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Abstract. In this paper we study the spaces X de�ned as O ∩ B−B+ where O is a

regular semi-simple orbit of a semi-simple group G over C and B−, B+ are opposite

Borel subgroups in G in the special case where G = SLn. We describe a conjectural

correspondence between a�ne Springer �bers over SLn and the above spaces and verify

it when G = SL2. Finally we give a conjecture about the shape of X when G = SL3

based on the above correspondence.
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1. Introduction

The study of a�ne Springer �bers was initiated by Kazhdan and Lusztig and aims to

generalize the theory of Springer �bers. Some of the reasons that motivate the study of

a�ne Springer �bers are the connections between these �bers and the representation the-

ory of p-adic groups as well as their applications to geometry. Understanding the classical

de�nition and properties of a�ne Springer �bers requires a strong algebraic background.

However, one can also describe them combinatorially as spaces that classify chains of

lattices inside an C((t))-vector space which are invariant under some C((t))-linear trans-

formation.

In this paper we prove a conjectured homotopy between the quotient of a speci�c type of

a�ne Springer �ber by a group that naturally acts on it, and the spaceX already de�ned in

the abstract for the special case G = SL2. More speci�cally, let Xγ be the a�ne Springer
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�ber corresponding to the regular semisimple γ = diag(m1, ...,mn)t ∈ sln(C((t))). There

exists a natural free action of the group Λγ = Zn−1 on Xγ. It is conjectured that the

quotient Xγ/Λγ is homotopic to to X for G = SLn. We prove this conjecture for n = 2.

The aim of trying to construct such a homotopy is twofold. On the one hand, it re-

lates a space which is hard to understand and to use to test conjectured properties, to a

space that, at least when the dimension is low, can be explicitly understood in terms of

equations, and where some conjectured properties can be easily tested either by hand or

with the help of a computer. On the other hand, the space X as de�ned in the abstract,

is strongly connected to classical Lie theory. Thus if the conjectured homotopy is true

in genera,l then it implies that there is a subtle but important connection between the

theory of a�ne Springer �bers and classical Lie theory.

The structure of the paper is organized in the following way:

Section 2 describes most of the prerequisites someone needs in order to be able to un-

derstand section 3. In the �srt subsection we give the nessesary de�nitions in order to be

able to give a rigorous and at the same time easy to understand description of the space

X when G = SLn. We also present a lemma that will be useful in section 3, but which we

considered appropriate to include here since it is true for any n and thus might prove use-

ful to someone who wants to study the case where n > 2. In the second subsection we give

a quick introduction to a�ne Springer �bers. We have tried to make this subsection as el-

ementary as possible, giving mostly combinatorial descriptions of the objects in question.

For the shake of completion, we also include a number of statements that we not prove.

In the last subsection we state a number of theorems from algebraic topology and classical

homotopy theory that play an essential role in the study of the topology of X in section 3.

Section 3 contains the original results of the present paper. In this section we use the

tools described in section 2 to describe the spaces X and Xγ/Λγ and show that they are

both homotopic to S2 ∨ S2 ∨ S1. The analysis of X is based on topological methods.

We �rst obtain a concrete description of X as a subspace of CP 1×CP 1 and use classical

results from algebraic topology found in [Hat01] to �nd its homology. Then, using classical

homotopy theory results we show that X can be one of 4 possible spaces up to homotopy.

Using the homology we have already calculated, we obtain the desired result. Next we

treat the space Xγ/Λγ. We �rst describe the lattices Λ ∈ F 2 which are stable under

γ =
( t 0

0 −t

)
. Using this description we derive the explicit form of Xγ from which it is

straightforward to �nd Xγ/Λγ. We conclude the section with a conjecture on the shape

of X when G = SL3.
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2. Preliminary definitions and results

2.1. The space X.

The aim of this subsection is to give a concrete description of the space X when the

semisimple group considered is SLn(C). Any space appearing below carries the induced

topology as a subspace of SLn.

De�nition 2.1. A semisimple regular orbit O ⊂ SLn is de�ned as the congugacy class

of a diagonal matrix in SLn, all of whose diagonal entries are di�erent from each other.

Although we could give a general de�nition of Borel subgroups of a semisimple group

G, since our study restricts only to the special case where G is the special linear group,

we will de�ne these only for this group.

De�nition 2.2. For SLn we may assume that B+ is the subgroup of upper triangular

matrices and B− the subgroup of lower triangular matrices.

De�nition 2.3. The set of matrices in SLn that can be expressed as a product of a lower

triangular matrix L and an upper triangular matrix U are called L − U decomposable

matrices and will be denoted by G0.

De�nition 2.4. The space X for G = SLn is de�ned as the intersection of a semisimple

orbit O ⊂ SLn and the set G0, topologized as a subspace of SLn.

Lemma 2.5. A matrix A ∈ GLn is L−U decomposable if and only if all of its principal

minors are nonsingular i.e. det((ai,j)1≤i,j≤k) 6= 0 for all 1 ≤ k ≤ n.

Proof. First we show that if A = LU then det((ai,j)1≤i,j≤k) 6= 0 for all 1 ≤ k ≤ n. It

is easy to see that (ai,j)1≤i,j≤k = (li,j)1≤i,j≤k × (ui,j)1≤i,j≤k and thus det((ai,j)1≤i,j≤k) =

det((li,j)1≤i,j≤k)det((ui,j)1≤i,j≤k) =
k∏
i=1

li,iui,i 6= 0 since L and U belong to SLn and thus

li,i, ui,i 6= 0 for all 1 ≤ i ≤ n. So in this case all principal minors are nonsingular.

Now assume that all principal minors are nonsingular. We will prove that A is L− U
decomposable by induction on the dimension of A. The case n = 1 is trivial. Write

A=
( Â ~a
~bt an,n

)
. By induction, we can write Â = L̂Û with L̂, Û ∈ GLn−1. We now

show that we can express A =
( L̂ 0
~lt ln,n

)( Û ~u

0 un,n

)
with ln,nun,n 6= 0. Note that

this implies the result by the induciton hypothesis. The above equality implies that
~lt = (an,1, ..., an,n−1)Û

−1 and ~u = L̂−1(a1,n, ..., an−1,n)t. Now the condition ln,nun,n 6= 0

is equivalent to requiring ~lt · ~u 6= an,n. Assume that ~lt · ~u were equal to an,n or equiv-

alently (an,1, ..., an,n−1)Û
−1L̂−1(a1,n, ..., an−1,n)t = (an,1, ..., an,n−1)Â

−1(a1,n, ..., an−1,n)t =

an,n. But this implies that (an,1, ..., an,n−1)Â
−1[Â, (a1,n, ..., an−1,n)t] = (an,1, ..., an,n). This

implies that the last row of A is a linear combination of the �rst n− 1 rows so det(A) = 0

which is absurd. Therefore we are done. �

Remark 2.6. In case we restrict to SLn, it can be seen from the above solution that we

can choose ln,n and un,n so that det(L) = det(U) = 1.
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2.2. Connection with a�ne Springer �bers.

We have tried to make the presentation of the material on this subsection as elementary

as possible, emphasizing the combinatorial nature of the subject rather than the algebro-

geometric. We begin by giving a number of de�nitions.

De�nition 2.7. Let F = C((t)) be the �eld of Laurent series and O = C[[t]] the formal

power series over the complex numbers.

De�nition 2.8. Λs = On will be called the standard lattice viewed as a submodule of

F n. A lattice Λ ⊂ F n is an On-submodule such that:

(1) There exists N > 0 such that tNΛs ⊂ Λ ⊂ t−NΛs.

(2) t−NΛs/Λ is (locally) free of �nite rank over C.
More concretely, a full rank lattice Λ is the O span of n vectors {v1, ..., vn} in F n.

Unfortunately, there is no well de�ned notion of absolute dimension of a lattice in this

case. However there is a notion of relative dimension between two lattices:

De�nition 2.9. Let Λ1,Λ2 ⊂ F n. The relative dimension between the two is given by:

[Λ1 : Λ2] := dimC(Λ1/Λ1 ∩ Λ2)− dimC(Λ1/Λ1 ∩ Λ2)

Above, considering the dimension of the quotients (Λi/Λ1 ∩Λ2) is well de�ned since by

de�nition this is a �nitely generated vector space over C.

De�nition 2.10. We de�ne the a�ne �ag variety Fln as the space parametrizing chains

of lattices ...Λ−1 ⊂ Λ0 ⊂ Λ1... in F
n such that:

(1) [Λi : On] = i for all i ∈ Z
(2) Λi = tΛi+n for all i ∈ Z

Denote by sln(F ) to be the special linear Lie algebra with matrix entries in F instead

of C. Explicitly, sln(F ) is the set of matrices M with entries in F such that tr(M) = 0.

Also, note that since any lattice is of the form Ov1⊕ ...⊕Ovn for some n-tuple of vectors

in F n, there is a well de�ned action of an element γ ∈ sln(F ) on the lattice, given by the

action of γ on the vi. Finally we are able to describe the a�ne Springer �bers over the

a�ne �ag variety.

De�nition 2.11. For γ ∈ sln(F ) we de�ne the a�ne Springer �ber Xγ to be the space

parametrizing chains of lattices inside Fln with the additional restriction that γΛi ⊂ Λi

for any i ∈ Z.

From here on we will restrict only to regular semisimple γ ∈ sln(F ) or more explicitly

to diagonal matrices with distinct entries in sln(F ) with trace zero. Also denote by Gm

to be the the multiplicative group C∗, and by Gγ the centralizer of γ inside SLn(F ).

De�nition 2.12. Under the above assumptions, let Λγ := HomF (Gm, Gγ).

Theorem 2.13 (Kazhdan-Lusztig). The action of Λγ on Xγ is free and the quotient is

proper over C.
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From here on, we further specialize the form of γ. We only study the �bers with

γ = diag(m1, ...,mn)t ∈ sln(F ). Now we present the main conjecture whose proof in the

case n = 2 occupies most of section 3 below.

Conjecture 2.14. There exists a homeomorphism Xγ/Λγ ' X, where X is the space

de�ned in the previous subsection.

Finally we give a lemma characterising the lattice Λγ.

Lemma 2.15. Assuming the above restrictions for γ, Λγ
∼= Zn−1, with generators given

by the n− 1 matrices of the form diag(1, ..., 1, t, t−1, 1, ..., 1) and their inverses.

Proof. The proof of this claim follows easily from the more general case where G = GLn,

treated in [Yu16] (Ex. 2.3.4). �

2.3. Topology background.

This subsection is only included for completeness. However, we encourage the interested

reader to look at the proofs of the following theorems for two reasons. The �rst one is

that in section 3 we sometimes use some idea appearing in the proof of these theorems.

The second one is that some of the proofs are elegant in their own right.

Theorem 2.16 ([Hat01]). If K is a compact, locally contractible subspace of a closed

orientable n manifold M , then Hi(M,M −K;Z) ∼= Hn−i(K;Z) for all i.

Theorem 2.17 ([Fr13]). The pullback of a homotopy equivalence along a �bration is again

a homotopy equivalence.

Theorem 2.18 ([St44]). The k-sphere bundles over S1 are of two types: the product

bundle, and the generalized Klein bottle.

Theorem 2.19 (Kunneth Theorem). There exists the following short exact sequence for

topological spaces X and Y where the cohomology is assumed to be integral:

0 →
⊕

i+j=k

H i(X)⊗Hj(Y ) → Hk(X × Y ) →
⊕

i+j=k−1

Tor1(H
i(X), Hj(Y )) → 0

3. Main results and conjectures

In this section we give an explicit description of the spaces X and Xγ/Λγ, where

G = SL(2,C), showing that they are both homotopic to S2 ∨ S2 ∨ S1. In the end of

the section we present a conjecture on the shape of the above spaces for G = SL3.

First we analyze X.

Lemma 3.1. The space X is isomorphic to CP 1 × CP 1 − CP 1 − CP 1, such that if the

coordinates of the �rst CP 1 in the product are given by [a : b] with a, b ∈ C and of the

second by [c : d] with c, d ∈ C then the �rst CP 1 we remove has coordinates ([a : b], [a : b])

and the second ([a : b], [a, bt2]).
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Proof. X is by de�nition the intersection of the orbit Ot of the matrix
( t 0

0 t−1

)
in

SL(2,C), where t 6= 0,±1 so that the orbit is regular semisimple, with the set G0 ⊂
SL(2,C) of the Gauss decomposable matrices. Thus,

X =
{( d −b

c a

)( t 0

0 t−1

)( a b

c d

)
| a, b, c, d ∈ C, ad − bc = 1, adt2 − bc 6= 0

}
.The

last constraint comes from the fact that the matrix
( d −b
c a

)( t 0

0 t−1

)( a b

c d

)
=( adt− bct−1 bdt− bdt−1

act−1 − act adt−1 − bct

)
lies in G0 if and only if the upper left entry is di�erent from

zero.

First, for any diagonalizable matrix B, writing B = A−1DA where D is diagonal with

�xed eigenvalues, is unique up to rescaling of the rows of A. Therefore, since we can ignore

the scaling of the rows of A, the following map
( a b

c d

)
→ ([a : b], [c : d]) is injective and

thus points of X correspond to points ([a : b], [c : d]) ∈ CP 1 × CP 1.

. Now we need to remove from CP 1 ×CP 1 the points that do not come from points of

X. Since scaling is irrelevant, the conditions that must be satis�ed by points of CP 1×CP 1

to come from Xt are ad− bc 6= 0 and adt2 − bc 6= 0. It is straightforward that the points

in CP 1 × CP 1 satisfying ad − bc = 0 are precisely those of the form ([a : b], [a : b]) and

those satisfying adt2− bc are precisely those of the form ([a : b], [a, bt2]). Therefore X has

the required description as wanted.

�

Lemma 3.2. The homology of X is given by:

Hi(X) =


Z for n = 0, 1

Z⊕ Z for n = 2

0 otherwise

Proof. First we consider the space Y = CP 1 × CP 1 −X. The above lemma implies that

this space is the union of two copies of CP 1 given by {([a : b], [a : b]) | [a : b] ∈ CP 1} and
{([a : b], [a : bt2]) | [a : b] ∈ CP 1} respectively. From this parametrization, it can be seen

that the two CP 1 intersect in exactly two points, namely ([1 : 0], [1 : 0]) and([0 : 1], [0 : 1]).

Since CP 1 ∼= S2, Y can be seen to be homotopic to S2 ∨ S2 ∨ S1. Therefore,

H i(Y ) =


Z for n = 0, 1

Z⊕ Z for n = 2

0 otherwise

Next, we consider the long exact sequence in homology of the pair (CP 1 × CP 1, X).

Since CP 1×CP 1 is an orientable closed 4-manifold as the product of two closed orientable

2-manifolds and Y is a compact locally contractible subspace, we can apply theorem 2.16

to get the following commutative diagram:
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... −→ Hi(X) −→ Hi(CP 1 × CP 1) −→ Hi(CP 1 × CP 1, X) −→ Hi−1(X) −→ ...x ∼= x ∼=
H4−i(CP 1 × CP 1)

i∗−→ H4−i(CP 1 × CP 1 −X) ∼= H4−i(Y )

Above i∗ is induced by the inclusion i : Y ↪→ CP 1×CP 1 as can be seen from the proof

of the theorem. Since CP 1 ∼= S2, the Kunneth theorem and the diagram above imply

Hi(CP 1 × CP 1) =


Z for n = 0, 4

Z⊕ Z for n = 2

0 otherwise

, Hi(CP 1 × CP 1, X) =


Z for n = 3, 4

Z⊕ Z for n = 2

0 otherwise

This immediately implies that Hi(X) = 0 for i > 4 from the above long exact sequence.

For i = 4 the map i∗ is an isomorphism since it is induced by the inclusion of a connected

subspace into a connected space. Therefore, from the exact sequence

0 = H5(CP 1 × CP 1, X) −→ H4(X) −→ Z
∼=−→ Z −→ H3(X) −→ 0

we obtain that H4(X) = H3(X) = 0. Similarly, the exact sequence

0 = H1(CP 1 × CP 1, X) −→ H0(X) −→ Z −→ H0(CP 1 × CP 1, X) = 0

implies that H0(X) = Z.

Finally, we �nd the �rst and second homology of X through deriving an explicit form

of the map i∗ in the following exact sequence:

0 −→ Z −→ H2(X) −→ Z⊕ Z i∗−→ Z⊕ Z −→ H1(X) −→ 0

In order to describe i∗ we need to take a closer look at how each of the two CP 1 ' S2

in Y lie inside CP 1×CP 1. By lemma 3.1, both copies can be considered to be placed di-

agonally in CP 1×CP 1. This, together with the fact that H2(Y ) ∼= H2(CP 1)⊕H2(CP 1),

where the two CP 1 are as above, implies that i∗ = ∆∗
1 ⊕ ∆∗

2 : H2(CP 1 × CP 1) →
H2(CP 1) ⊕ H2(CP 1), induced by the "diagonal" inclusions ∆i of the two copies of

CP 1 inside the product. Therefore it is enough to see where ∆∗
i sends the generators

of H2(CP 1 × CP 1) inside H2(CP 1).

To do this consider the following diagram on the left and apply the cohomology functor

to obtain the diagram on the right.

CP 1 id←− CP 1 id−→ CP 1y ∼= y∆

y ∼=
CP 1 pr1←− CP 1 × CP 1 pr2−→ CP 1

→

H∗(CP 1)
∼=−→ H∗(CP 1)

∼=←− H∗(CP 1)x ∼= x∆∗
x ∼=

H∗(CP 1)
pr∗1−→ H∗(CP 1 × CP 1)

pr∗2←− H∗(CP 1)
7



Since both generators of H2(CP 1 × CP 1) come from the image of the generator of

H2(CP 1) under pr∗1 and pr∗2 respectively as can be seen by looking at a proof of the

Kunneth theorem, the commutativity of the right diagram implies that both generators

of H2(CP 1×CP 1) map to the generator of H2(CP 1).Therefore, i∗ is given by the matrix( 1 1

1 1

)
. From this it is easy to see that H1(X) = coker(i∗) ∼= Z. Also, ker(i∗) ∼= Z so

we have the short exact sequence:

0 −→ Z −→ H2(X) −→ Z −→ 0

Since Z is free and thus projective as a module over Z, this implies that the sequence

is split and therefore H2(X) ∼= Z⊕ Z as wanted.

�

Next, consider the following projection:

([a : b], [c : d]) ∈ Xy yπ
[a : b] ∈ CP 1

From lemma 3.1, the �bers above any point [a : b] ∈ CP 1 di�erent from [1 : 0] and

[0 : 1] are of the form CP 1 minus two distinct points and thus homotopic to S1 and above

the two points [1 : 0] and [0 : 1] they are of the form CP 1 minus one point and therefore

homotopic to D2.

It is easy t see that π−1(CP 1 − [1 : 0] − [0 : 1]) → CP 1 − [1 : 0] − [0 : 1] is a �ber

bundle with �bers homotopic to S1. Since S1 ↪→ (CP 1 − [1 : 0] − [0 : 1]) = S1 × I,

where I = (0, 1), is a homotopy equivalence, theorem 2.18 implies that π−1(CP 1 − [1 :

0] − [0 : 1]) is homotopic to a circle bundle over S1. Applying theorem 2.17, this shows

that π−1(CP 1 − [1 : 0]− [0 : 1]) can only be of two forms, namely either T × I or K × I
where T is the usual torus, K the usual Klein bottle.

Deforming the two D2 �bers to points, we obtain a space homotopic to X. Using

the above description of π−1(CP 1 − [1 : 0] − [0 : 1]) and due to symmetry of the space

X around the points [1 : 0] and [0 : 1], , this deformation can have exactly one of the

following e�ects. The one is to lead the neighboring �bers of the two disks to converge

to the resulting points of the deformation, which implies X is homotopic to one of the

suspensions ΣT or ΣK. The other is to not a�ect the topology of the neighboring �bers.

In this case it can be seen that X will be homotopic one of the following two spaces.

Either a torus attached around a sphere, namely T 2∪S1 S2 where S1 can be considered as

an equator of both the sphere and the torus, or as K ∪S1 S2 where S1 can be considered

as an equator of both tha sphere and the Klein bottle.

Therefore there are 4 di�erent possibilities for whatX looks like. We now use lemma 3.2

in order to obtain the correct answer. Since the homology of a suspension of a space shifts

by one, or more concretely Hi+1(ΣX) ∼= Hi(X) , using the fact that H2(T ) ∼= H2(K) ∼= Z
we rule out the �rst two possibilities since X has zero third homology . It is easily seen
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that T 2 ∪S1 S2 ' S2 ∨ S2 ∨ S1 and K2 ∪S1 S2 ' S2 ∨ RP 2. However, the �rst homology

of the latter space is H1(S
2 ∨ RP 2) ∼= H1(S

2) ⊕H1(RP 2) ∼= H1(RP 2) ∼= Z/2. Therefore
we have shown that X ' S2 ∨ S2 ∨ S1 as wanted.

Next, we analyze the space Xγ/Λγ. Notice that in the n = 2 case, γ =
( ct 0

0 −ct

)
,

where c ∈ C∗. Thus c can be cosidered to be equal to 1 since it is invertible in F .

Lemma 3.3 (2-dimensional lattices). All lattices Λ ⊂ F 2 that are invariant under the

action of γ =
( t 0

0 −t

)
, are generated by one of the following pairs of vectors:

(1) v1 =
( 1

0

)
ta +

( 0

c

)
tb−1, v2 =

( 0

1

)
tb for a < b.

(2) v1 =
( 1

0

)
tb, v2 =

( 0

1

)
tb.

(3) v1 =
( 0

1

)
ta +

( c

0

)
tb−1, v2 =

( 1

0

)
tb for a+ 1 < b.

(4) v1 =
( 0

1

)
tb−1, v2 =

( 1

0

)
tb for a < b

Proof. Assume that Λ is generated by {v1, v2}. Then it is easy to see that we can we can

write vi = êjt
a+ higher order terms, where i, j ∈ {1, 2} and {ê1, ê2} the standard basis.

After we perform row reduction on the two vectors, it can be seen that we obtain one of

the following two possibilities for {v1, v2}:

• v1 =
( 1

ca

)
ta +

( 0

ca+1

)
ta+1 + ...+

( 0

cb−1

)
tb−1, v2 =

( 0

1

)
tb for a ≤ b.

• v1 =
( ca

1

)
ta +

( ca+1

0

)
ta+1 + ...+

( cb−1

0

)
tb−1, v2 =

( 1

0

)
tb for a < b.

Next, we consider the condition γΛ ⊂ Λ for γ =
( t 0

0 −t

)
. In the �rst case this implies

that γv1 =
( 1

−ca

)
ta+1 +

( 0

−ca+1

)
ta+2 + ... +

( 0

−cb−1

)
tb is a linear combination of

{v1, v2} over O, or that (γ− t)v1 =
( 0

−2ca

)
ta+1 +

( 0

−2ca+1

)
ta+2 + ...+

( 0

−2cb−1

)
tb ∈

Ov2. This forces ca = ... = cb−2 = 0. Therefore in this case we obtain �rst form of lattices

from the theorem unless a = b, in which case cb−1 = 0 as well, and thus we obtain the

second form. the second case is equivalent to the �rst so we omit it.

�

From de�nition 2.9, it is straightforward that if Λ has one of the above forms, then

[Λ : O2] = −(a+ b).

Lemma 3.4. The space Xγ is an in�nite chain of CP 1's indexed by Z. If a CP 1 is

indexed by i ∈ Z, then it intersects only with the CP 1's indexed by {i−1, i+1}, in exactly

one point with each.

Proof. In the special case we study, from de�nition 2.11, Xγ := {Λ0 ⊂ Λ1 ⊂ Λ2 = t−1Λ0 |
γΛi ⊂ Λi and [Λi : O2] = i}. A crucial observation is that for any Λ0 not generated by
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{v1 =
( 1

0

)
t−n, v2 =

( 0

1

)
tn} where n ∈ Z, Λ1 is uniquely determined and is generated

by {v1 =
( 1

0

)
t−n−1, v2 =

( 0

1

)
tn} for some n ∈ Z . Similarly, if Λ1 is not generated by

{v1 =
( 1

0

)
t−n−1, v2 =

( 0

1

)
tn} for some n ∈ Z, then Λ0 is uniquely determined and is

generated by {v1 =
( 1

0

)
t−n, v2 =

( 0

1

)
tn} where n ∈ Z. The proof of this observation

can be easily deduced from lemma 3.3 and is left as an exersice to the interested reader.

Now, since in this special case, Λγ
∼= Z is generated by

( t±1 0

0 t∓1

)
and acting with it

on Λ0 = O⊕O, we obtain any Λ0 of the form Λ0 = Otn⊕Ot−n. Using the same action on

Ot−1 ⊕O we obtain any Ot−n−1 ⊕Otn for all n ∈ Z. Therefore we only need to analyze

the case where we �x Λ0 = O ⊕O and the case where we �x Λ1 = Ot−1 ⊕O.

When Λ0 = O ⊕ O, it can be seen that Λ1 can be any lattice generated by {v1 =( 1

c

)
t−1, v2 =

( 0

1

)
} with c ∈ C or {v1 =

( 0

1

)
t−1, v2 =

( 1

0

)
}. These lattices are

parametrized by the slopes a line can have in C2 or more explicitly by the "vector" coe�-

cient in front of the t−1 on the generator v1. But this is precisely the space parametrizing

lines in C2 and thus isomorphic to CP 1. A very similar arguement shows that �xing

Λ1 = Ot−1 ⊕O, the space parametrizing the possible Λ0 is a CP 1.

For n 6= m, two copies of CP 1 corresponding to Otn ⊕ Ot−n and Otm ⊕ Ot−m clearly

cannot intersect and the same holds for two copies of CP 1 corresponding to Otn⊕Ot−n−1

and Otm ⊕Ot−m−1. Finally, two copies of CP 1 corresponding to Otn ⊕Ot−n and Otm ⊕
Ot−m−1 can intersect if and only if n = {m,m + 1} and the points of intersection are

precisely:

• Otn ⊕Ot−n ⊂ Otn ⊕Ot−n−1 ⊂ Otn−1 ⊕Ot−n−1.

• Otn ⊕Ot−n ⊂ Otn−1 ⊕Ot−n ⊂ Otn−1 ⊕Ot−n−1.

Therefore we are done. �

Finally, taking the quotient Xγ/Λγ, it is easy to see by the above description that all

CP 1 corresponding to Λ0 of the form Otn ⊕ Ot−n go to the same CP 1, all CP 1 corre-

sponding to Λ1 of the form Otn ⊕ Ot−n−1 go to the same CP 1 and the two intersect at

precisely two points which is easily seen to be homotopic to S2 ∨ S2 ∨ S1. Therefore

Xγ/Λγ ' S2 ∨ S2 ∨ S1 as wanted.

We close this section by giving a conjectural description of the space X in the SL3 case.

Conjecture 3.5. When G = SL3, the space X has six components. Three of them are

isomorphic to the �ag variety FL3(C). The other three are isomorphic to a CP 1-bundle

over the subspace of CP 2×CP 2, cut out by the equations x0y0 = x1y1 = x2y2. The latter

space is also known as the blow-up of CP 2 at three points.
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