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Abstract. We provide a geometrically natural formula for the triple linking number of
3 pairwise unlinked curves in three dimensional hyperbolic space.
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1. Introduction

In a three-dimensional space, two closed curves that are disjoint with each other may
have nontrivial positioning relationship, in which neither of the curves can be shrunk to
a point without touching the other. Such phenomenon is called linking, and two curves
are linked to each other if they cannot be “pulled apart” in the above sense. C.F. Gauss
(1833) once gave an integral formula for the linking number of two closed curves in the
3-dimensional Euclidean space (R3), which represents the number of times one curve wraps
the other.

For 3 closed curves, there is an analogous number called the Milnor invariant of a triple
link, developed by John Milnor (1954). Like in the 2-component case, the Milnor invariant
can also be represented by an integral formula, but only in the case when the pairwise
linking numbers all vanish.

The linking numbers (both for 2 curves and for 3 curves) generalize naturally to other
3-dimensional manifolds with nice topological properties, such as S3 and H3. D. DeTurck,
et al. (2011) investigated the integral formulas for the cases of R3 and S3, and in this paper,
we will state an integral formula for the case of H3, the 3-dimensional hyperbolic space,
which is geometrically natural.

2. Background

2.1. Double Linking. We begin with the double linking case. It is well known that two
oriented closed curves in R3 have a unique integer that describes the linking of them, namely
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the linking number, which describes the number of times one curve wraps around the other.
It can also be shown that the link-homotopy classes of all 2-component links in R3 are in
bijective relationship with the set of all integers, via the linking number.

An interesting fact about the linking number is that it can be represented by an integral
formula, as stated in the following theorem of Gauss:

Theorem 2.1. The linking number of two curves γ1, γ2 : S1 → R3, is given by

Lk(γ1, γ2) =

∫
S1×S1

dγ1
ds
× dγ2

ds
· γ1(s)− γ2(t)
|γ1(s)− γ2(t)|3

dsdt

The reason that this formula is true is due to a degree argument as follows. We first
introduce the concept of the configuration space:

Definition 2.2. For a topological space X, let the configuration space Confn(X) denote
the space of n-tuples of distinct points in X. Formally, Confn(X) = {(x1, x2, . . . , xn) ∈
Xn : ∀1 ≤ i < j ≤ n, xi 6= xj}.

The configuration space has the subspace topology of Xn.

Lemma 2.3. Let γ1, γ2 : S1 → R3 be two closed curves, then the linking number of γ1 and
γ2 is equal to the degree of a map G ◦ eL : T 2 → S2 where eL = γ1 × γ2 : (T 2 =)S1 × S1 →
Conf2(R3), and G : Conf2(R3)→ S2 is defined by

G(x, y) =
x− y
|x− y|

Proof. Since the linking number and the degree of a map are both homotopy invariant,
we can assume without loss of generality that γ1 is at a standard position, which is a unit
circle on a horizontal plane, oriented counter-clocewise (otherwise we can apply a homotopy
to place it this way). Next, we consider the vertical cylinder below this circle. It follows
that the linking number of γ1 and γ2 can be computed by counting the signed intersection
number of γ2 with this cylinder (outwards as negative, inwards as positive). This is because
the linking number of γ1 and γ2 is equal to the signed intersection number of γ2 with
any surface bounded by γ1, with the orientation coherent with γ1. Put a bottom face on
the cylinder at low enough altitude, and we will get a surface bounded by γ1, so that the
intersection number of γ2 with this cylinder is exactly the linking number of γ1 and γ2.

As shown in figure 1 below, the two pairs (Y1, X1) and (Y2, X2) are where the Gauss map
covers N ∈ S2. Both of them are negative, so the linking number of γ1 and γ2 is −2.

On the other hand, we prove that the signed intersection number of γ2 with this cylinder
is also the degree of G◦eL. Now we have put the two curves at a generic position, so that γ2
and the cylinder below γ1 intersect transversely. This in particular implies that the north
pole N of S2 is a regular value of G ◦ eL. Since G ◦ eL(s, t) = N exactly when γ1(s) is right
above γ2(t), the signed intersection number of γ2 with the cylinder below γ1 is also equal
to the signed number of times that N is covered by G ◦ eL. By the property of the degree
of a map, this is equal to the degree of G ◦ eL. �

We know that the degree of a map can be computed by the pull-back of a differential
form: for a map f : X → Y where X,Y are manifolds of the same dimension, and ω being
any differential form on Y of full dimension,
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Figure 1

deg(f) ·
∫
Y
ω =

∫
X
f∗ω,

Now we let X = T 2, Y = S2, f = G◦ eL, and ω being the standard area form on S2, then
by calculation, we get exactly the Gauss’ linking integral.

Another thing to notice about Gauss’ formula is that the Gauss map above is geometri-
cally motivated, that is, it is equivariant under the isometries of R3, which means the action
of the isometry group of R3 is commutative with the map G (if we let translations of R3

act trivially on S2).

2.2. Triple Linking. In the case of triple linking, even if the three pairwise linking numbers
are 0 (which means that if we ignore any of the three curves, the remaining two can be
shrunk to constant maps), the three curves together may still form a link. The famous
example for this case is the Borromean rings (figure 2):

For the triple linking case, John Milnor (1954) discussed this phenomenon in details in
his paper Link Groups, in which he describes a link (with arbitrarily many components) in
terms of the fundamental group of the complement of the link. Specifically, there is also
a number called the Milnor µ-invariant of a link, which is invariant under link homotopy,
and defined up to mod an integer depending on the pairwise linking numbers. However,
in the case where the three pairwise linkings are trivial, the Milnor invariant is defined as
a numerical integer, and DeTurck et al. (2011) found an integral formula for the Milnor
µ-invariant in this case.
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Figure 2

Their proof proceeds by two steps. First they proved the Milnor invariant is related to
the Pontryagin invariant of a map gL : T 3 → S2, just as the pairwise linking number is
related to the degree of a map from T 2 → S2. In the case the pairwise linking numbers
are 0, we have that deg(gL|T 2) = 0 for all the subtori T2 ⊂ T3, and there exists an integral
formula for the Pontryagin ν-invariant of gL:

(1) ν(gL) =

∫
T 3

d−1(g∗L(ω)) ∧ g∗L(ω)

where ω is the standard area form on S2. Similar to the map G ◦ eL, their map is given as
the composition of two maps

T 3 → Conf3(R3)→ S2.

The first map is given by product of the three curves, and the second map is given by
FR3 = GR3/|GR3 | where

GR3(A,B,C) =
a

|a|
+

b

|b|
+

c

|c|
+
a× b
|a||b|

+
b× c
|b||c|

+
c× a
|c||a|

(2)

=
a

|a|
+

b

|b|
+

c

|c|
+ (sinα+ sinβ + sinγ)n(3)

(For notations, A,B,C denote three distinct points in R3, and a is the vector from B to
C, etc. The vector n is the unit normal vector to the oriented plane determined by A,B,C,
which is undefined when the three points are on the same plane.) Note that similar to the
double linking case, F is again isometry-equivariant.
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3. Triple Linking in Hyperbolic Space

In order to find a geometrically meaningful integral formula for triple linking in H3, we
need to find an FH3 : Conf3(H

3)→ S2 which is Isom(H3) equivariant. We now construct
such an FH3 .

Throughout the following we will use the ball model of hyperbolic space. The advantage
of the ball model is that the boundary of the space, which consists of points at infinity, is
an S2, so that the isometry group of H3, namely Isom(H3), has a natural action on S2 by
extending to points at infinity. In particular, elements of Isom(H3) act as conformal maps
on the sphere at infinity.

Our first intuition is to define FH3 in the same way as in R3, which will inevitably give us
the answer, because H3 is diffeomorphic to R3, which means topologically there is nothing
different between them. However, the problem is that this definition is not geometrically
natural.

Next, we seek a variant of the map FH3 which respects the geometry of H3. For this
intention, it is natural to consider the geodesic triangle formed by three points, because
geodesics are natural in the geometry of H3, and they are isometry-invariant (which means
any isometry of H3 takes a geodesic to another geodesic). However, we again meet a problem
that we cannot compare vectors in different tangent spaces, or do any computation with
them. Then we had an idea that we can parallel transport the vectors at each vertex to
another point uniquely associated with them in a geometric way, and do computations at
that point. Fortunately this idea gives us a meaningful formula.

The special point we found is the incenter of the geodesic triangle formed by the three
points.

Theorem 3.1. The three angle bisectors of a geodesic triangle in H3 intersect at one point,
which we call the incenter of the geodesic triangle. (shown in figure 3)

Proof. This is a classical result in hyperbolic geometry. The bisector of an angle in the
hyperbolic space is the locus of points with the same (hyperbolic) distance to the two sides
of the angle, and the intersection point of two angle bisectors satisfies that it has the same
distance to the three sides of the geodesic triangle, so that it is on the third angle bisector.

It can also be shown that the incenter lies on the totally geodesic submanifold passing
through the three vertices (which, in the ball model, is the unique sphere passing through
the three vertices and perpendicular to the sphere at infinity at their intersection), due to
the fact that the bisector of an angle lies in the same plane as the two sides. �

One of the most important reasons that we choose the incenter of the geodesic triangle
is that the incenter depends continuously on the three vertices, along with the three angle
bisectors. Even if the geodesic triangle is degenerate (where the three vertices lie on the
same geodesic), the incenter of this triangle makes sense, which is exactly the vertex that
is between the other two. (Other points associated with the geodesic triangle do not have
this property, such as the circumcenter.)

Now we are ready to give the map FH3 . We define FH3 through the following process.
Let I be the hyperbolic incenter of x, y and z. Let ag denote the unit vector at y pointing

towards z along the geodesic between them. (Similarly, let bg is the unit vector at z pointing
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Figure 3

towards x, and cg the from x to y, where the subscript g stands for geodesic.) In addition
let the three angles of the geodesic triangle formed by x, y, z be αg, βg, γg respectively, and
let ng be the unit vector normal to the unique totally geodesic submanifold determined by
x, y, z (which is a sphere perpendicular to the boundary S2 when they are not on the same
geodesic, and the direction depends on the ordering of the three vertices, using the right
hand rule).

Parallel translate ag, bg and cg to I along geodesics (from y to I, etc.), and call them

ãg, b̃g and c̃g respectively.
Then, construct a vector in TIH

3 (the tangent space at I), as:

V (x, y, z) = ãg + b̃g + c̃g + (sinαg + sinβg + sin γg)ng

When the three vertices x, y, z are on the same geodesic, n is undefined but V is still
defined since sinαg = sinβg = sin γ = 0. We note that V is never zero. The reason for
this is that the second part of its expression, namely (sinαg + sinβg + sin γg)ng is nonzero

whenever x, y, z are not on the same geodesic, while the first part, namely ãg + b̃g + c̃g is
nonzero when x, y, z are distinct points on the same geodesic. Noting that the two parts are
perpendicular to each other, since ãg+ b̃g+ c̃g is tangent to the totally geodesic submanifold.

Finally, we draw a geodesic ray from I in the direction of V

(4) FH3(x, y, z) = lim
t→∞

expI(tV )

so that FH3(x, y, z) is a point on the sphere at infinity. (shown in figure 4 below)
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Figure 4

Then we have the following:

Theorem 3.2. With FH3 defined by Equation 4, and a link L with characteristic map
eL : T 3 → Conf3(H

3) such that the pairwise linking numbers are 0,

µ(L) =
1

2
ν(FH3 ◦ eL).

Proof. The point of the proof is that the map FH3 is related to map FH3 in the Euclidean
case (when the three vertices are considered to be points in the unit sphere in R3). In
particular, they are homotopic.

There is an explicit homotopy between them. Let

(5) ft(x, y, z) = FH3(tx, ty, tz), t ∈ (0, 1]

We note that the incenter of tx, ty, tz depend continuously on t, and V also depends con-
tinuously on the three vertices (hence it depends continuously on t). Therefore, ft is a
homotopy.

When t = 1, f1(x, y, z) = FH3(x, y, z).
When t→ 0+, we have limt→0+ ft(x, y, z) = FR3(x, y, z).
The intuition of this statement is that near the origin, the hyperbolic spaceH3 is isometric

to the Euclidean space up to the first order. This means that as t→ 0+, FH3(tx, ty, tz) and
FR3(tx, ty, tz) are very close to each other. On the other hand, since G is scale invariant,
we have FR3(tx, ty, tz) = FH3(x, y, z), so that limt→0+ ft(x, y, z) = FR3(x, y, z).
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We will prove this statement in the next lemma, and now we assume this is true. Then
with the homotopy relationship between the two maps, we are also aware that the Pon-
tryagin ν-invariant is fixed by homotopy, and by definition the Milnor invariant of a link in
H3 is the same as the Milnor invariant of this link when it is considered to be inside the
unit ball in R3. Therefore, we have µ(L) = 1

2ν(FR3 ◦ eL) = 1
2ν(FH3 ◦ eL), as stated in the

theorem.
�

Lemma 3.3. With the notations above, we have

lim
t→0+

ft(x, y, z) = G(x, y, z)

for all (x, y, z) ∈ Conf3(H3).

Although this lemma is straightforward to understand and one can easily be convinced,
to explain it very clearly is harder than expected. In order to prove it, however, we need
to make use of the properties of the ball model (in the Euclidean space). Throughout the
following, a tangent vector

Lemma 3.4. For a point X in the unit ball D3 ⊂ R3, if a sphere P passes through X and
is perpendicular to the unit sphere S2 = ∂D3, then the radius of the sphere P is larger than
( 1
2|X| − 1) (where |X| is the length of X, or the Euclidean distance from X to the origin).

Proof. Note that P is perpendicular to S2. Let C be its center, and r be its radius, then
necessarily |C|2 = r2 + 1. This implies that the shortest distance from the origin to the
sphere P is |C| − r = 1

r+
√
r2+1

> 1
2(r+1) . The distance from X to the origin must be greater

than this, so that |X| > 1
2(r+1) , or r > 1

2|X| − 1. �

Lemma 3.5. In H3, if a vector v is parallel transported along a geodesic Γ from x1 to x2 to
a vector v′ (x1, x2 ∈ Γ), then the angle (in the ball model) between v and v′ does not exceed
the angle between γ and γ′.

Proof. Actually we can prove a stronger statement, which completely characterizes the
parallel transport along geodesics in H3.

The parallel transport in H3 (with the ball model) along geodesics goes as follows: let
X,Y ∈ H3, v ∈ TXH

3, and let PX,Y (v) be the vector obtained by parallel transporting
the vector v along the geodesic from X to Y , and let C be the center of the geodesic arc
connecting X and Y , then rotating by the angle ∠XCY induces an isometry of R3, hence
acting on vectors in R3. The vector PX,Y (v) can be obtained by rotating with angle ∠XCY ,
and then scaling properly so that PX,Y (v) has the same length as v in respective metrics
(because parallel transport preserves metric).

Let’s see figure 5 below. We know that the statement above is true when v is the tangent
vector of the geodesic from X to Y , because this is the definition of a geodesic (whose
tangent vectors remain parallel along itself). Now consider the vector v ∈ TH3X being the
unit vector perpendicular to γ inside the plane XCY (which is also a plane passing through

the origin), pointing
−−→
CX. Since parallel transport preserves metric, we know that PX,Y (v)

must be perpendicular to γ′. On the other hand, by symmetry PX,Y (v) must also lie inside
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the plane XCY (otherwise reflecting with respect to this plane is an isometry that does not
preserve the parallel transport), by preservation of length PX,Y (v) is a unit vector, and by

continuity it points in the direction
−−→
CY . Therefore, we can see that PX,Y (v) is exactly the

vector determined as stated above.
Finally, let u be the unit vector at X which is perpendicular to both γ and v, and such

that (γ, v, u) form a positively oriented triple. Then PX,Y (u) is orthogonal to the plane
XCY , and by continuity, the vector PX,Y (u) points to the same side of the plane XCY
as u. Therefore, the parallel transport of u also follows the rule above. Since (γ, v, u) is a
basis of TXH

3, and parallel transport is linear, other vectors also follow the rule above. In
particular, this means that angle between a vector and its translated vector does not exceed
the rotation angle of the transform, which is exactly the angle between γ and γ′. �

Figure 5

Proof of lemma 3.3. Let us consider the difference between V (tx, ty, tz) and G(tx, ty, tz).
First, recall that the vector a

|a| is the unit vector from ty to tz, while the vector ag is

the unit vector from ty to tz along the geodesic from ty to tz. Suppose that the radius of

the geodesic from ty to tz is r, then the angle between a
|a| and ag is equal to arcsin( |y−z|2r ).

According to lemma 3.4, it tends to 0 as t→ 0+. On the other hand, the angle between ag
and ãg does not exceed the angle between the tangent vectors of the geodesic from x to I

at respective points, which is equal to arcsin( |x−I|2R ), where R is the radius of the geodesic
from x to I. Since this angle also tends to 0 by lemma 3.4, we know that as t → 0+, the
difference between a

|a| and ãg tends to 0. The argument is similar with b and c.

For the second part, note that as t → 0+, the angles of the geodesic triangle (tx, ty, tz)
also tend to respective angles of the Euclidean triangle (x, y, z). This means that (sinαg +
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sinβg+sin γg) also tends to (sinα+sinβ+sin γ). Note that the radius of the totally geodesic
submanifold (a sphere) passing through (tx, ty, tz) tends to infinity, so that the unit normal
vectors do not vary too much on the sphere when t is small, and we have limt→0+ ng = n,
so that the second part of V (tx, ty, tz) tends to the second part of G(tx, ty, tz), hence
limt→0+(V (tx, ty, tz)−G(x, y, z)) = 0.

Finally, as t → 0+, the distance from I to the origin (i.e. |I|) tends to 0, so that the
geodesic from I in the direction of V has a large radius for a small t be lemma 3.4, so that
the angle between V (tx, ty, tz) and F (tx, ty, tz) tends to 0 as t tends to 0.

Overall, we have limt→0+ F (tx, ty, tz) = G(x, y, z).
�

Combining theorem 3.2 with equation 1, we can now give the formula for the Milnor
invariant of a pairwise-unlinked triple linking in H3:

Theorem 3.6. With usual notations, we have

µ(L) =
1

2

∫
T 3

d−1(g∗Lω) ∧ g∗Lω

where gL = F ◦ eL is given by equation 4.

Remark 3.7. In their paper, DeTurck et al. used analytic tools (such as the fundamental
solution of the Laplacian on the torus) to find the exterior antiderivative of g∗Lω, and hence
giving a more explicit formula. In this paper, we simply state the integral in a descriptive
form because it is clearer for readers to understand where this formula comes from.
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