For f ∈ L2(Rd), we have the estimate

‖Mδf‖L2(Sd−1) .
√

log(δ−1)‖f‖2.(7)

Observe that in our subsequent work, we may assume f is nonnegative, for ‖Mδ(|f |)‖p =

‖Mδf‖p and ‖(|f |)‖p = ‖f‖p for any 1 ≤ p ≤ ∞. We also note the following basic
fact:

Proposition 4.2. To prove (7) holds, it suffices to show it holds for Mδf restricted
to the set of directions that lie within 1/10 of the vertical.

We omit the proof; it is identical to the proof of Fact 2.1.4 in [4], except we substi-
tute Mδf in for f ∗δ . For the rest of this section, we work with the restriction of Mδf

to the directions within 1/10 of the vertical without mention. This allows us to avoid
certain technicalities in the geometric estimates we use arising from the interaction
between antipodal points, and allows us to use the estimate sin(θ) ∼ θ comfortably.

Moving on, we present our two central lemmas, following the treatment of f ∗δ found
in [3].

Lemma 4.3. For any pair of directions e1, e2 within 1/10 of the vertical, and any
pair v, w ∈ Rd, we have

µ(Cδ
e1

(v) ∩ Cδ
e2

(w)) .
δ2

|e1 − e2|
.(8)

Proof. The case where d = 2 is a well known result by Córdoba, and can be found
in [4]. We proceed to prove the general case by induction. Suppose n is a number
such that the Lemma holds. First, observe that

µ(Cδ
e1

(v) ∩ Cδ
e2

(w)) ≤ µ(Cδ
e1

(v) ∩ Cδ
e2

(v)) = µ(Cδ
e1

(0) ∩ Cδ
e2

(0)),
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and so we assume without loss of generality that our cylinders are centered at the
origin, and we denote them simply by C1 and C2. Now consider the following subsets
of the boundaries of our Ci:

Gi := {x ∈ Ci | proje⊥i x = 1}.

The intersection G1∩G2 consists of two antipodal regions. Observe that Ci can be
circumscribed by a box Si that is a rotated copy of [−δ, δ]×[0, 1]d−1. We circumscribe
the Ci so that the centers of each antipodal region in G1∩G2 lie on opposite faces of
Si (faces with same dimensions as [−δ, δ]× [0, 1]d−2). Choose one of these antipodal
regions, let F1 be the face of S1 that contains the center of this region, and let F2

be the corresponding face for S2. Then F1 and F2 intersect at an angle |e1 − e2| to
each other. Since having (8) for δ× 1× · · ·× 1−cylinders implies the same result for
δ × 1× · · · × 1−boxes and vice versa, the induction hypothesis gives us

µ(F1 ∩ F2) .
δ2

|e1 − e2|
.

However, S1 ∩ S2 is the parallelepiped with base F1 ∩F2 and unit height. Therefore,
given that µ(C1 ∩ C2) ≤ µ(S1 ∩ S2), this gives us (8). �

Central to our analysis is the notion of a maximal δ−separated set, which we now
define.

Definition 4.4. Let (X, ρ) be a metric space. A set Ω ⊂ X is a δ−separated
set if for each x, y ∈ X, ρ(x, y) ≥ δ. It is a maximal δ−separated set if it is
δ−separated and is not properly contained in any other δ-separated sets.

Fact 2. Let (X, ρ) be a metric space and let Ω ⊂ X be a δ-separated set. Define
Dδ(x) to be the δ-neighborhood around x ∈ X, and set

D :=
⋃
ω∈Ω

Dδ(ω).

Then D = X if and only if Ω is maximally δ-separated.

Proof. Suppose D = X. Then for every point x ∈ X, there is some w ∈ Ω so that
ρ(x, ω) < δ, and so Ω ∪ {x} is no longer δ-separated, proving maximality of Ω. On
the other hand, if x ∈ X \ D 6= ∅, then Ω ∪ {x} is δ-separated, proving Ω cannot be
maximal. �

Fact 3. If Ω is a maximal δ−separated subset of Sd−1, then Ω has on the order of
δ−(d−1) elements.
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Proof. This follows from the fact that the sphere has measure ∼ 1 and a disk Dδ(x)

has measure ∼ δd−1. �

Lemma 4.5. Let {ek} ⊂ Sd−1 be a maximal δ-separated set and {vk} be any collection
of points in Rd. In addition, let 1 < p <∞ and write 1/q = 1− 1/p. If we have

‖
∑
k

αk1Cδek (vk)‖q . A

for some sequence {αk} with the property δd−1
∑

k |αk|q = 1, then for any f ∈ Lp(Rd)

we have the bound

‖ Mδf‖Lp(Sd−1) . δ
d−2
p A‖f‖p

Proof. We discretize the domain of Mδf via the following argument. Let Dδ(ek) :=

{x ∈ Sd−1 | |ek − x| < δ} denote the δ-neighborhood in Sd−1 around ek. Then notice
that because {ek} is a maximal δ−separated set, Sd−1 =

⋃
kDδ(ek). Furthermore,

we for |e− ek| < δ can cover Cδ
e (v) with some bounded number of cylinders Cek(vi),

implying that there is a constant λ for which Mδf(e) ≤ λMδf(ek) when e ∈ Dδ(ek).
Ergo, since

∫
Dδ(ek)

dµ ∼ δd−1,

‖Mδf‖p ≤

(∑
k

∫
Dδ(ek)

Mδf(e)p dµ

)1/p

.

(
δd−1

∑
k

Mδf(ek)
p

)1/p

.(9)

We now exploit the duality between `p and `q, where 1/p+ 1/q = 1. Let F : `q → R
be the functional on `q so that for α = {αk},

F (α) :=
∑
k

βkαk

where β = {βk} is defined by βk := δ
d−1
p Mδf(ek) when k is smaller than the number

of points in the maximally separated δ set, and zero otherwise. Let α be the sequence
such that

δ
d−1
q αk :=

(
βk
‖β‖`p

)q−1

.

Then, since 1/q − 1 = −1/p and δd−1‖α‖`q = 1, we obtain

δd−1
∑
k

αkMδf(ek) ∼ F (δ
d−1
q α) = ‖β‖`p =

(
δd−1

∑
k

Mδf(ek)
p

)1/p

.
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In turn, using the definition of Mδf and observing |Cδ
e (v)| ∼ δ for any e ∈ Sd−1, v ∈

Rd,

δd−1
∑
k

αkMδf(ek) . δd−2
∑
k

αk

∫
Cδek

(vk)

f(x)

= δd−2

∫
Rd

(∑
k

αk1Cδek (vk)(x)

)
f(x) dµ

As such, by Holder’s inequality, (9) becomes

‖Mδf‖p . δd−2

∫
Rd

(∑
k

αk1Cδek (vk)(x)

)
f(x) dµ ≤ δ

d−2
p A‖f‖p(10)

�

We can now proceed to the proof of Theorem 4.1. We mimic the proof of Theo-
rem 1.9 found in [4].

Proof of Theorem 4.1. By the previous lemma, it suffices to show that for any se-
quence α ∈ `2 with δd−1

∑
k α

2
k = 1 and any maximal δ-separated {ek} ⊂ Sd−1,

‖
∑
k

αk1Cδek (vk)‖2 . δ−(d−2)
√

log(δ−1).

Using the geometric lemma, the left hand side reduces to

‖
∑
k

αk1Cδek (vk)‖2 =
∑
k,j

αkαjµ(Cδ
ek

(vk) ∩ Cδ
ej

(vj)) .
∑
k,j

αkαj
δ2

|ek − ej|
.

Writing αkαj δ2

|ek−ej |
= δ1/2αkδ

1/2αj
δ

|ek−ej |
and using Cauchy-Schwartz we get

‖
∑
k

αk1Cδek (vk)‖2
2 ≤

∑
k

δα2
k

∑
j

δ

|ek − ej|
. log(δ−1)δ

∑
k

α2
k = δ−(d−2) log(δ−1).

This proves the theorem. �

5. Weak Kakeya-like Sets

As we shall see, any estimate as in Theorem 4.1 that bounds ‖Mδf‖p fails to yield
a good bound on µ(Kδ) for Kakeya-like sets K. However, the bound is better for a
“weakened” class of sets, which we briefly explore in this section.
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Definition 5.1. In Rd, a weak Kakeya-like set, or a weak set for brevity, is a
measure zero compact set containing a unit d−1 disk with normals in a dense subset
Γ of Sd−1. We call Γ the set of characteristic directions for W .

We would like to prove things about Mδ1Wδ
for weak sets W in parallel to proofs

about (1Kδ)
∗
δ . As before, we will make extensive use of the notion of a δ-separted

set. This time, however, we will use a maximal δ-separated set on the subspace of
characteristic directions Γ of a weak set, and not on the whole sphere. A few facts
about such sets:

Fact 4. Let X be a metric space, and let Γ ⊂ X be a dense subset. If Ω ⊂ Γ is
maximally δ-separated in the subspace Γ (and not necessarily in all of X), then the
closed disks {Dδ(ω) | ω ∈ Ω} cover X. In particular, if X = Sd−1, then |Ω| ∼ δ−(d−1)

Proof. The first claim follows from the fact that {Dδ(ω) ∩ Γ | x ∈ Ω} covers Γ and
Γ = X. The second is true by the same reasoning as Fact 3. �

Proposition 5.2. Let W ⊂ Rd a weak set, and let Wδ be its δ-neighborhood. Then,

(11)
1

log(δ−1)
. µ(Wδ)

Of course, the bound above also holds for Kakeya-like sets; it is a terrible bound
however for d ≥ 3, since for such a setK, µ(Kδ)→ µ(K) > 0 as δ → 0 (see Remark ).
Weak Kakeya-like sets on the other hand have measure zero, and so the bound is
much tighter. Hence, weak Kakeya-like sets behave much more like Kakeya sets in
R2 in a measure-theoretic sense. Furthermore, the existence of weak Kakeya-like
sets means that any attempt at finding a nontrivial lower bound for the measure of
a Kakeya-like set by using this maximal function cannot work, as encapsulated in
the next proposition, the proof of which implies Proposition 5.2.

Theorem 5.3. Let 1 ≤ p, q <∞, and suppose we have an estimate

‖Mδf‖q . Aδ‖f‖p.

Then
A−1
δ . µ(Wδ)

1/p and A−1
δ → 0 as δ → 0

Proof. LetW be a weak set, and letWδ be its δ neighborhood. Then for any cylinder
Cδ
e normal to e,

Mδ1Wδ
(e) &

1

µ(Cδ
e )

∫
Cδe

1Wδ
dµ ∼ δ−1µ(Wδ ∩ Cδ

e ).(12)
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Let Γ be the set of characteristic directions for W , and let {ek} ⊂ Γ be a maximal
δ−separated set on Γ. Choose e ∈ D δ

2
(ek) and any set of points {vk} ⊂ Rd. Clearly

1
2
Cδ
e (vk) ⊂ Cδ

ek

(
1
2
vk
)
, meaning

µ(Wδ ∩ Cδ
e (vk)) ≥ µ(Cδ

ek
(vk) ∩ Cδ

e (vk)) ≥ µ(1/2Cδ
e (vk)) ∼ δ.

Hence, for e ∈ D δ
2
(ek), (12) becomes

Mδ1Wδ
(e) & 1.

However, the sets D δ
2
(ek) are disjoint from one another and

D :=
⋃
k

D δ
2
(ek) ⊂ Sd−1.(13)

In addition, because {ek} has ∼ δ−(d−1) terms,∑
k

µ(Dδ/2(ek)) ∼ 1.

Therefore,

1 .
∑
k

∫
D δ

2
(ek)

(Mδ1Wδ
)q =

∫
D

(Mδ1Wδ
)q ≤ ‖Mδ1Wδ

‖qq . Aqδµ(Wδ)
q/p.(14)

Because µ(Wδ)→ 0, we must have A−1
δ → 0 �

Proof of Proposition 5.2. Setting p = q = 2 and Aδ =
√

log(δ−1), the claim follows
directly from (14). �

Remark. Letting E be an arbitrary set and Eδ its δ-neighborhood, it is of course
not in general true that µ(Eδ) → µ(E) as δ → 0, because it is in general not true
that the Eδ converges to E in the sense that⋂

δ∈(0,∞)

Eδ = E.

For instance, if E = Q, we have that Eδ = R for all δ > 0. However, if E is closed,
then the above equality does hold, and we do in fact have that µ(Eδ) → µ(E) as
δ → 0. Hence, since Kakeya-like sets and weak sets are compact, we are justified in
claiming, as we do above, that µ(Kδ)→ µ(K) and µ(Wδ)→ 0 for a Kakeya-like set
K and a weak set W .
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6. Future Directions

We conclude with a list of questions we would like to pursue in the future.

Question 1. We did not shed much light on γ(Md, ·). We would like to explore this
problem further.

Question 2. For E ∈Md, what can we say about the Hausdorff dimension of

Γ∞(E) =
⋂
n≥1

Γn(E)?

Question 3. For Kakeya-like set K, can we find a meaningful bound

Aδ ≤ µ(Kδ)?

Or can we find bounds on the relative size of K to Kδ, for instance bounds such as

Aδ . µ(Kδ \K)

or

Aδ .
µ(Kδ)

µ(K)
?

Question 4. What are the possible Hausdorff dimensions of weak sets?

Question 5. Let W be the class of weak sets in Rd, and let ΓW be the characteristic
set of directions for the weak set W . What is supW∈W dim(ΓW )? Does there exist a
weak set W with dim(ΓW ) = d− 1?

Question 6. Suppose Γ ⊂ Sd is a dense subset with the property that Γ intersects
every great circle at least once. For d ≥ 2, does such a Γ exist so that it is the
characteristic set of directions for some weak set W?

This is interesting because if there is some weak set W whose set of directions Γ

intersects every great circle at least once, then W contains a line segment in every
direction; such a W is also a Kakeya set. To see this, suppose such a W exists,
choose any e on the sphere, and consider the set e⊥ of directions on the sphere
orthogonal to e. This set is a great circle and intersects Γ at some point, say p.
Hence, there is a unit disk in W orthogonal to p, and in this unit disk there is a unit
line segment parallel to e. ThusW is a Kakeya set. As such, bounding the Hausdorff
dimension of Weak sets can give us some information on the Hausdorff dimension of
Kakeya sets—if for some extraordinary and unexpected reason weak sets are never
full-dimensional, this would disprove the Kakeya conjecture, and if weak sets whose
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set of directions intersect every great circle at least once are full dimensional, then
we would have an example of Kakeya sets with full dimension.

Question 7. Can we improve the bound (11) on µ(Wδ), or is it optimal?

Question 8. In the operator Mδ, we integrate over cylinders that are rotated copies
of Bd−1 × [−δ, δ]. If we define maximal operators Mδ,n that use rotated copies of
Bn × [−δ, δ] instead, we could use this operator to investigate (d, n)−Kakeya sets
and (d, n)−Kakeya-like sets. What estimates can we derive for such operators Mδ,n?
Do they show any interesting behavior as we vary n? Do they shed any light on the
(d, n)−Kakeya conjecture?
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