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Abstract

We examine a variant of tree reconstruction proposed by Mossel. Given
a rooted tree T with d leaves, all at the same level, we consider trees Tn

consisting of n levels of copies of T , and randomly label their vertices with
bits as follows. The root is labeled with a random bit, and then for each
child, it is labeled with a bit that differs from its parent with probability
ε. We analyze algorithms that, given guesses for the d labels of leaves of
a copy of T , output a guess for the root of T , which can be recursively
applied starting from labels of the leaves of each Tn to obtain a guess
for the label of the root of Tn. An algorithm achieves recursive recon-
struction if its probability of correctly guessing the label of the root is
bounded away from 1/2. In this paper, we show that prior analysis of re-
cursive reconstruction algorithms do not apply to asymmetric algorithms
that have different probabilities of reconstructing a 0 versus a 1. In par-
ticular, asymmetric majority algorithms that output the most common
label among the children but break ties unevenly fail to achieve recursive
reconstruction for a range of ε where symmetric majority algorithms suc-
ceed. We also discuss some empirical evidence and theoretical difficulties
in studying generalizations of this model.
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1 Introduction

The tree reconstruction problem is a well-studied problem in probability with
ties to communication theory, biology, and statistical physics. It considers a
label-propagation model defined as follows. Fix some real number ε with 0 <
ε ≤ 1/2. Let T be a finite rooted tree with d leaves, all of which are at the same
level h. We produce a random label for each vertex of the tree as follows. Label
the root of the tree with either 0 or 1 at random, each with 1/2 probability;
then, for each non-root vertex, label it with the same label as its parent with
probability 1− ε, and differently with probability ε. A reconstruction algorithm
for T is an algorithm that, given the labels of the leaves of a tree, computes a
guess for the label of the root of the tree. Clearly, as long as ε < 1/2, a good
reconstruction algorithm can correctly guess the root more than 1/2 of the time.
The tree reconstruction problem is typically considered on an infinite family of
trees (Tn)

∞
n=1, with the goal being to determine whether, as n tends to infinity,

the probability of a family of reconstruction algorithms succeeding is bounded
away from 1/2.

A commonly considered family of trees is the sequence of “periodic trees”
(Tn)

∞
n=1 built from a finite tree T with d leaves, all at the same level h, as

follows: Let T1 = T , and for each n > 1, construct Tn by replacing each leaf
of Tn−1 with a copy of T . Some examples of periodic trees are diagrammed in
Figures 1 and 2.

A variety of bounds, positive and negative, have been obtained for this
problem and many generalizations and variations thereof. The classical result

Figure 1: Examples of a tree T and its first three periods. The topmost copy of
T is highlighted for clarity.

T = T1 T2 T3

Figure 2: The 1-level 4-regular tree T and its first three periods.

T = T1 T2 T3
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on tree reconstruction is the Kesten-Stigum bound [7], which, when specialized
to our model, states that reconstruction is possible when ε < εc, where

εc =
1− d−1/2h

2
.

The Kesten-Stigum bound is also tight for our model as described above [1, 4, 5]
— that is, reconstruction is not possible if ε > εc — but there are generalizations
of this model where the bound still holds but is not tight [9, 10, 11], as well as
other special cases or variations of the generalized model where the bound is
tight [10, 6, 2].

In [8], Mossel studies a specific family of reconstruction algorithms called
recursive reconstruction algorithms. The idea is that, given a reconstruction
algorithm A for T , one can create a reconstruction algorithm for all Ti recur-
sively, by taking each tree Ti and repeatedly replacing the bottommost copies of
T with single leaves labeled with the output of the algorithm A, until only the
root remains. The advantage of recursive reconstruction algorithms is that they
are simple to compute and to describe, and that what seems to be the optimal
recursive reconstruction algorithm, the majority algorithms, does not depend on
ε (as the optimal reconstruction algorithm does). The majority algorithm is the
algorithm that outputs the majority of the labels it receives. The question we
are concerned with becomes whether, as n tends to infinity, recursive algorithms
can succeed with probability bounded away from 1/2.

[8] finds a tight bound on the ε for which recursive reconstruction is possible,
that is, an explicit formula depending on T for a value εr, which is less than εc,
such that recursive reconstruction is possible iff ε < εr. They also prove that
the algorithms that achieve recursive reconstruction for all such ε are precisely
the majority algorithms. However, the proof does not account for a large class
of algorithms that have different probabilities of reconstructing a 0 versus a 1,
which we call asymmetric algorithms. In particular, some majority algorithms
are asymmetric. Thus, in spite of [8], it remains conceivable that some asym-
metric algorithms could reconstruct for some ε satisfying εr ≤ ε < εc. In this
paper we show that a class of asymmetric algorithms, including asymmetric ma-
jority algorithms, in fact fail to achieve recursive reconstruction for a range of ε
that is less than εr. This provides evidence that the bound in [8] is tight, while
also suggesting that in general, in order for an algorithm to achieve recursive
reconstruction, it is important for the algorithm to be symmetric and not favor
any labels over any other.

The rest of this paper is structured as follows. In Section 2 we define the
“recursive function” whose iterations model the accuracy of periods of a recur-
sive reconstruction algorithm. In Section 3 we specialize to recursive algorithms
on the simple 1-level d-regular tree, which are easy to analyze and which form
the basis for the core results of [8], and show that we can study its convergence
by studying the fixed points of the recursive function. In Section 4 we further
focus on a class of “uniformly biased” algorithms, which includes majority algo-
rithms that simply break ties biasedly, and prove that these algorithms do not
perform as well as the symmetric algorithm. We will prove that there is a range
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Figure 3: An example of a possible ε-labeling of T2, where T is the tree of
Figure 1, and the majority algorithm M processing the labeling. Edges whose
incident nodes have different labels are in bold red; this happens for each edge
with probability ε independently. In this case, the root was labeled 0, and the
algorithm’s final output is also 0, so the algorithm is successful.
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of ε where the symmetric algorithm achieves recursive reconstruction but the
asymmetric algorithm fails, which will provide a counterexample to Theorem
1.2 of [8] as written there. The range of ε for which we prove that recursive
reconstruction fails does not appear to be tight; we conjecture a stronger bound,
which we prove in Section 5 for the special case of d = 4. Finally, in Section 6
we discuss the implications for generalizations of our model, and briefly mention
some empirical evidence and difficulties in studying them.
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2 The Asymmetric Recursive Function

We start by restating the definition of the labelings, trees, and algorithms we
are studying formally:

Definition 2.1. For a finite rooted tree T and a real constant ε satisfying
0 < ε ≤ 1/2, an ε-labeling of T is a random labeling of the nodes of T
generated as follows. First, the root is randomly labeled with one of 0 or 1, with
probability 1/2 each. Then, for each edge (v, w) with v the parent of w, we label
w with the same bit as v with probability 1−ε, and a different bit with probability
ε, independently for each edge.

For a finite rooted tree T , we define a sequence of trees (Tn)
∞
n=1 called peri-

odic trees in terms of T as follows. Let T1 = T . For each n > 1, let Tn be the
finite rooted tree obtained from Tn−1 by replacing each leaf with a copy of T .

A reconstruction algorithm A for a tree T is a randomized algorithm
that, given the labels of the leaves of T , computes a guess for the label of the
root of T . If T has d leaves, then A is a randomized algorithm that takes inputs
from {0, 1}d and produces an output in {0, 1}.

Denote by rε(T,A) the probability that the reconstruction algorithm A cor-
rectly guesses the label of the root of T when applied to the leaf labels of a random
ε-labeling of T .

Note that our model is technically slightly more general than that of [8]
and much of the literature in that we allow our algorithm to be randomized,
while most other sources define the algorithm as a deterministic function. This
does not give our model significantly more power, but it enables us to study
algorithms that differ from the symmetric majority algorithm with arbitrarily
small probability, which we will show are suboptimal.

In general, we say that the bit reconstruction problem is solvable for T and
ε if there exists a constant δ > 0 and algorithms (An)

∞
n=1 such that, for every

positive integer n, we have

rε(Tn,An) ≥ 1/2 + δ.

As described in the introduction, this problem and its generalizations and vari-
ations have received a lot of attention in the literature.

In this paper, we concern ourselves with a restricted class of algorithms
called recursive reconstruction algorithms, which are algorithms on Tn obtained
by recursively applying a reconstruction algorithm A for T . We define recursive
reconstruction algorithms as in [8, Definitions 1.1]:

Definition 2.2.

• Suppose T has d leaves and let A : {0, 1}d → {0, 1} be a reconstruction al-
gorithm. Then we define a sequence of reconstruction algorithms (An)

∞
n=1

for the periods Tn of T , called the periods of A, as follows: Let A1 = A,
and for k > 1 let Ak be defined by

Ak(σ1, . . . , σdk) := Ak−1(A(σ1, . . . , σd), . . . ,A(σdk−d+1, . . . , σdk)) .
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• We say that the bit reconstruction problem is recursively solvable
for T and ε if there exists a constant δ > 0 and a reconstruction algorithm
A for T such that, for every positive integer n, we have

rε(Tn,A
n) ≥ 1/2 + δ.

In other words, the bit reconstruction problem is recursively solvable for T
and ε if it is solvable by the periods (Ak)∞k=1 of a single algorithm A.

Informally, Ak can be thought of as follows: Starting at the leaves of Tn,
for each copy of T , we apply the algorithm A to the labels of the leaves, and
replace the copy of T with a single leaf labeled with the output of the algorithm,
until there is only one node, the root, left.

In order to analyze the behavior of a recursive algorithm, we define the
general analogue of the “recursive function” defined in [8]:

Definition 2.3. For a tree T and real constants ε, p0, p1 satisfying 0 < ε ≤ 1/2
and 0 ≤ p0, p1 ≤ 1, an (ε, p0, p1)-labeling of T is a random labeling of the
nodes of T generated as follows. First, a random ε-labeling of T is generated.
Next, for each leaf, if its label is i, then we preserve it with probability pi and
replace it with its inverse with probability 1− pi.

For a reconstruction algorithm A, let RA(p0, p1) be a pair of probabilities
(q0, q1), where qi is the probability that, when provided with the leaves of a
random (ε, p0, p1)-labeling of T in which the root was labeled i, the algorithm
A correctly outputs the guess i.

The function RA is important because the reconstruction probability of pe-
riods of A on periods of T is captured by iterating RA:

Theorem 2.4. Fix a finite rooted tree T with d leaves, all at depth h. Let

(q0, q1) = R
(n)
A (1, 1), that is, the result of iterating RA a total of n times starting

from the point (1, 1). Then qi is the probability that the period An of A correctly
reconstructs the label i when applied to the leaf labels of a random ε-labeling of
the period Tn. In particular,

rε(T
n,An) =

q0 + q1
2

.

Proof. This is proven by induction. For n = 1 it is clear from the definition. For
the induction step, suppose we are analyzing Tn+1. Pick a random ε-labeling of
Tn+1, and let (τ1, . . . , τd) be the labels of the nodes at depth h, i.e. the leaves
of the topmost copy of T . Then we can think of this sequence as being drawn
from the leaves of a random ε-labeling of T .

Let (p0, p1) = R
(n)
A (1, 1). For each τi, compare it to the label that the

recursive reconstruction algorithm will guess for its node: the probability that
they are the same is precisely pτi . Therefore, if (q0, q1) are the probabilities that
An+1 correctly reconstructs the labels 0 and 1 when they are the label of the
root, we have

(q0, q1) = RA(p0, p1) = RA(R
(n)
A (1, 1)) = R

(n+1)
A (1, 1),

Page 6 of 21



Brian Chen Asymmetric Recursive Reconstruction Algorithms

as desired.

The function definition and proof above differ from [8, Definition 2.1, Lemma
2.2] in that they account for the possibility that the reconstruction algorithm
has different probabilities of reconstructing a 0 versus a 1. The algorithms for
which the original paper’s analysis still applies can be described as follows.

Definition 2.5. A reconstruction algorithm A is symmetric if, whenever p0 =
p1, we have q0 = q1, where (q0, q1) = RA(p0, p1). Otherwise, it is asymmetric.

If we only allow symmetric algorithms, [8] proves that the algorithms that
achieve reconstruction for the largest ε are precisely majority algorithms:

Definition 2.6. A reconstruction algorithm A is a majority algorithm if it
outputs the majority of its inputs whenever such a majority exists. (When there
are equally many 0s and 1s in the input, A may output 0 or 1, or randomly
choose between them.)

Theorem 2.7. ([8, Theorem 1.2]) Let T be a tree with d leaves, all at the same
level h. The bit reconstruction problem is recursively solvable for T and ε by a
symmetric algorithm iff ε < εr, where εr is defined by

1

2d−1

⌈
d

2

⌉(
d⌈
d
2

⌉)(1− 2εr)
h = 1.

Furthermore, a symmetric algorithm recursively solves the bit reconstruction
problem for all ε < εr iff it is a majority algorithm.

We conjecture that the first claim of the theorem is true in general; that is,
asymmetric algorithms cannot recursively solve the bit reconstruction problem
for T and ε where symmetric algorithms fail, so the same bound εr on solvable ε
holds across all algorithms. However, the condition of symmetry is essential to
the second claim: as we will see, asymmetric majority algorithms cannot solve
the bit reconstruction problem for all ε < εr, and in fact there is a range of
ε below εr where all asymmetric majority algorithms fail. We will prove that
counterexamples exist on even the 1-level d-regular tree when d is even. With
this goal in mind, we now turn to analyze recursive reconstruction algorithms
on the 1-level d-regular tree specifically.

3 Regular Trees

When T is the simple 1-level d-regular tree, we can describe and analyze RA

particularly precisely. Define

L0(p0, p1) := (1− ε)p0 + ε(1− p1) (1)

L1(p0, p1) := (1− ε)p1 + ε(1− p0); (2)
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then Li(p0, p1) is the probability that, if the root is initially labeled i in an
(ε, p0, p1)-labeling of T , then a particular leaf will have the label i, after propa-
gation and possible replacement. We will sometimes write

L(p0, p1) := (L0(p0, p1), L1(p0, p1)).

Let us point out some simple properties of the above definitions:

Lemma 3.1. Let `0 = L0(p0, p1), `1 = L1(p0, p1). Then

`0 − `1 = p0 − p1;

`0 + `1 = 2ε+ (1− 2ε)(p0 + p1).

In particular, `0 + `1 is an increasing function of p0 + p1.

Proof. Immediate from the definitions.

Next, let PA,i(`i) be the probability that, if A is provided with d inputs,
each of which is independently i with probability `i and 1 − i otherwise, then
the algorithm will guess i. Note that

PA,0(`0) = 1− PA,1(1− `1). (3)

It is straightforward to completely characterize the form of the function
PA,i(`i). It simply depends on d + 1 real variables cj , each controlling the
algorithm’s probability of guessing i when j of its inputs are i, for each j =
0, 1, . . . , d:

Lemma 3.2. For any reconstruction algorithm A and either i ∈ {0, 1}, the
function PA,i is a polynomial of the form

PA,i(`) =

d∑
j=0

cj

(
d

j

)
`j(1− `)d−j (4)

for real numbers c0, c1, . . . , cd with cj ∈ [0, 1] for each j. Furthermore, the
choice of these real numbers are unique, and for every sequence (cj)

d
j=0 satisfying

cj ∈ [0, 1] for each j, there exists a reconstruction algorithm A such that (4)
holds.

Proof. To prove the first statement, let cj be the probability that A outputs i
when provided with inputs that are a random permutation of j occurrences of
i and d − j occurrences of 1 − i. There are

(
d
j

)
distinct permutations, and for

any `, each one would occur in the original model with probability `j(1− `)d−j .
Equation (4) follows.

To show that the choice of cj is unique, we just need to prove that `j(1−`)d−j
for j = 0, . . . , d are linearly independent polynomials of `. To see this, note that
for each j′, each of the polynomials `j(1 − `)d−j for j < j′ are divisible by
(1−`)d−j′+1, but `j

′
(1−`)d−j′ is not, so `j

′
(1−`)d−j′ is linearly independent of
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the j′ polynomials before it in the sequence. Thus, the polynomials are linearly
independent. (In fact, they form a spanning basis of the space of degree-at-
most-d polynomials of `.)

Finally, to prove the converse, simply let A output i with probability cj and
1− i with probability 1− cj on any input with exactly j occurrences of i.

Having defined Li and PA,i, which respectively model the noisy edge/leaf
propagation and the algorithm’s ability to reconstruct from noise, we can define
the recursive reconstruction probability RA in terms of these functions as

RA(p0, p1) = (PA,0(L0(p0, p1)), PA,1(L1(p0, p1))) . (5)

By Theorem 2.4, in order to study recursive reconstruction, we just need

to consider the sequence R
(n)
A (1, 1), that is, the result of iterating RA starting

from p0 = p1 = 1. Note, therefore, that for the 1-level d-regular tree, recursive
reconstruction only depends on the functions PA,i. It therefore makes sense to
consider two algorithms “the same” if their polynomials are the same:

Definition 3.3. Two reconstruction algorithms A, A′ for the 1-level d-regular
tree are equivalent if the polynomials PA,i and PA′,i are identical.

Also, note that the two polynomials PA,0 and PA,1 for a single algorithm A
coincide iff the algorithm is symmetric:

Lemma 3.4. A recursive reconstruction algorithm A for the 1-level d-regular
tree is symmetric iff PA,0 and PA,1 coincide.

Proof. Recall that A is symmetric if, whenever p0 = p1, we have q0 = q1, where
(q0, q1) = RA(p0, p1). Thus, in the 1-level d-regular case, A is symmetric iff

PA,0(L0(p0, p1)) = PA,1(L1(p0, p1))

whenever p0 = p1. It’s easy to see from Lemma 3.1 that `0 = `1 iff p0 = p1, so
the conclusion follows.

Corollary 3.5. A recursive reconstruction algorithm A for the 1-level d-regular
tree is symmetric iff in the corresponding sequence (cj)

d
j=0 to both PA,i given by

Lemma 3.2, we have
cj + cd−j = 1

for each j.

Proof. Let the sequences corresponding to PA,0 and PA,1 be (cj)
d
j=0 and (c′j)

d
j=0,

respectively. Also note that, as a polynomial identity,

1 =

d∑
j=0

(
d

j

)
`j(1− `)d−j

Page 9 of 21



Brian Chen Asymmetric Recursive Reconstruction Algorithms

(this is just (`+ (1− `))d expanded with the binomial theorem). From this and
(3), we know that

d∑
j=0

cj

(
d

j

)
`j(1− `)d−j = 1−

d∑
j=0

c′j

(
d

j

)
(1− `)j`d−j

=

d∑
j=0

(1− c′j)
(
d

j

)
(1− `)j`d−j

=

d∑
j=0

(1− c′d−j)
(
d

j

)
`j(1− `)d−j

which means that PA,0 and PA,1 coincide iff, as a polynomial identity, we have

d∑
j=0

c′j

(
d

j

)
`j(1− `)d−j =

d∑
j=0

(1− c′d−j)
(
d

j

)
`j(1− `)d−j .

Since the polynomials `j(1 − `)d−j are independent, as proven in Lemma 3.2,
this means that A is symmetric iff c′j = (1− c′d−j) for all j ∈ {0, . . . , d}. This is
also equivalent to cj = (1− cd−j) for all j ∈ {0, . . . , d}.

When A is symmetric, we have PA,0 ≡ PA,1 and p0 = p1 in every iteration

of R
(n)
A (1, 1). As a result, Li and PA,i can both be treated as single-variable

functions, so RA is just the composition of these two functions, which is cor-
respondingly easy to analyze. In particular, when RA is increasing (which is
true for any symmetric majority algorithm, for example), we have RA(p0) < p0
at each step, so that the sequence R

(n)
A (1) converges to the greatest fixed point

of RA. In the asymmetric case, it is less obvious that RA should converge to
a fixed point, but fortunately, as long as PA,0 and PA,1 are increasing, this is
still true. In order to prove this, we need to observe how RA(p0, p1) compare
to (p0, p1):

Lemma 3.6. Suppose PA,0 and PA,1 are increasing. Let 0 ≤ p0, p1 ≤ 1. Let
(q0, q1) = RA(p0, p1) and (r0, r1) = RA(q0, q1). Then:

• If p0 ≥ q0 and p1 ≤ q1, then q0 ≥ r0 and q1 ≤ r1.

• If p0 ≤ q0 and p1 ≥ q1, then q0 ≤ r0 and q1 ≥ r1.

• If p0 ≥ q0 and p1 ≥ q1, then either q0 ≥ r0 or q1 ≥ r1.

• If p0 ≤ q0 and p1 ≤ q1, then either q0 ≤ r0 or q1 ≤ r1.

Proof. The first two statements follow from observing that the first coordinate
of RA(p0, p1) is increasing in p0 and decreasing in p1, and the second coordinate
is decreasing in p0 and increasing in p1. These can be seen from combining (1),
(2), and (5) with the condition that PA,0 and PA,1 are increasing.
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To prove the third statement, let (`0, `1) = L(p0, p1) and (m0,m1) = L(q0, q1).
Then, since p0 ≥ q0 and p1 ≥ q1, we know that p0 + p1 ≥ q0 + q1, so
`0 + `1 ≥ m0 + m1. Therefore either `0 ≥ m0, in which case q0 = PA,0(`0) ≥
PA,0(m0) = r0, or `1 ≥ m1, in which case q1 = PA,1(`1) ≥ PA,1(m1) = r1.

The fourth statement is proven similarly; with the same variables, we know
`0+`1 ≤ m0+m1, so either `0 ≤ m0, in which case q0 = PA,0(`0) ≤ PA,0(m0) =
r0, or `1 ≤ m1, in which case q1 = PA,1(`1) ≤ PA,1(m1) = r1.

Theorem 3.7. If PA,0 and PA,1 are increasing, then for any p0, p1 such that

0 ≤ p0, p1 ≤ 1, the sequence R
(n)
A (p0, p1) converges. Furthermore, its limit is a

fixed point of RA.

Proof. We first prove that the sequence converges. Let (p
(n)
0 , p

(n)
1 ) = R

(n)
A (p0, p1).

• If there exist N such that p
(N)
0 ≥ p

(N+1)
0 and p

(N)
1 ≤ p

(N+1)
1 , then, by

Lemma 3.6, for all n > N we have p
(n)
0 ≥ p

(n+1)
0 and p

(n)
1 ≤ p

(n+1)
1 .

Thus,
(
p
(n)
0

)∞
n=N

is a decreasing sequence bounded from below by 0, and(
p
(n)
1

)∞
n=N

is an increasing sequence bounded from above by 1. Thus,

both converge, so the original sequence converges.

• If there exist N such that p
(N)
0 ≤ p

(N+1)
0 and p

(N)
1 ≥ p

(N+1)
1 , then, by

the same logic,
(
p
(n)
0

)∞
n=N

is an increasing sequence bounded from above

by 1, and
(
p
(n)
1

)∞
n=N

is a decreasing sequence bounded from below by 0.

Thus, both converge, so the original sequence converges.

• If neither of the above holds, then for all n, we have either p
(n)
0 > p

(n+1)
0

and p
(n)
1 > p

(n+1)
1 , or p

(n)
0 < p

(n+1)
0 and p

(n)
1 < p

(n+1)
1 .

– Note that, if p
(0)
0 > p

(1)
0 and p

(0)
1 > p

(1)
1 , then by Lemma 3.6, we

have either p
(1)
0 ≥ p

(2)
0 or p

(1)
1 ≥ p

(2)
1 . Then, in fact, since neither of

the above cases apply, both of these inequalities must hold and they

must be strict. So by induction, p
(n)
0 > p

(n+1)
0 and p

(n)
1 > p

(n+1)
1 for

all n.

– Similarly, if p
(0)
0 < p

(1)
0 and p

(0)
1 < p

(1)
1 , we have that p

(n)
0 < p

(n+1)
0

and p
(n)
1 < p

(n+1)
1 for all n.

Thus, once again,
(
p
(n)
0

)∞
n=0

and
(
p
(n)
1

)∞
n=0

are monotonic and bounded

within the interval [0, 1], so they both converge and the original sequence
converges.

Combining the above cases, we see that
(
R

(n)
A (1, 1)

)∞
n=0

converges. Then by
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continuity (since RA is a polynomial),

lim
n→∞

R
(n)
A (1, 1) = lim

n→∞
RA

(
R

(n)
A (1, 1)

)
= RA

(
lim
n→∞

R
(n−1)
A (1, 1)

)
= RA

(
lim
n→∞

R
(n)
A (1, 1)

)
so the limit is a fixed point of RA.

4 Uniformly Biased Algorithms

In this section we will further narrow our target to a class of asymmetric al-
gorithms called “uniformly biased”, which we will define below, and compare
them to a symmetric majority algorithm, which will produce a counterexample
to Theorem 1.2 of [8].

First, recall that a majority algorithm is an algorithm that outputs the
majority of its inputs, with no restriction on its output if there are equally
many 0s and 1s in the input. Note that, when d is odd, the latter case cannot
happen, so there is only one “majority algorithm”, and it is clearly symmetric.
In general, we can see that A is a majority algorithm iff in the corresponding
sequence (cj)

d
j=0 of Lemma 3.2, we have cj = 0 for j < d/2 and cj = 1 for

j > d/2.

Lemma 4.1. When d is even, a majority algorithm is symmetric iff cd/2 = 1/2.

Proof. Immediate from the above discussion and Corollary 3.5.

Lemma 4.2. When d is even, all symmetric majority algorithms are equivalent.

Proof. Immediate from the definition, Lemma 3.2, and Lemma 4.1.

Since all symmetric majority algorithms are equivalent, and equivalent al-
gorithms behave identically for the purpose of recursive reconstruction, we will
speak of the symmetric majority algorithm and denote it by M. For example,
M could be taken to be the reconstruction algorithm that outputs the majority
of its inputs, and when there is a tie, outputs either 0 or 1 with equal probabil-
ity. (We could also consider a deterministic version of M that, say, outputs the
label of the first leaf when there is a tie.)

Since M is symmetric, for any ` we have (r, r) = PM,0(`, `) = PM,1(`, `) for
some r; we will write

PM(`) = r

for the above. Also, for any p we have (q, q) = RM(p, p) for some q; we will
write

RM(p) = q
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for the above. Explicitly, PM(`) is the probability that the symmetric majority
algorithm reconstructs a 0 if provided with d inputs, each of which has probabil-
ity ` of being a 0 independently (which is equal to the probability it reconstructs
a 1 if each leaf has probability ` of being a 1 independently); and RM(p) is the
probability that the symmetric majority algorithm correctly reconstructs the
root when provided with the d leaves of a random (ε, p, p)-labeling of the tree.

Lemma 4.3. PM is an increasing concave function on [1/2, 1] and symmetric
about the point (1/2, 1/2).

Proof. Clearly, PM(1/2) = 1/2, since every sequence of leaf labels is equally
likely as its complement. By [8, Lemma 2.5], the derivative of PM is of the form

dPM

d`
= Cd(`(1− `))b(d−1)/2c

for a positive constant Cd depending on d. This function is clearly nonnegative
and decreasing in the interval [1/2, 1], and symmetric about 1/2. The conclusion
follows.

Lemma 4.4. Suppose 0 ≤ `0 ≤ `1 ≤ 1 and `0 + `1 ≥ 1. Then

PM

(
`0 + `1

2

)
≥ 1

2
(PM(`0) + PM(`1)) .

Proof. If 1/2 ≤ `0, it is immediate from Jensen’s inequality. Otherwise, by
symmetry of PM about (1/2, 1/2) we have

PM(1− `0)− PM(1/2) = PM(1/2)− PM(`0).

Let m = `1 + `0− 1/2. Then, note that `1−m = 1/2− `0 = (1− `0)− 1/2, and
that m ≥ 1/2. Thus, again by concavity, we have

PM(`1)− PM(m) ≤ PM(1− `0)− PM(1/2) = PM(1/2)− PM(`0).

Rearranging and applying Jensen’s inequality again, we have

PM(`1) + PM(`0)

2
≤ PM(1/2) + PM(m)

2
≤ PM

(
1/2 +m

2

)
= PM

(
`0 + `1

2

)
as desired.

We will now analyze an asymmetric algorithm A that is, in some sense,
always biased towards one of the possible outputs:

Definition 4.5. A reconstruction algorithm A is uniformly biased towards
i if the sequence (cj)

d
j=0 corresponding to PA,i satisfies

cj ≥ 0 if j < d/2

cj ≥ 1/2 if j = d/2

cj = 1 if j > d/2

and at least one of these inequalities is strict.
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Below, we will assume that A is uniformly biased towards 1, and that PA,0

and PA,1 are increasing. Note that these conditions are satisfied by all asym-
metric majority algorithms that are more likely to output 1 than 0 when a
tie occurs, or even more generally by all algorithms that are uniformly biased
towards 1 where the sequence (cj) corresponding to PA,1 is increasing.

We consider the bias

B(`) := PA,1(`)− PM(`),

which, by (4), is of the form

B(`) =

bd/2c∑
j=0

bj`
j(1− `)d−j

for some constants bj ∈ [0, 1], at least one of which is nonzero. Then B(`) ≥ 0
with equality iff ` ∈ {0, 1}, and

PA,0(`) = 1− PA,1(1− `) = 1− PM(1− `)−B(1− `) = PM(`)−B(1− `),

so, PA,0 ≤ PA,1 on the interval [0, 1], also with equality only when ` ∈ {0, 1}.
Using this, we first observe some simple bounds on the values produced from
iterating RA:

Lemma 4.6. Suppose A is a reconstruction algorithm that is uniformly biased
towards 1 such that PA,0 and PA,1 are increasing. Let p0, p1 be real numbers
such that 0 ≤ p0 ≤ p1 ≤ 1 and p0 + p1 ≥ 1. If (q0, q1) = RA(p0, p1), then we
also have 0 ≤ q0 ≤ q1 ≤ 1 and q0 + q1 ≥ 1.

Proof. It is clear that 0 ≤ q0, q1 ≤ 1 because they are probabilities. If (`0, `1) =
L(p0, p1), we can see from Lemma 3.1 that `0 ≤ `1 and that `0 + `1 ≥ 1. Since
PA,0 is increasing, we have

q0 = PA,0(`0) ≤ PA,1(`0) ≤ PA,1(`1) = q1.

Finally, by (3),

1 = PA,0(1− `1) + PA,1(`1) ≤ PA,0(`0) + PA,1(`1) = q0 + q1.

Next, we compare PA,0 and PA,1 to PM:

Lemma 4.7. Suppose 0 ≤ `0 ≤ `1 ≤ 1 and `0 + `1 ≥ 1. Then

PM(`0) + PM(`1) ≥ PA,0(`0) + PA,1(`1).

Proof. First, note that we can write

B(`) =

bd/2c∑
j=0

bj(`(1− `))j(1− `)d−2j ,
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and j and d− 2j are nonnegative in every term. Next, observe that

1− (1− `0) = `0 ≥ 1− `1,

and because 1− `1 ≤ `0 ≤ `1, we have `0 is closer to 1/2 than `1, so

`0(1− `0) ≥ `1(1− `1).

By termwise comparison, this shows that B(1− `0) ≥ B(`1). Then,

PM(`0) + PM(`1) ≥ PM(`0) + PM(`1) +B(`1)−B(1− `0)

= PA,0(`0) + PA,1(`1)

as desired.

Corollary 4.8. Suppose 0 ≤ `0 ≤ `1 ≤ 1 and `0 + `1 ≥ 1. Then

PM

(
`0 + `1

2

)
≥ PA,0(`0) + PA,1(`1)

2
.

Proof. Immediate from Lemma 4.4 and Lemma 4.7.

With this corollary, we can show that the asymmetric algorithms we study
do no better than symmetric majority on average:

Lemma 4.9. For a nonnegative integer n, let R
(n)
M (1) = q and let R

(n)
A (1, 1) =

(q0, q1); then
q0 + q1

2
≤ q.

Proof. Suppose we have p0, p1, p such that 0 ≤ p ≤ 1, 0 ≤ p0 ≤ p1 ≤ 1, p0+p1 ≥
1, and (p0+p1)/2 ≤ p ≤ 1. Let ` = (1−ε)p+ε(1−p) and (`0, `1) = L(p0, p1), and
let q = RM(p) = PM(`) and (q0, q1) = RA(p0, p1) = (PA,0(`0), PA,1(`1)). Then
we have ` ≥ (`0 + `1)/2. By Lemma 4.6, we have 0 ≤ q ≤ 1, 0 ≤ q0 ≤ q1 ≤ 1,
and q0 + q1 ≥ 1. Finally, by Corollary 4.8 and the fact that PM is increasing,
we have

RM(p) = PM(`) ≥ PM

(
`0 + `1

2

)
≥ PA,0(`0) + PA,0(`1)

2
=
q0 + q1

2
.

Since p0 = p1 = p = 1 satisfy the initial conditions, the result follows from
induction.

Next, we observe that if p0 drops below 1/2, then at the limit, the algorithm
will never succeed at reconstructing the label 0. In other words, no matter what
the root is, the algorithm will always guess 1.

Lemma 4.10. Suppose 0 ≤ p0 ≤ 1/2 ≤ p1 ≤ 1 and p0 + p1 ≥ 1. Then the limit

of R
(n)
A (p0, p1) as n tends to infinity is (0, 1).
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Proof. Let `0 = L0(p0, p1) = (1− ε)p0 + ε(1− p1). Note that 1− p1 ≤ p0, so

`0 ≤ p0 ≤ 1/2.

Let RA(p0, p1) = (q0, q1). Then, note that

q0 = PA,0(`0) ≤ PM(`0) ≤ `0,

with equality in the first inequality only if `0 = 0 (or 1, but that’s impossible
here). Therefore,

q0 ≤ p0,
with equality only if p0 = 0. In addition, by Lemma 4.6, we have that q0+q1 ≥ 1.

By induction, this implies that the first coordinates of the sequenceR
(n)
A (p0, p1)

are decreasing. By Theorem 3.7, the sequence converges to a limit that is a fixed
point of RA, so the limit’s first coordinate must be less than the initial p0. By
the above argument, we know RA has no fixed points when 0 < p0 ≤ 1/2, so at
the limit we must have p0 = 0. Then it is immediate that p1 = 1.

We are almost ready to show that our algorithm A fails to reconstruct for a
range of ε where the majority algorithm succeeds. Let pM be the greatest fixed
point of RM. Let `M = (1−ε)pM + ε(1−pM). Note that, due to the continuity
of RM, we have that pM is a continuous function of ε, and pM = 1/2 precisely
when M cannot achieve recursive reconstruction.

Let `T be the point in [1/2, 1] where dPM/d`(`T ) = 1. Note that `T does
not depend on ε. Since PM(1/2) = 1/2 and PM(1) = 1, this point exists by the
Mean Value Theorem, and since PM is concave on that interval by Lemma 4.3,
this value is unique and is greater than 1/2.

Theorem 4.11. If `M < (1/2 + `T )/2, then the limit of R
(n)
A (1, 1) as n tends

to infinity is (0, 1), and therefore the asymmetric recursive algorithm fails to
reconstruct (regardless of how biased it is).

Proof. Let (q0, q1) = R
(n)
A (1, 1) and let q = R

(n)
M (1, 1). Then let (`0, `1) =

L(q0, q1) and let ` = (1− ε)q+ ε(1− q). As n goes to infinity, q approaches pM,
so ` approaches `M; as a result, for all sufficiently large n, ` < (1/2 + `T )/2. By
Lemma 4.9, we have (q0 + q1)/2 ≤ q, which by Lemma 3.1 implies

`0 + `1
2

≤ ` < 1/2 + `T
2

for all sufficiently large n.

Let (q′0, q
′
1) be the limit of R

(n)
A (1, 1) as n goes to infinity, which exists and

is a fixed point of RA by Theorem 3.7. Let (`′0, `
′
1) = L(q′0, q

′
1). By the above,

we have
`′0 + `′1

2
<

1/2 + `T
2

.

If `′1 ≤ `T , then dPM/d` ≥ 1 on the interval [`′0, `
′
1], which implies q′1 − q′0 =

PM(`′1)− PM(`′0) > `′1 − `′0 = q′1 − q′0, a contradiction. But, if `′1 > `T , we have
`0 ≤ 1/2, which implies q′0 ≤ 1/2, so by Lemma 4.10 we have (q′0, q

′
1) = (0, 1),

as desired.
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Since `M is a continuous function of ε, we conclude that there is a range
of ε where 1/2 < `M < (1/2 + `T )/2. When ε is in this range, the symmetric
majority algorithm achieves recursive reconstruction where all uniformly biased
algorithms with increasing PA,i fail. The latter class of algorithms include
asymmetric majority algorithms, thus proving that symmetry is essential for
the last claim of Theorem 2.7.

The above bound is not tight. We conjecture that `T is actually the exact
threshold where asymmetric algorithms start to fail:

Conjecture 4.12. If `M < `T , then the limit of R
(n)
A (1, 1) as n tends to infinity

is (0, 1), and therefore the asymmetric recursive algorithm fails to reconstruct.

The intuitive justification is that after sufficiently many iterations of RA, the
value of (`1 + `2)/2 will fall under `M, and once it falls under `T , the value of
p1 − p0 starts to grow exponentially with each iteration, which starts a positive
feedback loop that drives it to (0, 1). Unfortunately it’s not clear how to prove
that we can’t reach a fixed point in this case, where (`0+`1)/2 has settled below
`M but `1 is enough above `T that PM(`1)−PM(`0) = `1 − `0 can hold. In the
next section, we prove our conjecture with very specific algebraic techniques for
the case of d = 4.

5 Proving the Conjectured Threshold for d = 4

As before, we assume A is a reconstruction algorithm that is uniformly biased
towards 1, and that PA,0 and PA,1 are increasing. We also fix d = 4. We will
assume A achieves recursive reconstruction, and derive a bound on ε.

Suppose that R
(n)
A (1, 1) converges to (p0, p1), so that (p0, p1) is a fixed point

of RA. As usual, let (`0, `1) = L(p0, p1). Then we can manipulate the definitions
of Li to get

PA,i(`i)− `i = pi − `i = pi − ((1− ε)pi + ε(1− p1−i)) = εp0 + εp1 − ε

for i = 0, 1. Let y = εp0 + εp1 − ε. Then we have

PM(`1)− `1 < PA,1(`1)− `1 = y = PA,0(`0)− `0 < PM(`0)− `0. (6)

It’s clear from induction that p0 < p1, so `0 < `1. Since RA achieves recursive
reconstruction, we know by Lemma 4.10 that 1/2 < `0. We can explicitly
compute that

PM(x) = x4 + 4x3(1− x) + 3x2(1− x)2 = −2x3 + 3x2.

Consider the cubic

C(x) := PM(x)− x = −2x3 + 3x2 − x.

Note that C(1/2) = C(1) = 0. We will denote the derivatives of C with primes.
We can compute that the second derivative

C ′′(x) = −12x+ 6,
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which is nonpositive in the interval [1/2, 1], so C is concave on this interval.
Let `T be defined as in the previous section, such that dPM/dx(`T ) = 1;

then we see from the definition of C that C ′(`T ) = 0. Since C is concave on
[1/2, 1], we see that C is increasing on the interval [1/2, `T ] and decreasing on
the interval [`T , 1].

We know from (6) that 0 < y < C(`T ), so there are two solutions to C(x) = y
in the interval [1/2, 1]; let them be x0 and x1. By the behavior of C we see that
x0 < `0 and x1 < `1.

Since C is a real cubic we know C(x) = y has exactly one other solution x−1.
Since C(x) ≤ 0 on the interval [0, 1/2], we see that x−1 ≤ 0, and by Vieta’s
formula we also have x−1 + x0 + x1 = 3/2.

As y takes values in the interval [0, C(`T )], we can consider x−1 as a function
of y. Since C ′(x) = −6x2 + 6x = 6x(1 − x) < 0 and C ′′(x) = −12x + 6 > 0
when x < 0, we know y is a decreasing convex function of x−1, which means
x−1 is a decreasing convex function of y. Next, from Lemma 3.1 we can solve
for y in terms of `i to get that

y =
ε(`0 + `1 − 1)

1− 2ε
>
ε(x0 + x1 − 1)

1− 2ε
=
ε(1/2− x−1)

1− 2ε
,

from which it follows that

x−1 >
1

2
− (1− 2ε)y

ε
. (7)

However, (7) is false when y = 0, because x−1 = 0 but the RHS is 1/2.
Therefore, since the right-hand side is a linear function of y, if (7) is true for
some y ∈ [0, C(`T )], it must be true for y = C(`T ). At that point we have
x−1 = 3/2− x0 − x1 = 3/2− 2`T ; rearranging, we get

C(`T )− ε(2`T − 1)

1− 2ε
> 0.

Let

f(`) = C(`)− ε(2`− 1)

1− 2ε
= PM(`)− `− ε

1− 2ε
.

Then from the above, we have that f(`T ) > 0. We observe that (1 − ε)p +
ε(1 − p) = ` iff p = `−ε

1−2ε ; thus, if we define p as such, we see that f(`) = 0 iff
RM(p) = p. Thus, `M is the largest root of f in [0, 1]. Since C is concave, f
is concave, and since f(1/2) = 0 and `T > 1/2, we conclude `T < `M, proving
Conjecture 4.12 when d = 4.

6 Generalizations

In the analysis above, although we attempted to keep our methods as general
as possible, our ultimate results only apply to a small class of asymmetric algo-
rithms for the 1-level d-regular tree, although we believe this class of algorithms
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contains all intuitively reasonable asymmetric algorithms. Since asymmetric al-
gorithms in the d-leaf case can be thought of as isomorphic to [0, 1]d+1 as per
Lemma 3.2, we can get some sense of the scale of our results by noting that we
have only explored part of a dd/2e-dimensional subspace of this. On the other
hand, the results of the original paper only apply to symmetric algorithms,
which is also a dd/2e-dimensional subspace.

We have also not proven any results about general trees. The techniques
of [8] rely on the useful concept of tree domination from [4] to show that the
1-level d-regular tree is the “easiest to reconstruct”, in some sense, and that the
majority algorithm achieves reconstruction on all trees. It remains conceivable
that asymmetric algorithms that take advantage of tree structure could perform
well on general trees, although we think it is unlikely.

We can also generalize the tree reconstruction problem to use labels from an
alphabet larger than {0, 1}. In this generalized version, if the alphabet has k
labels, then each child is given the same label as its parent with probability 1−
(k−1)ε, and each of the possible different labels with probability ε each. These
were briefly discussed in [8], which points out that the tree domination technique
for proving that the 1-level d-regular tree is the “easiest to reconstruct” no longer
apply, although they note that there is still the most mutual information between
the leaves and root of that tree than those of any other tree. However, our
results suggest that a different obstacle exists in even the 1-level d-regular trees,
in that the performance of the “obvious” majority algorithm is very sensitive
to tie-breaking behavior. When there are only two labels, a tie is a “global”
phenomenon, whereas with three or more labels, there may be ties for the most
common label involving only a small fraction of the leaves. In addition, ties can
also span more than two labels.

When we examine multilevel trees with more than two labels, there is bad
news for generalization as well. Generalizing the results from [8], a natural
candidate for the optimal recursive reconstruction algorithm is the “unbiased
plurality” algorithm, which outputs the most common label among its inputs,
choosing uniformly randomly from among the most common labels if there is
more than one. However, if we consider the case of three labels and look at
the simplest possible asymmetric tree depicted in Figure 6, we find already that
unbiased plurality does not do as well as a plurality algorithm that breaks ties
towards the node v, i.e. the algorithm outputs the most common label among
its inputs, but when each label appears once in its input, it outputs the label of
v. Note that the latter algorithm is still symmetric — it is not more likely to
reconstruct any label over any other. Empirically (with Sage [3]), we find that
for a range of ε including [0.0485, 0.049], this plurality algorithm that breaks ties
towards v achieves reconstruction while the unbiased plurality algorithm fails
to do so. This is in stark contrast to the 2-label situation studied in [8], where
all symmetric plurality algorithms achieve reconstruction for the same range of
ε.
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Figure 4: The simplest possible asymmetric tree. Ties should be broken in favor
of v.

v
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