
Invariants of machines in wiring diagrams

SPUR Final Paper, Summer 2015

Anderson Wang
Mentor Lyuboslav Panchev

Project suggested by David Spivak

July 30, 2015

Abstract

Spivak (2013) introduced wiring diagrams as a way to formalize objects or pro-
cesses which are built out of smaller parts, such as individual neurons interacting
in the brain, or parts of a computer program working together to perform a task.
These ”parts” can be thought of as elements of a category of state machines, with
smaller state machines being wired together to make larger machines. In this paper,
we study the problem of finding invariants of these state machines which both pre-
serve equivalence and satisfy a functoriality property. Although we have not fully
answered the question of whether there exists any such nontrivial invariants, we will
give some methods which could prove useful and provide some concrete invariants
that work for various classes of state machines.

1

1 Background

1.1 Overview

As stated in the abstract, the goal of this project is to investigate possible invariants
of state machines in wiring diagrams. We will first define wiring diagrams and state
machines in formal terms in order to explain what precisely is an invariant of a state
machine. We will then present our results, which include details of various attempts to
find these invariants and several examples which work in some ways but fail in others.

Most of the material in the Background section is adapted from [1].

1.2 Boxes and wiring diagrams

Wiring diagrams consist of boxes connected by wires. A box is defined by some number
of input wires and some number of output wires; Figure 1 shows a box X with 2 inputs
and 2 outputs.

X

Figure 1: A box

In a box, each input and output can take values in any given set. For example, the
two inputs of X might be a boolean and an integer, and the two outputs might be a
positive integer and an element of {1, 2, 3}.

Definition 1.1. A wiring diagram φ : X → Y between two boxes X and Y consists of
putting box X inside box Y and connecting the inputs and outputs of X and Y with
directed wires, with the following conditions:

1. Each output of Y must come from exactly one output of X.

2. Each input of X must come from either exactly one input of Y or output of X.

If a wire goes from an output of X to an input of X, we call it an internal wire. Let
int(φ) denote the set of internal wires of φ.

Figure 2 shows a possible wiring diagram from the box X given above to a box Y
also with 2 inputs and 2 outputs.

A few remarks:

• In general, the inputs of Y and outputs of X do not need to be connected to
anything else, as seen in Figure 2 with the second input of Y . If we think of the
wires as carrying data for use in an algorithm, then this can be thought of as
discarding some of the data.

2

X

Y

Figure 2: A wiring diagram φ : X → Y

• We stated earlier that each input and output take values in some given set. To
avoid having to convert between different sets, we will assume from now on that
wires are only allowed to connect ends which have identical sets.

• While it’s not important to know the exact rules that wiring diagrams must follow,
for completeness we will note that the following are not allowed: wires directly from
inputs of Y to outputs of Y , multiple wires going into the same input of X, or
multiple wires going into the same output of Y .

We can view these boxes as objects in a category W, with the morphisms in W
being wiring diagrams between boxes. The composition ψ ◦ φ of two wiring diagrams
follows naturally: if we have φ : X → Y and ψ : Y → Z, then ψ ◦ φ : X → Z is defined
by putting X inside Y inside Z, drawing the wires as specified by φ and ψ and then
”pretending” Y doesn’t exist. Existence of identities and associativity are easy to verify.

Note that up until now, boxes and wiring diagrams have been defined as abstract
objects without any particular meaning, although intuitively we are viewing them as
some sort of functions that take inputs and produce outputs. We can formalize this
notion of filling in the boxes with something as follows:

Definition 1.2. A filling of W is a functor F : W → Set. This means that for each
box X, we associate to it a set of objects F (X) that X can be filled with, and for each
wiring diagram φ : X → Y , we have to define F (φ) : F (X)→ F (Y), or how φ sends fills
of X to fills of Y (a fill of X is a choice f ∈ F (X)).

We now want to choose a specific F that matches with our idea of the boxes acting
as functions. To do this, we will send each box to a set of state machines.

Example 1.3. It might seem more natural to choose F to simply send each box to the
set of functions on that box, but in this case, applying a wiring diagram φ to a particular
function might not result in a pure function, which makes it impossible to define F (φ).
For example, let X be the box with two inputs and one output, all of which are integers,
and let Y be the box with one input and one output, also integers. Define φ in the
diagram below.

In this example, F (X) = Hom(Z × Z,Z), the set of functions from Z × Z to Z. If
we fill X with, say, the plus function +, then F (φ)(+) needs to be an element of F (Y).
However, this is impossible because if we input, say, 1 into Y , then the output depends

3

X

Y

Figure 3: φ : X → Y

on the value of the internal wire. We introduce state to deal with the problem of these
internal wires, because the values of internal wires can then be seen as parts of the overall
state.

1.3 State machines

Definition 1.4. (from [1]) Let A and B be sets. An (A,B)-machine consists of

1. a set S, called the state-set

2. a function f : S ×A→ S ×B, called the state-update function

An (A,B)-machine is called initialized if we have chosen

3. an element s0 ∈ S, called the initial state

We write such a machine as a pair (S, f), or (S, s0, f) if it is initialized.

Definition 1.5. For a box X, an X-machine is an (A,B)-machine with A = inp(X)
and B = out(X), where inp(X) is the set of all possible inputs to X and out(X) is the
set of all possible outputs.

For example, in Example 1.3 we have inp(X) = Z×Z, out(X) = Z, inp(Y) = Z, and
out(Y) = Z.

As stated earlier, we use these state machines to define a filling of W.

Definition 1.6. Let P : W→ Set be the filling of W that sends a box X to the set of
all possible X-machines.

We’ve defined how P acts on the objects of W, but for P to be a valid filling,
we also need to define how it acts on the morphisms (i.e. wiring diagrams). In other
words, given an X-machine (S, f) ∈ P(X) and a wiring diagram φ : X → Y , we want
to produce a Y -machine (T, g) = P(φ)(S, f). To do this, we first define the state-set
T to be S × int(φ), where int(φ) is the set of all possible values of the internal wires
of φ. For example, if there were two internal wires which both carried integers, then
int(φ) = Z × Z. The definition of g then falls naturally from φ and f : to compute
g(S × int(φ)× inp(Y)), we first use the wiring diagram to get inp(X) from the values of
int(φ) and inp(Y), apply f to S × inp(X) to get S × out(X), and finally use the wiring
diagram again to determine the new int(φ) and the output out(Y) from the value of
out(X). g takes S × int(φ)× inp(Y) to S × int(φ)× out(Y), as required.

4

Example 1.7. Once again, consider the wiring diagram in Figure 3. P(X) is the set of
all (Z× Z,Z)-machines and int(φ) = Z. Let (S, f) be an X-machine with S = {s} and
f(s× a× b) = (s× (a+ b)) for all a, b ∈ Z. Here, a and b are the inputs and a+ b is the
output, so this is identical to the addition function because we only have one state. We
then have P(φ)(S, f) = (T, g) ∈ P(Y), where T = S × Z ∼= Z and g : T × Z→ T × Z is
defined so that g(t× a) = ((t+ a)× (t+ a)) for all t, a ∈ Z. Here, t is the state, a is the
input, and t + a is both the new state and the output. We can see how each possible
X-machine is taken to a Y -machine by P(φ).

To prove that P is indeed a functor, we also need to show that it preserves the
identity morphism and composition of morphisms. This is easy to check and follows
naturally from the definitions, so we won’t do it here.

We now consider equivalence of machines.

Definition 1.8. Given a set A, define List(A) to be the set of all sequences of elements
of A. Given L = (a1, . . . , an) ∈ List(A) of length n and an initialized (A,B)-machine
(S, s0, f), we can apply f to each element of L in order, getting a new state and output
each time. So, starting at s0, we have f(s0, a1) = (s1, b1), f(s1, a2) = (s2, b2), f(s2, a3) =
(s3, b3), and so on. In the end, we have a final state sn as well as a list of outputs
(b1, . . . , bn) ∈ List(B). In this way, each (A,B)-machine can be viewed as a function from
List(A) to List(B). We call two machines equivalent if their corrresponding List(A) →
List(B) functions are identical.

Definition 1.9. (from [1]) A morphism of machines from some (A,B)-machine (S, f)
to another (A,B)-machine (T, g) consists of a function ρ : S → T such that the following
diagram commutes:

S ×A S ×B

T ×A T ×B

f

ρ×A ρ×B
g

In other words, applying f and then ρ should give both the same final state and output as
applying ρ first and then g. If the machines are initialized, then we also need ρ(s0) = t0.

It’s easy to show from this diagram that if there exists a morphism of machines
ρ : (S, s0, f)→ (T, t0, g), then these two machines are equivalent. It’s also true (though
harder to prove) that if two machines are equivalent, then they must be connected by
a sequence of morphisms, although there does not necessarily exist a morphism directly
from one to the other. Therefore, two machines are equivalent if and only if they are
connected by a sequence of morphisms, so from this point on, we will use ”equivalent”
to refer to both of these definitions.

Example 1.10. In Example 1.7, we saw the Y -machine (T, g) with T = Z and g(t×a) =
((t+ a)× (t+ a)). If we initialize this machine with t0 = 0, then it takes (a1, . . . , an) ∈
List(Z) to (a1, a1 + a2, . . . , a1 + a2 + · · ·+ an) ∈ List(Z) with final state a1 + . . .+ an.

5

Continuing this example, let’s define another machine (T ′, g′) with state set T ′ =
Z ∪ {1′}, g′(1 × 0) = (1′ × 1), and g′(1′ × a) = ((1 + a) × (1 + a)) for all a ∈ Z. This
machine is equivalent to (T, g), and the only difference is that it adds a state 1′ which
acts identically to 1, except that applying g′ to 1× 0 gives 1′× 1 instead of 1× 1. There
exists a morphism ρ from (T ′, g′) to (T, g) defined by ρ(a) = a for a ∈ Z and ρ(1′) = 1.
There does not exist a morphism ρ′ from (T, g) to (T ′, g′) because we must have ρ′(b) = b
for all b ∈ Z \ {1}, but then setting ρ′(1) to either 1 or 1′ fails.

2 Invariants of machines

2.1 The central question

We have a functor P : W → Set which takes each box X to the set of possible X-
machines. With the addition of morphisms of machines, the set of X-machines becomes
a category, so we can extend this to a functor P : W→ Cat.

As previously mentioned, we want to study invariants of these machines, so we need
to put them into equivalence classes. Let π0 : Cat → Set be the functor which sends
each category to the set of its connected components, where two objects in some category
C are part of the same connected component if they are connected by morphisms in C.
We see that for each X, the morphisms in the category P(X) are exactly the equivalences
of machines, so the composite functor π0 ◦ P : W→ Set takes each box X to the set of
equivalence classes of X-machines, which is what we’re interested in.

Definition 2.1. Given an X-machine (S, f) ∈ P(X), let (S̃, f̃) ∈ π0(P(X)) be the
equivalence class of (S, f).

Definition 2.2. An invariant of machines is a functor I : W → Set along with a
surjective natural transformation q : π0P → I. Here, I takes each box X to the set of
possible invariants that X can have, and for each box X, there exists a morphism qX
that takes each equivalence class (S̃, f̃) ∈ π0P(X) to some invariant i ∈ I(X).

Immediately, we can see how to make two trivial invariants: send every machine to 0,
or send every machine to its equivalence class. These correspond to the invariants I(X) =
{0} for all X and q = 0, or I(X) = π0P(X) and q is the identity respectively. This
brings us to the central question of this paper: do there exist any nontrivial invariants
of these machines?

2.2 Some initial observations

Ideally, what we want to do first is finding a q that works, because once we define q, I(X)
is forced to be equal to the image of qX for each X since q is surjective. However, thinking
about entire equivalence classes of machines is much less natural than thinking about
individual machines, so we will try assigning an invariant to each individual machine
instead. In other words, for each box X, we want to define some invariant rX : P(X)→
I(X). What conditions must rX satisfy?

6

Firstly, we clearly want rX((S, f)) = rX((S′, f ′)) if (S, f), (S′, f ′) ∈ P(X) are equiv-
alent X-machines, if this is to be an invariant in the first place. With this condition, we
can define qX((S̃, f̃)) = rX((S, f)) for any representative (S, f) in the equivalence class
(S̃, f̃) because they must all take on the same value.

Secondly, given a wiring diagram φ : X → Y , we want the following diagram to
commute (this is from the definition of a natural transformation):

π0P(X) π0P(Y)

I(X) I(Y)

π0P(φ)

qX qY

I(φ)

Note that we are defining both I(X) and I(Y) from q as stated above, and the
definition of I(φ) also follows from q because given any i ∈ I(X), we can find some
(S̃, f̃) ∈ π0P(X) that qX takes to i. We can then apply π0P(φ) and qY to (S̃, f̃) to get
some i′ ∈ I(Y), so we must have I(φ)(i) = i′. Therefore, the only way that this diagram
can fail to exist is if some i ∈ I(X) is sent to two or more different elements of I(Y),
so this imposes another condition on r: Given two X-machines (S, f) and (S′, f ′) with
rX((S, f)) = rX((S′, f ′)) and a wiring diagram φ : X → Y , the two induced Y -machines
P(φ)(S, f) and P(φ)(S′, f ′) must also have the same invariant when rY is applied to both
of them. This is a necessary and sufficient condition for I(φ) being uniquely defined.

Finding an r that satisfies both conditions above, which we will call condition 1 and
condition 2 respectively, is equivalent to finding an invariant as defined in Definition 2.2,
so the rest of the paper will be devoted to finding such a nontrivial r.

2.3 A quick summary

Before moving on, we note that the actual problem is not particularly complicated and
can indeed be stated without invoking any sort of higher-level math. However, we
hope that by presenting the basic category theory formalism, we can better show the
motivation and structure behind this problem. That said, we will now briefly summarize
what we have so far without referring to category theory: A wiring diagram φ : X → Y is
made by placing a box X inside a box Y and connecting the various inputs and outputs
with wires. If we fill X with a state machine (S, f), then this combined with φ induces
a state machine on Y . We wish to assign an invariant to each state machine such that
the following two conditions hold:

1. Equivalent state machines are assigned the same invariant, where we define two
machines to be equivalent if they act the same way on all lists of inputs.

2. Given two machines on X that have the same invariant and a wiring diagram
φ : X → Y , the two induced machines on Y also need to have the same invariant.

We also want the invariant to be non-trivial, so it cannot take all machines to the same
value, and it also cannot simply take each machine to its equivalence class.

7

3 Potential methods for finding invariants

3.1 Satisfying condition 1

We first note that if we only want to satisfy condition 1, then we can easily come up
with plenty of nontrivial invariants. For example, given an X-machine (S, f), we can let
rX((S, f)) be the total number of distinct outputs b ∈ out(X) when f is run over all pairs
s× a ∈ S × inp(X). Indeed, any property that only depends on the inputs and outputs
of f will work, but it’s not clear if any of these will also satisfy condition 2 because
two X-machines that have the same condition 1-invariant might not be equivalent, so
plugging them both into some wiring diagram φ : X → Y doesn’t guarantee anything
about the resulting Y -machines and certainly doesn’t imply that they have the same
invariant. Because of this, it seems like invariants that satisfy condition 2 are a little
more interesting and not as easy to find.

3.2 Satisfying condition 2

In order to find a function r that satisfies condition 2, we want to choose r so that given
an X-machine (S, f) and a wiring diagram φ : X → Y , the invariant of the induced Y -
machine P(φ)(S, f) should only depend on the invariant of the original machine (S, f).
We can do this by including a lot of information in the invariant that carries over to
wiring diagrams:

Theorem 3.1. For an X-machine (S, f), a ∈ inp(X), and b ∈ out(X), let za,b be the
number of states s ∈ S such that f(s× a) = s× b. Define rX((S, f)) to be the (possibly
infinite) |inp(X)| × |out(X)| matrix whose (i, j)-entry is za,b. Then r satisfies condition
2.

Proof. Consider a wiring diagram φ : X → Y , and let P(φ)(S, f) = (T, g). It suffices to
show that the entries of the matrix rY ((T, g)) only depend on the entries of the matrix
rX((S, f)). Without loss of generality, choose a′ ∈ inp(Y) and b′ ∈ out(Y). We wish to
show that the (a′, b′)-entry of rY ((T, g)) can be written in terms of entries of rX((S, f)).
The value of this (a′, b′)-entry is equal to the number of states s × c ∈ S × int(φ) = T
such that g((s × c) × a′) = (s × c) × b′ by definition. To compute this, we note the
following facts:

1. Given a′ (the input of Y) and the internal wires c, we can apply the wiring diagram
to generate the exact input of X, say a, because each input of X comes from either
an input of Y or an internal wire.

2. Given b (the output of X), we can apply the wiring diagram to generate b′ (the
output of Y), as well as the internal wires c, because all of these must come from
the output of X.

Therefore, if we consider a single output b ∈ out(X) such that the wiring diagram
generates b′ as an output of Y , then the total number of states s × c such that g((s ×

8

c) × a′) = (s × c) × b′ and the output of X is b is equal to the number of states s such
that f(s × a) = s × b, where a is determined from a′ and c, and c is determined from
b as mentioned above. However, this is an element of rX((S, f)), so if we sum this over
all valid b’s, we see that the (a′, b′)-entry of rY ((T, g)) can indeed be written as the sum
of entries in the matrix rX((S, f)). Therefore, r satisfies condition 2.

In addition to the one specified in Theorem 3.1, we have found a few similar functions
that also satisfy condition 2. Unfortunately, none of these also satisfy condition 1 because
by including so much information about the machine, in particular information about
the state-set, they end up assigning different invariants to many equivalent machines.

3.3 Wiring diagrams acting as constraints on invariants

So far, we have had little success in directly using properties of the machines to con-
struct invariants. This brings us to the major idea in this section: what if we indirectly
attempted to construct invariants by looking at the action of wiring diagrams on invari-
ants? In other words, instead of focusing on defining q, we focus on possible values of
I(φ) and define q based on that. By condition 2, given a wiring diagram φ : X → Y ,
we must have a function I(φ) : I(X) → I(Y). Because I commutes with composition
(i.e. I(ψ) ◦ I(φ) = I(ψ ◦ φ)), this has the potential to heavily constrain what invariants
we can assign to particular machines. For example, if ψ ◦ φ is equivalent to the identity
wiring diagram and applying I(φ) to some machine with invariant i1 gives a machine
with invariant i2, then I(ψ) must take all machines with invariant i2 back to machines
with invariant i1.

Example 3.2. Let’s work in the subcategory W∗ of W that only consists of boxes with
two inputs and one output, all of which are boolean. Also, for simplicity, assume that
we are only looking for boolean invariants, so I(X) = {0, 1} for all X. In this case, given
any two boxes X and Y , there are exactly 9 wiring diagrams between them because each
of the two inputs of X can independently come from 3 places: the first input of Y , the
second input of Y , or the output of X. Figures 4, 5, and 6 are three examples of these
wiring diagrams, which we label a, b, and c.

X

Y

Figure 4: a

If we look at all possible compositions of these 9 diagrams, we find that c composed
with anything is still c, because c ignores both inputs of Y . Without loss of generality,
let I(c)(0) = 0. We have φc = c for all morphisms φ in W∗, so I(φc)(0) = I(c)(0) =⇒

9

X

Y

Figure 5: b

X

Y

Figure 6: c

I(φ)(I(c)(0)) = 0 =⇒ I(φ)(0) = 0. Therefore, all possible wiring diagrams must take
invariant 0 machines to invariant 0 machines.

We also have a2 = i, where i is the identity wiring diagram, so I(a2)(1) = I(i)(1) =
1 =⇒ I(a)(1) = 1. Using similar logic on the other compositions of wiring diagrams,
we find that in this example, there are two possibilities for the I(φ)’s:

1. I(φ)(0) = 0 and I(φ)(1) = 1 for all φ. As an invariant, this corresponds to assigning
each connected component of P(X) either 0 or 1, because if two machines are
connected, then they must have the same invariant.

2. I(φ)(0) = 0 and I(φ)(1) = 0 for all φ except a and i; I(a)(0) = I(i)(0) = 0 and
I(a)(1) = I(i)(1) = 1. This corresponds to assigning 0 to all machines that ”throw
away” at least one of the two inputs, because the other 7 wiring diagrams besides
a and i ”throw away” at least one of the inputs of Y , either by using an internal
wire to supply an input to X, or by using a single input of Y to supply both inputs
of X. The remaining machines come in pairs, and each pair can be assigned a 0
or 1.

The second invariant possibility in the above example is particularly interesting and
can be generalized to a broader statement, which is discussed in the next section.

4 Results

4.1 Our main result

Theorem 4.1. Let A be a set of morphisms in W which satisfies the following properties:

10

1. For each φ ∈ A with φ : X → Y , there exists a left-inverse φ−1 : Y → X (not
necessarily in A) such that φ−1 ◦ φ is the identity on X.

2. If ψ /∈ A, then φψ /∈ A for all morphisms φ.

Let I(φ) be defined as follows:

1. If φ ∈ A, then I(φ)(0) = 0 and I(φ)(1) = 1.

2. If φ /∈ A, then I(φ)(0) = 0 and I(φ)(1) = 0.

Then the following invariant is consistent with I(φ) and satisfies both conditions 1 and
2:

1. For each equivalence class of machines, assign all of them invariant 0 if there exists
some representative machine (T, g) in the class as well as some φ /∈ A and any
machine (S, f) such that P(φ)((S, f)) = (T, g).

2. Otherwise, assign all of them invariant 1.

Proof. We will first show that the definition of our invariant is consistent with our
definition of I(φ). This is split into four cases, depending on whether φ is in or not in
A and whether (S, f) is sent to 0 or 1 by our invariant. As usual, we let φ be a wiring
diagram from X to Y , so (S, f) is an X-machine.

1. φ /∈ A and (S, f) has invariant 0. In this case, we want to show that the induced
machine (T, g) = P(φ)((S, f)) has invariant 0 so that it’s consistent with I(φ)(0) =
0. However, this is obvious by definition because (T, g) is itself a representative
machine in its equivalence class that is the image of a wiring diagram not in A,
namely φ, so this case is fine.

2. φ /∈ A and (S, f) has invariant 1. In this case, we want to show that our invariant
is consistent with I(φ)(1) = 0 for φ /∈ A. We can use the exact same argument as
in case 1 to show that the induced machine (T, g) has invariant 0, so we’re good.

3. φ ∈ A and (S, f) has invariant 0. Here, we want to show that the induced machine
(T, g) has invariant 0. To prove this, we note that because (S, f) has invariant
0, by definition there exists some equivalent machine (S′, f ′), some ψ /∈ A, and
another machine (R, h) such that P(ψ)((R, h)) = (S′, f ′). Applying P(φ) to both
sides gives P(φψ)((R, h)) = P(φ)((S′, f ′)). The machine on the right-hand side of
this is equivalent to (T, g) because P(φ)((S, f)) = (T, g) and (S, f) is equivalent to
(S′, f ′). However, from our definition of A, we know that φψ /∈ A because ψ /∈ A,
so the equivalence class of P(φ)((S′, f ′)) must be sent to 0 by our invariant. As
just stated, (T, g) is in this equivalence class, so it must also have invariant 0 as
desired.

11

4. φ ∈ A and (S, f) has invariant 1. Here, we want to show that the induced machine
(T, g) has invariant 1 so that it’s consistent with I(φ)(1) = 1. To do so, we will
prove the contrapositive: that is, if φ ∈ A, P(φ)((S, f)) = (T, g), and (T, g) has
invariant 0, then (S, f) also has invariant 0. Using the existence of an inverse
φ−1 : Y → X, we have that P(φ−1)((T, g)) = (S, f). We can then apply the
same argument as in case 3 with (S, f) and (T, g) switched and φ replaced by φ−1,
because it did not depend on φ being a member of A.

This shows that our invariant is indeed consistent. It satisfies condition 1 by defini-
tion, because we are directly assigning invariants to equivalence classes. It also satisfies
condition 2 because it’s consistent with our definition of I(φ), so this completes the
proof.

One example of such a set A is simply the set of all morphisms which have left
inverses. Unfortunately, it turns out that the invariant associated with this A is trivial,
sending everything to 0, because for any Y -machine (T, g), if we let X be a box with
more inputs than Y and (S, f) be any X-machine, then it’s easy to verify that any wiring
diagram from (S, f) to (T, g) doesn’t have a left inverse. However, if we limit ourselves
to any subcategory of finitely many boxes, then such an X will no longer always exist,
and indeed we can prove that there exist machines with invariant 1. So, although this
idea doesn’t necessarily work on the entire category W, it does produce a nontrivial
invariant for any finite subset of boxes and the wiring diagrams between them.

4.2 Further work

We certainly have not completely explored this idea of seeing how wiring diagrams act
on invariants. Things to try out in the future to either search for invariants or to prove
that no such invariant exists include

1. Redefining the set A in different ways.

2. Expanding the invariant set (for most of the time, we stuck with boolean invariants
for simplicity).

3. Investigating the structure of the connected components in greater detail, starting
with smaller examples.

4. Generally investigating the action of wiring diagrams on invariants more (we thor-
oughly looked at the example of a box with two inputs and one output, but perhaps
going bigger will reveal new things).

5 Acknowledgements

The author of this paper would like to thank his mentor Lyuboslav for continually
pushing and inspiring him to work despite his laziness and for being very helpful and
accessible during the program. David Spivak suggested the project and also gave many

12

insightful ideas in the meetings we had together. The author would also like to thank
Professors David Jerison and Ankur Moitra for all the help and all the hard work they
put into SPUR, and of course the program director Slava Gerovitch.

References

[1] David Spivak, ”Wiring diagrams and state machines” talk, February 2014, http://math.mit.edu/

~dspivak/informatics/talks/WD-IntroductoryTalk.pdf

13

