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Abstract

The Morava stabilizer group Sn at a prime p is the automorphism
group of the Honda formal group law Fn. The maximal finite subgroups
of Sn are central to the construction of higher real K-theories, and were
first classified by Hewett. In this paper, we use ideas inspired by Kummer
theory to produce an explicit expression for the generators of the largest
nonabelian finite subgroup when p is odd.
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In this paper we examine generators of the largest nonabelian finite subgroup
G1 of the Morava stabilizer group Sn at a prime p > 2. As a group, G1 is
generated by one generator ζp of order p and one of order prime to p. Since the
latter is easy to compute, most of the paper is devoted to computing ζp.

In the first section, we give a brief overview of formal group laws and their
use in chromatic homotopy theory. Technically speaking, only Definition 1.4 and
Theorems 1.5 and 1.6 are relevant to the body of the paper, but we include more
details to motivate our question and situate it within (a subset of) chromatic
homotopy theory. This information is largely from Ravenel’s “green book” [8].
We then summarize the contributions of Hewett, Bujard, and Henn and their
relevance to our work.

The next section forms the meat of the paper, and is devoted to constructing
an embedding of Qp(ζp) into the division algebra End(Fn)[1/p]. The meat of this
involves constructing a certain element αSm such that there are a1, · · · , ap−2 ∈
Qp with

ζp = a0 + a1αS
m + a2(αSm)2 + · · ·+ ap−2(αSm)p−2.

In the the final section, we use this embedding to compute values for the
coefficents a0, · · · , an. To do this, we use the fact that the trace of any nontrivial
power of αSm is zero to compute the coefficients in terms of relatively simple
trace maps. We end with some examples, listing explicit values of ζp when
p = 3, 5, and 7.

Finally, we include an appendix giving an algorithm based on Hewett’s work
to produce explicit values of ζp at specific primes.

1 Background

One particularly elegant area of modern algebraic topology is chromatic homo-
topy theory, which uses tools from algebraic geometry to study complex-oriented
cohomology theories and their applications to stable homotopy theory. The cen-
tral geometric object of study is a formal group law, which is essentially a power
series in two variables that behaves like a group operation.

Definition 1.1. A formal group law F (x, y) over a nilpotent-free ring R is an
element of R[[x, y]] such that:

1. F (x, y) = x+ y+ terms of higher degree.

2. F (x, F (y, z)) = F (F (x, y), z)

It follows (with some effort) from this definition that F (x, y) = F (y, x) and
that there is a power series ι such that F (x, ι(x)) = 0, so we have “power series
versions” of all the axioms for an abelian group. We can make this more concrete
by using F to put an abelian group structure on R[[x]] with operation +F given
by a+F b = F (a, b). In this paper, however, we’re more interested in morphisms
between formal group laws.
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Definition 1.2. Let F and G be formal group laws over R. A morphism from
F to G is a power series h ∈ R[[x]] such that

h(F (x, y)) = G(h(x), h(y)).

An invertible morphism is called an isomorphism. A morphism from F to
itself is called an endomorphism, and an invertible endomorphism is called an
automorphism.

Example 1. Let F be a formal group law over R and r any element of R. Then,
there is an endomorphism r given by the (rather small) power series rx.

Example 2. Let n be an integer and F a formal group law. Then, there is an
endomorphism [n] of F , defined inductively via:

1. [1]x = x

2. [n+ 1]x = [n]x+F x

3. [−n]x = ι([n]x)

The endomorphisms of a given formal group law F turn out to form a ring
End(F ), called the endomorphism ring of F , with operations given by +F and
composition, and the function Z → End(F ) given by n 7→ [n] is a ring homo-
morphism!

The main use of formal group laws in algebraic topology arises from their
connection with complex-oriented cohomology theories. We can associate a
formal group law to each (complex orientation of a)cohomology theory, which
allows the geometric tools used to study formal group laws to apply to cohomol-
ogy theories. Rather than going into the general construction, we’re just going
to look at specific formal group laws: those defined over Fp.

It turns out that there aren’t very many distinct formal group laws over Fp.
In particular, there is an invariant called height such that any formal group law
of height n over Fp is isomorphic to the following formal group law:

Definition 1.3. The Honda formal group law Fn is the unique formal group
law over Fpn satisfying

[p]x = xp
n

.

So if we’re working over finite fields, we only need to look at the Honda
formal group laws. Just as it’s interesting to look at the cohomology operations
corresponding to a given spectrum, it turns out to be fruitful to look at auto-
morphisms of a given formal group law. This leads us to make the following
definition.

Definition 1.4. The Morava stabilizer group Sn is the automorphism group of
Fn. (Equivalently, Sn is the group of units in the endomorphism ring End(Fn).)
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The Morava stabilizer group shows up in a variety of contexts related to
stable homotopy. One form of the Adams-Novikov spectral sequence takes the
form1

E2
r,s = Extr,sBP∗BP

(BP∗, BP∗)

and converges to (the p-localization of) the stable homotopy groups of spheres.
Since this can be difficult to compute, we localize the sphere spectrum S at the
Morava K-theory K(n). This lets us restrict our attention from all of BP∗BP
to the automorphisms of the single formal group law Fn, arriving at a spectral
sequence

H∗c (Sn, (En)∗)
Gal(Fpn/Fp) ⇒ π∗LK(n)S,

where En is a certain localization of BP.
The upshot of all this is that understanding the continuous group cohomol-

ogy of Sn with coefficients in a certain ring should let us build up approximations
to (the p-localization of) the stable homotopy groups of spheres! One key step
in this direction is understanding the structure of Sn, which requires us to un-
derstand End(Fn).

Theorem 1.5. Let On = Zp[ω], where ω is a primitive (pn− 1)th root of unity.
Then, End(Fn) can be identified with On〈S〉 subject to the relations Sn = p and
Sω = ωpS.

The identification works roughly as follows: S corresponds to the power
series x 7→ xp and ω corresponds to x 7→ ωx. For each element a = a0+a1p+· · · ∈
Zp, we have a power series [a0] +F [a1p] +F [a2p

2] + · · · . (The sum converges in

Fpn [[x]] because the leading term of [akp
k] is xp

k

.)
However, Sn remains a very large and complicated group, and its action on

(En)∗ is relatively complicated, so the cohomology remains difficult to compute.
We thus have to take another approximation by replacing the (localization of
the) sphere spectrum LK(n)S with something else. Given a closed subgroup G
of Sn, we can compute the “homotopy fixed points” of G acting on En to get
a spectrum EhGn . Of particular interest is the case where G is a maximal finite
subgroup of Sn, in which case EhGn is called a “higher real K-theory” and it is
believed that π∗(E

hG
n ) is a reasonable approximation to π∗(LK(n)S). Then, we

have a spectral sequence

H∗c (G, (En)∗)⇒ π∗(E
hG
n )

In short, we can use maximal finite subgroups G ⊆ Sn to compute the homotopy
groups of the spectrum EhGn . These are believed to be a reasonable approxima-
tion to the homotopy groups of LK(n)S, which can be used to approximate the
(p-localization of) homotopy groups of spheres.

1It is beyond the scope of this paper to properly introduce the various spectra appearing
in these calculations, (e.g. BP , K(n), and En). The reader will not miss out on anything
important by viewing the spectral sequences as black boxes relating Sn to questions topologists
care about.
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To compute the cohomology of G with coefficients in (En)∗, a good first step
is to know what G actually is. A complete list of maximal finite subgroups was
first computed by Hewett [7], although we will give the list in a form due to
Bujard [2].

Theorem 1.6 (Hewett, Bujard). Let p be an odd prime, and let n = (p −
1)pk−1m, where m is not divisible by p. Then Sn has k + 1 (conjugacy classes
of) maximal finite subgroups G0, · · · , Gk. These groups are given by:

G0 = Cpn−1

Ga = Cpa o C
(pmpk−a−1)(p−1)for 1 ≤ a ≤ k,

where Cr denotes a cyclic group of size r. If n is not divisible by (p − 1), then
C0 is the only maximal finite subgroup.

The above cohomology groups have been computed in the case p = 3, n = 2
by Goerss et al. [4] using an explicit expression for the generator ζ3, and we
belief that explicit expressions for generators in other cases will similarly aid in
further cohomology computations. Some generators are easy: G0 is simply the
group of roots of unity in Zp[ω] and is generated by ω. The C

(pmpk−a−1)(p−1)
piece of the higher groups is a subgroup of G0 and is generated by ω to the power
of pn−1

(pmpk−a−1)(p−1)
. As such, we will restrict our attention to the p-subgroups

Cpa . Both Bujard’s and Hewett’s constructions imply that any element of order
pa can be taken to be the generator of Cpa , so our problem reduces to computing
elements of order pa in Sn.

Bujard’s construction, as with a similar one by Behrens and Hopkins in [1],
depends on the fact that any field F containing Qp with [F : Qp] = n embeds
in any division algebra of dimension n2 over Qp. There does not seem to be a
general way to compute such an embedding, so Bujard’s construction does not
give explicit generators.

Hewett’s construction similarly depends on such an embedding when a > 1.
When a = 1, it can with a fair amount of effort be turned into an algorithm, us-
ing an algorithm of Hanke [5] to construct a key isomorphism of cyclic algebras.
Hewett’s work was not intended as an explicit algorithm, however, and there-
fore this “constructive version” of his work runs rather slowly, around O(pn5). It
does not seem to be adaptable to create an explicit formula, and its expressions
are quite large, having O(n2) terms. We give a sketch of this algorithm in the
Appendix.

In this paper, we will provide an explicit formula for the p-generator of G1

at odd primes, which has O(p) terms. The search for this formula relied quite
deeply on many aspects of Hewett’s paper, although the final form of the proof
does not interact with it at all.

I only very recently (after writing the rest of this paper) became aware of an
article [6] by Henn examining topological aspects of the case n = (p−1). Henn’s
Lemma 19 plays much the same role as our Proposition 2.3 for this value of n
although his proof is quite different, and he does not go on to compute explicit
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coefficients. I have so far not been able to determine whether Henn’s work can
be generalized to other values of n, or whether an analogue of our Theorem 3.1
can be acheived on Henn’s choice of embedding.

As a final note, there is some question as to what an “explicit” representation
is. For example, writing ζp as a generator of G1 is clearly insufficient, since it
does not tell us how to actually construct ζp as an element of Sn and has simply
avoided the problem. On the other hand, it’s less clear with something like√

2: is this “explicit”? For the purposes of this paper, we will take explicit
representations to mean polynomials in ω and S with coefficients in Zp. Thus,
for example

√
2 is acceptable when p = 7, since it is a 7-adic integer, but not

when p = 3, when we would ask for an expansion in ω.

1.1 Notation

We collect here some notational choices we use in the rest of the paper.

1. We denote by Kn the unique unramified extension of Qp of degree n.

2. We denote by µ`(F ) the group of `th roots of unity in the field F.

3. We denote by ζp a primitive p-th root of unity in either an extension of
Qp or Sn.

2 An Embedding of Qp(ζp) into End(Fn)[1/p].

The finite subgroup G1 ⊆ Sn is the largest nonabelian finite subgroup of Sn, and
exists whenever (p − 1) divides n. For the rest of this paper, therefore, we will
set n = (p− 1)m. We will also find it useful to extend End(Fn) to the division
algebra End(Fn)[1/p].

In this section, we compute an α so that Qp(αSm) = Qp(ζp). We do this
by constructing an element Z(y, r) ∈ Qp(ζp) such that Qp(Z(y, r)) = Qp(ζp) so
that the equation (αSm)p−1 = Z(y, r)p−1 is solvable for α.

Definition 2.1. If y satisfies yp−1 = 1 and r is a generator of (Z/p)×, we will
set:

Z(y, r) =

p−1∑
i=1

yiζr
i

p

Lemma 2.2. Let σr denote the generator of Gal(Qp(ζp)/Qp) induced by σr(ζp) =
ζrp . Then,

σr(Z(y, r)) = y−1Z(y, r).
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Proof. More or less by definition, we see that

σr(Z(y, r)) = σr

(
p−1∑
i=1

yiζr
i

p

)

=

p−1∑
i=1

σr(y
iζr

i

p )

=

p−1∑
i=1

yiζr
i+1

p

= y−1
p−1∑
i=1

yiζr
i

p

= y−1Z(y, r).

�

From this, we can see that Z(y, r)p−1 is fixed by σr, and therefore lies in Qp.

Proposition 2.3. Qp(Z(y, r)) = Qp(ζp).

Proof. Since Z(y, r) ∈ Qp(ζp), it suffices to note that Z(y, r) has p− 1 distinct
Galois conjugates under Gal(Qp(ζp)/Qp) given by y−iZ(y, r) for 0 ≤ i < p− 1.
This implies that [Qp(Z(y, r)) : Qp] = (p− 1), so the result follows. �

Recall that G1 only exists if n is divisible by (p− 1). Therefore, for the rest
of this paper, let n = (p − 1)m. We want to construct an element of Sn with
the same algebraic properties as Z(y, r). In particular, we’re going to look for a
value of α satisfying (αSm)p−1 = Z(y, r).

A simple calculation shows that

(αSm)p−1 = α1+σm+σ2m+···σ(p−2)m

p,

so we’re looking for values of α with α1+σm+σ2m+···σ(p−2)m

= Z(y, r)/p. To get
a handle on the left hand side of the equation, we make the following definition:

Definition 2.4. The partial norm Nm : K×n → K×m is defined as follows:

Nm(α) = α1+σm+σ2m+···σ(p−2)m

In particular, we note that the partial norm is multiplicative and reduces to
αp−1 if α ∈ Qp. The next proposition establishes the existence of the desired α,
and will occupy our attention for the next two pages.

Proposition 2.5. Choose y to be congruent to r−1 modulo p. Then, there exists
an α ∈ Kn such that (αSm)p−1 = Z(y, r)p−1.
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Before proving this proposition, we note that it would be easy if we knew
Z(y, r)p−1/p were congruent to 1 modulo p. Indeed, any (p − 1)st root of
Z(y, r)p−1/p would lie in Qp by Hensel’s lemma, and therefore would be a valid
choice of α.

Since not all numbers are congruent to 1 modulo p, we’ll need to go to a
bit more effort. First, we’ll show that Z(y, r)p−1/p lies in Z×p (so that it makes
sense to speak of “mod p” to begin with.) Second, we’ll show that the partial
norm is surjective on roots of unity, which we will argue is sufficient to finish
the proof.

Lemma 2.6. If y is equivalent to r−1 modulo p, then Z(y, r)p−1/p is an element
of Z×p .

Proof. We need to show that Z(y, r)p−1 is divisible by p but not p2. To begin,
take π = ζp − 1 as a uniformizer for Qp(ζp). The given condition implies that y
is the Teichmuller representative [r−1] of r−1, so that we can write

p−1∑
i=1

yiζr
i

p =

p−1∑
i=1

[r−i](π + 1)r
i

=

p−1∑
`=1

[`−1](π + 1)`

=

p−1∑
`=1

[`−1]
∑̀
k=0

(
`

k

)
πk

=

p−1∑
k=0

(
p−1∑
`=k

[`−1]

(
`

k

))
πk.

The coefficient of π0 in this sum is
∑p−1
`=1 [`−1], which is the sum of all (p− 1)st

roots of unity and therefore zero. The coefficient of π1 is
∑p−1
`=1 `[`

−1], which

reduces mod p to
∑p−1
`=1 1 = −1. Therefore, we can write

Z(y, r) = (−π +O(π2))p−1

= πp−1 +O(πp)

= up+O(p
p

p−1 )

for some unit u, as desired. This implies the lemma. �

Recall that Kn contains all of its (pn − 1)th roots of unity, which form a
cyclic group µpn−1. The partial norm maps µpn−1 in Kn to µpm−1 in Km-we
will now show that this is surjective.

Lemma 2.7. The restriction of the partial norm Nm : µpn−1 → µpm−1 is sur-
jective.
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Proof. We note that for α ∈ µpn−1, we have:

Nm(α) = α1+σm+σ2m+···σ(p−2)m

= α1+pm+p2m+···+p(p−2)m

= α
pn−1
pm−1

It follows if α has order pn − 1, then Nm(α) must have order pm − 1. But the
only subgroup of µpn−1 of size pm − 1 is µpm−1, so Nm(α) must be a generator
of µpm−1. This implies the partial norm must be surjective, as desired. �

We now know enough to construct an α to prove Proposition 2.5! (Remember
Proposition 2.5? It’s at the bottom of page 7.)

Proof of Proposition 2.5. Let β = Z(y, r)p−1/p, so that the given condition is
then Nm(α) = β. We know from Lemma 2.6 that β ∈ Z×p . Now, let γ be a

(p − 1)th root of unity congruent to β modulo p. By Lemma 2.7, we can find
µ ∈ µpn−1 with Nm(µ) = γ. Now, β

γ is congruent to 1 modulo p, so we can set

α = µ

(
β

γ

) 1
p−1

.

�

Finally, this gives us the promised embedding! It’s not quite clear yet where
ζp is sent, so we’ll have to do a bit more work in the next section.

Corollary 2.8. There is an embedding Qp(ζp)→ End(Fn)[1/p].

Proof. We simply identify Qp(ζp) with Qp(Z(y, r)), and send Z(y, r) to αSm.
This extends to a full embedding because αSm commutes with members of Qp
and powers of itself. �

3 Computing Explicit Coefficients

We know from the previous section that Qp(αSm) = Qp(ζp), and we have a way
of constructing α. All that remains is to actually express ζp in terms of αSm.
This is the content of the following theorem:

Theorem 3.1. The generator ζp of the p-part of G1 can be written as

ζp =

p−2∑
k=0

Z(yk, r)

(p− 1)Z(y, r)k
(αSm)k.

The coefficients of (αSm)k all lie in Zp.

The proof of this theorem depends strongly on the following trick we’ll use
to isolate coefficients:
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Lemma 3.2. The coefficient of (αSm)k in the expansion of ζp is

Tr
(

ζp
Z(y,r)k

)
p− 1

Proof. Suppose

ζp = a0 + a1αS
m + a2(αSm)2 + · · ·+ ap−2(αSm)p−2.

We can identify αSm with Z(y, r), and write:

ζp = a0 + a1Z(y, r) + a2Z(y, r)2 + · · ·+ ap−2Z(y, r)p−2.

We can then divide by Z(y, r)k to isolate ak, which gives:

ζp
Z(y, r)k

= a0Z(y, r)−k + · · ·+ ak + · · ·+ ap−2Z(y, r)p−2−k.

Since the trace of an element of Qp(ζp) is Qp-linear, we see that:

Tr

(
ζp

Z(y, r)k

)
= a0 Tr(Z(y, r)−k) + · · ·+ Tr(ak) + · · ·+ ap−2 Tr(Z(y, r)p−2−k).

But if j is not divisible by p− 1, we have:

Tr(Z(y, r)j) =

p−2∑
i=0

σir(Z(y, r)j)

=

p−2∑
i=0

y−ijZ(y, r)j

= 0.

So almost all of the terms on the right hand side disappear! We’re left with

Tr

(
ζp

Z(y, r)k

)
= Tr(ak) = (p− 1)ak,

from which the lemma follows. �

This reduces the proof of the theorem to computing a couple of traces!

Proof of Theorem 3.1. Using the lemma, we only need to compute Tr
(

ζp
Z(y,r)k

)
.
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We have

Tr

(
ζp

Z(y, r)k

)
=

p−1∑
i=0

ζr
i

p

y−ikZ(y, r)k

=

p−1∑
i=0

yikζr
i

p

Z(y, r)k

=

∑p−1
i=0 y

ikζr
i

p

Z(y, r)k

=
Z(yk, r)

Z(y, r)k
,

as desired. It remains to check that the coefficients lie in Zp as claimed.
All of these coefficients must lie in Qp follows because the image of the trace

map does. Now, extend the usual valuation vp on Kn to End(Fn)[1/p] by setting
vp(S) = 1/(p− 1). We know from Proposition 1.1 of [2] that ζp lies in Sn, so in
particular it has nonnegative valuation. Now, the valuation of an element of Qp
is an integer, and vp((αS)k) = k/(p−1), so no two terms can share a valuation.
Therefore, if any coefficient had negative valuation, it would force the whole
sum to. Since this is a contradiction, each coefficient must have nonnegative
valuation and lie in Zp, as desired. �

Remark 3.3. The first two terms of this expansion take the particularly nice
form

ζp =
−1

p− 1
+

1

p− 1
αSm + · · · .

We might guess that this pattern continues and gives nice coefficients the
whole time! Sadly, we would be wrong.

Example 3. Below we list some values of ζp when n = (p− 1) and p is relatively
small. Recall that for k ∈ Fpn , [k] refers to the (pn − 1)th root of unity in Kn

congruent to k mod p.

p α ζp

3 [
√
−1] −1

2 + 1
2αS

5 [ 78
√

2](4[2]− 3[4])1/4 −1
4 + 1

4αS + 2[3]−1
4·5 (αS)2 + 4[3]+3

4·52 (αS)3

7 [ 19608
√

2](−39[6]− 16[4])1/6 −1
6 + −1

6 αS + [5]+2
6·7 (αS)2 + −3[5]+8

6·72 (αS)3 +
19[5]−18

6·73 (αS)4 + −39[5]+55
6·74 (αS)5

4 Acknowledgments

I would first of all like to thank Lyuboslav Panchev for all of his time, men-
torship, and support, which has been invaluable to me throughout this whole

11



program. I would also like to thank Haynes Miller for proposing this problem,
and for many conversations, through which I’ve learned most of what I know
about algebraic topology. I’d also like to thank Slava Gerovitch, Ankur Moitra,
and David Jerison for their tremendous effort in organizing SPUR, and partic-
ularly Ankur and David for their many helpful conversations and comments.
Computations for this project were implemented and run in SageMath [3].

A Algorithms Based on Hewett’s Construction

Here we present an algorithm for computing ζp based on Hewett’s construction
of G1, which is supplanted by the main body of the paper but may be of some
interest. This depends on the notion of a cyclic algebra, defined here:

Definition A.1. Let L/K be a cyclic field extension of degree n with Galois
group generated by σ, and let y ∈ K. The cyclic algebra 〈L/K, σ, y〉 is the
algebra L〈S〉 subject to the restrictions Sn = y and Sx = σ(x)S for any x ∈ L.

In particular, we can identify End(Fn)[1/p] with the maximal order in 〈Kn/Qp, σ, y〉.
Hewett’s Theorem 6.8 produces a pair of cyclic algebras which he argues are iso-
morphic by non-constructive means.

Theorem A.2 (Hewett). Let r, σr be as in Section 2. Then, there is a (p−1)st

root of unity y such that there is an isomorphism

ψ : 〈Qp(ζp)/Qp, σr, y〉 → 〈Kn/Qp, σ, y〉.

Given such an isomorphism, we only need to compute ψ(ζp) to find our
desired embedding. The general isomorphism problem for cyclic algebras over
the same field has been studied by Hanke, who gives the following algorithm
(See algorithms 5 and 7 in [5].)

Theorem A.3 (Hanke). There exists an isomorphism of cyclic algebras of de-
gree n

A1 = 〈L1/K, σ1, b1〉 → 〈L2/K, σ2, b2〉 = A2

if and only if the following steps have a solution.

1. Compute x1 ∈ L1L2 such that N1(x1) = b1.

2. Compute x′2 ∈ L1L2 such that

σ1(x′2)

x′2
=

x1
σ2(x1)

.

3. Compute x′′2 ∈ L2 such that N2(x′′2) = b−12 N2(x′2).

If such an isomorphism exists, it can be computed via the following steps:
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1. Define

γ : 〈L1/K, σ1, b1〉 ⊗ 〈L2/K, σ2, b
−1
2 〉 → 〈L1/K, σ1, 1〉 ⊗ 〈L2/K, σ2, 1〉

by sending the S1 to x1S1 and S2 to x′′2(x′2)−1S2.

2. For each of i = 1, 2, compute an isomorphism

φi : 〈Li/K, σi, 1〉 →Mn(K)

via linear algebra.

3. Use the previous steps to compute injections:

ϕi : 〈Li/K, σi, bi〉 → 〈Li/K, σi, 1〉 →Mn(K)⊗Mn(K) = Mn2(K)

4. Fix a basis and identify Mn2(K) with EndK(A1).

5. Choose a matrix X ∈ Mn2(K) such that XϕX−1 = λ, the left-regular
representation of A1.

6. Set ϕ′2 = Xφ2X
−1, and let ρ be the right-regular representation of A2.

7. The desired isomorphism is then (ϕ′2)−1 ◦ ρ.

It is not too hard to compute x1, x
′
2, x
′′
2 , and a quick computation confirms

the following proposition.

Proposition A.4. Given y and r such that y ≡ r−1 mod p, we can construct
x1, x

′
2, and x′′2 , as follows (again using the notation from section 2, above.)

x1 = y
1

1−p

x′2 = Z(y, r)

x′′2 = α

Therefore, an algorithm to compute ζp ∈ Sn just needs to follow the above
steps, and output (ϕ′2)−1 ◦ ρ(ζp). We will not discuss this further.
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