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Abstract

In this paper we obtain a classification of formal group laws up to
strict isomorphism over any ring which is torsion-free as a Z-module. We
obtain our results mainly through the development of the theory of formal
group law chunks. We also consider the case of rings with torsion briefly
and find a reduction of the full classification problem which may be more
tractable.
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1 Introduction

Formal group laws are a particular piece of algebraic data which are sometimes
found attached to other objects as an invariant.

We start by introducing the basic notions of formal group law theory. In
section 2 we collect various previous results that we will need to prove our main
theorem. In section 3 we introduce formal group law chunks and study their
properties. The bulk of the section is spent on a representability theorem for
the groupoid of p-typical chunks. In section 4 we prove several lemmas relating
to a certain fibration of groupoids and then use these results in combination
with those from section 4 to classify formal group law chunks over a torsion-free
ring in the p-typical case. In section 5 we prove our main theorems (5.3 and
5.4).

Our main result generalizes several previously known classification theorems.
However, the proofs of these two do not bear any close resemblance. We finish
section 6 with a discussion of how to possibly tackle the case of rings with
torsion.

Throughout this paper all formal group laws will be commutative and 1-
dimensional.

Definition 1.1. A formal group law over a ring, R is an F ∈ R[[x, y]] such
that,

a. F (0, x) = F (x, 0) = x.

b. F (x, F (y, z)) = F (F (x, y), z).

c. F (x, y) = F (y, x).

In order to motivate this definition we provide the following example. Con-
sider a real 1-dimensional analytic lie group, G. Let, F be the power series
expansion of the multiplication on G at the identity. It is easy to veriy that this
does in fact give a formal group law.

A much better motivation for the study of formal group laws is the fact that
to each multiplicative, even, complex oriented cohomology theory there is an
associated formal group law.

Examples:

• Fa(x, y) = x+ y. Over any ring R.
This is called the additive formal group law and is usually denoted Fa.

• Fm(x, y) = x+ y − xy. Over any ring R.
This is called the multiplicative formal group law and is usually denoted
Fm.

• F (x, y) =
x
√

1−y4+y
√
1−x4

1+x2y2 . Over the ring Z[1/2].
This is the elliptic formal group law originially discovered by Euler.
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In fact for each of the examples given above there is a multiplicative complex
oriented cohomology theory associated to it. The additive formal group law is
associated to regualr cohomology, H∗(−). The multiplicative formal group law
is associated to complex K-theory, K∗(−). The elliptic formal group law above
is associated to elliptic cohomology Ell∗(−).

We now recount some of the basic properties of formal group laws which will
be relevant to us. It is easy to see from the properties of formal power series
that there exists an i ∈ R[[x]] such tha t such that F (x, i(x)) = 0. Using the
fact that F (x, 0) = F (0, x) = x, we obtain that

F (x, y) ≡ x+ y mod (x, y)2

this result is a first result which will be extended much further in the section
on comparison lemmas.

In analogy with groups we now introduce morphisms between formal group
laws over the same base ring R.

Definition 1.2. Let F and G be formal group laws over a ring R and let
f ∈ R[[x]], then we say f is homomorphism from F to G if,

f(F (x, y)) = G(f(x), f(y)).

We must also specify that f = 0 mod (x) otherwise the composition of
power series is not necessarily defined. As usual an isomorphism is an invertible
morphism. It is easy to show that an morphism is invertible iff its degree 1
componenet is invertible in R. If an isomorphism has f(x) = x mod (x)2, then
we call it a strict isomorphism. For the bulk of this paper we will concern

ourselves with strict isomorphism. If F
f−→ G is a isomorphism of formal group

laws, then there exists an f−1(x) such that f−1(f(x)) = x. Then, each of
(F, f) and (f,G) determine the entire triple becuase we have that G(x, y) =
f(F (f−1(x), f−1(y))) and F (x, y) = f−1(G(f(x), f(y))).

Examples:

• The morphism f(x) = x is the identity morphism for every formal group
law.

• f = log(1 + x) is a strict isomorphism from Fm to Fa over Q.

log(1 + Fm(x, y)) = log(1 + x+ y + xy) = log(1 + x) + log(1 + y)

= Fa(log(1 + x), log(1 + y))

At this point we introduce some notation. A formal group law F can be
used as a formal addition, so we define,

x+F y := F (x, y) and
∑
i∈I

F
ai := F (ai1 , F (ai2 , . . . )).
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Now we introduce a way to change the base ring of a formal group law. Sup-
pose that F is a formal group law over R and f : R→ S is a ring homomorphism.
Then, there is a unique f̃ such that

R[[x, y]] S[[x, y]]

R S

f̃

f

is commutative, f̃(x) = x and f̃(y) = y. Using this we have a direct image of a
formal group law which we denote f∗F . Similarly, we also have a direct image
of formal group law morphisms. With this, we now know enough to turn formal
group laws over a given ring into a category.

Definition 1.3.

a. FG : Ring → Cat takes a ring R to the category of formal groups laws
over R and morphisms between them.

b. FGs : Ring→ Grpd is the functor which takes a ring R to the groupoid
of formal group laws over R and strict isomorphisms between them.

Theorem 1.4.

a. FG(R) is enriched over Ab.

b. The full single object subcategories of FG(R) give us an endomorphism
ring for each formal group law F over R which we will denote EndR(F ).

c. There is a natural transformation (i ◦ FGs)→ FG for which the induced
functors i(FGs(R)) → FG(R) are bijective on objects and faithfull. i is
the inclusion of Grpd in Cat.

Proof. In order to prove a.) we first turn the hom sets into abelian groups. The
additive structure we give them is that of the formal sum at the target.

For f, g ∈ homR(F,G) we must show that f +G g ∈ homR(F,G) as well.

(f +G g)(x+F y) = f(x+F y) +G g(x+F y) = f(x) +G f(y) +G g(x) +G g(y)

= (f +G g)(x) +G (f +G g)(y)

Commutativity follows from the fact that f +G g = g +G f . Identity follows
from f +G 0 = 0 +G f = f . Finally, we verify that i ◦ f is an inverse for f where
i(x) is the inverse for x mentioned above. Letting α(x) = x be denoted 1,

(f +G (i ◦ f))(x) = ((1 +G i) ◦ f)(x) = (0 ◦ f)(x) = 0.

Now, in order to finish the proof of a.) we must show that composition is
bilinear. Suppose we have f, g ∈ homR(F,G) and a, b ∈ homR(G,H), then

a ◦ (f +G g) = a(f +G g) = (a ◦ f) +H (a ◦ g)
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and for the other direction,

(a+H b) ◦ f = (a ◦ f) +H (b ◦ f).

b.) is a direct consequence of the definition of preadditive.
The proof of part c.) is rather straightforward, it just uses the inclusions that

one gets from FGs(R) being a subcategory of FG(R) with the same objects.

Example: For a ring which is torsion-free as a Z-module we have EndR(Fa) ∼=
R. Any endomorphism of Fa will have f(x + y) = f(x) + f(y) from which we
can determine that f(x) = rx for some r ∈ R. Each f(x) = rx is also an
endormophism, so we have the desired result.

With the setup complete we can now introduce the three main questions
asked about formal group laws over a given ring.

a. Which formal group laws are (strictly) isomorphic to a given one?

b. What are the (strict) isomorphism classes of formal group laws?

c. What is the endomorphism ring of a given formal group law ?

Hazewinkel’s book [5] collects many of the known answers to these questions
in section 18. It provides several good answers to the first question and only
partial results on the second and third. Recall that π0 is the functor from
Grpd to Set which sends a groupoid to the set of its connected components.
The second question can be restated as understanding π0FG and π0FGs.

2 Background Material

In this secion we introduce necessary background material. We will discuss:
logarithms, p-typicality, representability, local-global results and comparison
lemmas. Most of the results recounted here can be found in [5].

2.1 Logarithms

In analogy with the example of log(1 + x) as a morphism from Fm to Fa we
make the following definition.

Definition 2.1. A logarithm for a formal group law, F , is a strict isomorphism
between F and Fa.

Logarithms are useful because Fa is simplest formal group law. In particular,
EndR(Fa) is the easiest endomorphism ring to compute. In [6], Lazard proved
the result on existence of logarithms below. The uniqueness part comes from
our previous calculation of EndR(Fa) in the torsion-free case.
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Lemma 2.2 (logarithm existence and uniqueness). If R is a Q-algebra then
every formal group law over R has a unique strict isomorphism to Fa.

This result allows us to answer all three of the questions posed at the end
of the previous section in the case of a Q-algebra. For torsion-free rings there
is an inclusion,

A ↪→ A⊗Q
so logaritms are unique and existence is reduced to an integrality question. In
fact, there is an explicit formula for the logarithm over a torsion-free ring,

logF (x) =

∫ x

0

1

(∂yF )(t, 0)
dt

This formula was found in Appendix A.2 of Ravenel’s book [7].

Corollary 2.3. If F is a formal group law over a torsion-free ring A and
logF (x) =

∑
mix

i+1, then (i+ 1)mi ∈ A.

Proof. This is clear from the formula above.

Corollary 2.4. If A is a torsion-free ring, then there is a strict isomorphism

F
f−→ G iff log−1G (logF (x)) ∈ R[[x]].

Proof. Over A ⊗ Q there is only one strict isomorphism class and only one
strict automorphism of each formal group law. The corollary follows easily from
this.

2.2 p-typicality

p-typicallity is an analog of the localization at a prime one sees in topology
and has several definitons which are of varying generality. We provide the most
general of these in order for our work to be carried out over all Z(p)-algebras.
The introduction we give to p-typicallity follows section 15 and 16 of [5] and the
reader is encouraged to consult that or a similar source.

In order to introduce p-typicallity we must introduce curves. A curve is a
γ ∈ R[[x]] such that γ(0) = 0. Given a group law F over R the curves over R
forma a group under formal addition. We now define the frobenius operator fq
which operates on the group of curves.

b(Z1, . . . , Zq; t1/q) := γ(Z1t
1/q) +F γ(Z2t

1/q) +F · · ·+F γ(Zqt
1/q)

b is a power series in t1/q with coeffecients in R[Z1, . . . , Zq]. The coefficients
of b are homogenious and symmetric, so if {σi} are the elementary symmetric
functions on Z1, . . . , Zq, then there is b′ such that,

b′(σ1, . . . , σq; t1/q) = b(Z1, . . . , Zq; t1/q).

Then, we make the definition

fqγ(t) := b′(0, . . . , 0, (−1)q−1; t1/q)

The reader should note that fqγ(t) is in fact a formal power series in t, not t1/q.
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Definition 2.5. A formal group law F is called p-typical if fqt = 0 for all prime
numbers q 6= p.

This definition can be stated much more simply in the case of a torsion-free
Z(p)-algebra.

Lemma 2.6. Let F be a formal group law over a torsion-free Z(p)-algebra A. F

is p-typical iff its logarithm can be written in the form
∑

i≥0 lix
pi

with li ∈ A⊗Q.

Theorem 2.7. If R is a Z(p)-algebra, then each formal group law over R is
strictly isomorphic to some p-typical formal group law.

Isomorphisms between p-typical formal group laws also take on a simpler
form similar to the logarithm. The following lemma is the same as lemma
A2.1.26 in [7].

Theorem 2.8. If F
f−→ G is an isomorphism between formal group laws over a

Z(p)-algebra R and F is p-typical, then G is p-typical iff

f−1(x) =
∑
i≥0

F
tix

pi

for some ti ∈ R and t0 is a unit in R.

Before we go further it is convenient to introduce two functors which capture
the behavoir of p-typical formal group laws.

Definition 2.9.

a. FGp : Z(p)-alg → Cat sends a Z(p)-algebra R to the full sub-category of
FG(R) whose objects are the p-typical formal group laws.

b. FGp,s : Z(p)-alg → Grpd sends a Z(p)-algebra R to the full sub-groupoid
of FGs(R) whose objects are the p-typical formal group laws.

To end this subsection we introduce the formal p series which will become
important in the next section. The formal p series is a formal multiplication by
p power series.

[p]F (x) :=
∑

0<i≤p

F
x

2.3 Representability

As a rule of thumb most of the functors used in this paper are representable.
This is made precise in the theorems that follow. The first such representability
result is due to Lazard [6] and is as follows.

Theorem 2.10. L ∼= Z[x1, x2, . . . ] with |xi| = 2i represents formal group laws.
That is, there is a formal group law F over L such that for any formal group
law G over R there is a unique map f : L→ R such that f∗F = G.
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This result can be restated as [L,−] ∼= Ob(FG(−)). Later, in [3, 4] Hazewinkel
explicitly determines the structure of several universal formal group laws and
gives the representing rings.

Theorem 2.11.

a. LB ∼= L⊗ Z[b1, . . . ] with |bi| = 2i has [LB,−] ∼= FGs.

b. V ∼= Z(p)[v1, . . . ] with |vi| = 2(pi − 1) has [V,−] ∼= Ob(FGp(−)).

c. V T ∼= V ⊗ Z(p)[t1, . . . ] with |ti| = 2(pi − 1) has [V T,−] ∼= FGp,s.

Let FV be the universal p-typical formal group law. Then, we can choose
the generators vi of V such that [p]FV

(x) =
∑

i≥0
F
vit

pi

, with the convention
that v0 = p. This choice of generators first appeared in [1].

2.4 Local-Global Results

This section recounts a result first appearing in section 20.5 of [5]. It allows
us to reconstruct information about strict isomorphism classes of formal group
laws from information about strict isomorphism classes of p-typical formal group
laws.

Theorem 2.12. Let A be a torsion-free ring.

a. If F and G are formal group laws over A, then they are strictly isomorphic
iff they are strictly isomorphic over A⊗ Z(p) for all p.

b. If we have a formal group law F(p) over A⊗ Z(p) for every prime p, then
there exists an F over A such that F is strictly isomorphic to F(p) over
A⊗ Z(p) for all p.

As remarked in [5] the second of these results holds even when A is not
torsion-free. Rewriting this result in terms of π0 and FGS it appears as,

Corollary 2.13. If A is a torsion-free ring, then the map,

π0FGs(A)→
∏

p prime

π0FGs(A⊗ Z(p)).

is a bijection.

The previous remark becomes a statement that this map is surjectivity even
when A is not torsion-free. Due to this theorem it is sufficient for us to consider
only the case of p-typical formal group laws for the remainder of the paper.
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2.5 Comparison Lemmas

This section relates several results about formal group laws that are nearly
congruent modulo some degree. In order to introduce our results we first make
some combinatorial definitions.

Definition 2.14.

a. Bn(x, y) := xn + yn − (x+ y)n

b. Cn(x, y) :=

{
p−1Bn(x, y) n = pk for some prime p

Bn(x, y) otherwise

Cn is the unique multiple of Bn that is still integral, but has coffecients with
gcd 1. A comparison lemma first appeared in [6] and our extended version can
be proved from the results in [3].

Lemma 2.15 (Comparison lemma). Let R be a ring and A a Z(p)-algebra.

a. If F and G are formal group laws over R and F (x, y) ≡ G(x, y) mod (x, y)n,
then there is a ∈ R such that,

F (x, y) ≡ G(x, y) + aCn(x, y) mod (x, y)n+1.

b. If F and G are p-typical formal group laws over A and F (x, y) ≡ G(x, y)
mod (x, y)n with pk−1 < n ≤ pk, then there is a ∈ A such that,

F (x, y) ≡ G(x, y) + aCpk(x, y) mod (x, y)p
k+1.

c. If F and G are p-typical formal group laws over A represented by f, g ∈
[V,A] respectively, then f(vi) = g(vi) for all i ≤ n iff

F (x, y) ≡ G(x, y) mod (x, y)p
n+1.

d. If F and G are p-typical formal group laws over A represented by f, g ∈
[V,A] respectively and f(vi) = g(vi) for all i < n, then

F (x, y) ≡ G(x, y) + (f(vn)− g(vn))Cpn(x, y) mod (x, y)p
n+1.

3 Introduction to Formal Group Law Chunks

A formal group law chunk is a truncated form of a normal formal group law.
We make this precise as follows.

Definition 3.1. A formal group law chunk over a ring R of size n is a F ∈
R[x, y]/(x, y)n+1, such that

a. F (0, x) = F (x, 0) = x.
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b. F (x, F (y, z)) = F (F (x, y), z).

c. F (x, y) = F (y, x).

A morphism of formal group law chunks of size n, F and G, is a f ∈ R[x]/(x)n+1

such that,
f(F (x, y)) = G(f(x), f(y)).

These conditions are analogous to those for a formal group law, but chunks
turn out to be easier objects to study. As usual the invertible morphisms are
the ones with degree 1 component a unit. An isomorphism is called strict if
f(x) = x mod (x)2. In [6] Lazard proved the following result:

Theorem 3.2. Every formal group law chunk is the truncated form of some
formal group law.

Using 3.2 we can make a definition of p-typicallity for chunks which is rather
more succint than it would otherwise be.

Definition 3.3.

a. Chn : Ring → Cat sends a ring, R, to the category of formal group law
chunks of size n over R and morphisms between them.

b. Chn
s : Ring→ Grpd sends a ring, R, to the groupoid of formal group law

chunks of size n over R and strict isomorphisms between them.

c. A formal group law chunk is called p-typical if it is the truncated form of
a p-typical formal group law.

d. Chn
p : Z(p)-alg → Cat sends a Z(p)-algebra R to the full sub-category of

Chpn

(R) whose objects are the p-typical chunks.

e. Chn
p,s : Z(p)-alg → Grpd sends a Z(p)-algebra R to the full sub-groupoid

of Chpn

s (R) whose objects are the p-typical chunks.

The intuitive idea of truncating a formal group law or chunk can be captured
by a set of related natural transformation. Each of the projection homomor-
phisms R[[x, y]] → R[x, y]/(x, y)n+1 and R[x, y]/(x, y)m+1 → R[x, y]/(x, y)n+1

where m > n induce a truncation natural transformations which we denote by
ρn and ρm,n respectively. When the source and target are clear from context
we will simply write ρ for brevity. We will also use ρ∗ to denote ρ(R) when the
ring we are working over is clear.

It is straightforward to see that,

ρ∗(FGp(R)) ⊆ Chn
p (R).

Lemma 3.4.

a. If R is a Z(p)-algebra and F ∈ Chn(R), then F is strictly isomorphic to
some p-typical chunk.
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b. If R is a Q-algebra, then logarithms exist in Chn
s (R).

c. The only endomorphism of the additive formal group law chunk over a
torsion-free ring which is also a strict isomorphism is the identity.

d. If A is a torsion-free ring, then for F,G ∈ Chn
s (A) there is at most one

strict isomorpishm F
f−→ G.

e. If we restrict π0Chpn

s and π0Chn
p,s to Z(p)-alg, they are naturally isomor-

phic.

Proof. a.) By Theorem 3.2 there is some F ′ ∈ Ob(FG(R)) such that ρ∗(F
′) =

F . By Theorem 2.7 there is a strict isomorphism F ′
f−→ F ′′ where F ′′ is p-

typical. Then, ρ∗(f) is a strict isomorphism from F to some p-typical formal
group law chunk.

b.) Let F ∈ Ob(Chn
s (A)), then by theorem 3.2 there is some F ′ ∈ Ob(FGs(A))

such that ρ∗(F
′) = F . By lemma 2.2 there is a strict isomorphism F ′

f−→ Fa.
Then, ρ∗(f) is a strict isomorphism from F to the additive formal group law
chunk.

c.) Suppose f is an endomorphism as hypothesized, then f(x+ y) ≡ f(x) +
f(y) mod (x, y)n+1 which shows that f(x) = x ∈ R[x]/(x)n+1.

d.) Suppose that f, g are two distinct strict isomorphisms between F and
G. Then, over A ⊗ Q we have logF ◦ f−1 ◦ g ◦ log−1F 6= Id, which contradicts
part c.).

e.) This is just a restatement of part a.).

In light of the various representability results we will from here on silently
identify a formal group law (or chunk) with the map representing it. For exam-
ple, if F is a p-typical formal group law then we will say F ∈ Ob(FGp(R)) and
F ∈ [V,R]. This allows us to speak of both F (x, y) and F (vi) without needlessly
introducing more variables. It can be determined which one we are treating F
as at a given moment based on how many arguments it has.

Theorem 3.5 (Representability for p-typical Chunks).

Vn = Z(p)[v1, . . . , vn] where |vi| = 2(pi − 1) represents objects in Chn
p .

Proof. Let r : V → Vn be the map for which,

r(vi) =

{
vi i ≤ n
0 i > n

.

This induces a natural transformation r : [Vn,−] → [V,−]. It now suffices to
prove that ρ ◦ r is a natural isomorphism.

First we show surjectivity. Let F ∈ Ob(Chn
p (R)). By the definition of p-

typicality for chunks there is a p-typical formal group law G such that ρ∗(G) =
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F . Let H ∈ [Vn, R] be the map such that H(vi) = G(vi) for i ≤ n. Then, by
the comparison lemma,

G(x, y) ≡ r(H)(x, y) mod (x, y)p
n+1.

Thus, F = ρ∗(G) = (ρ ◦ r)(H).
Next we show injectivity. Let f, g ∈ [Vn, R] and suppose that (ρ ◦ r)(f) =

(ρ ◦ r)(g). This is equivalent to r(f)(x, y) ≡ r(g)(x, y) mod (x, y)p
n+1. Which,

by the comparison lemma means that r(f)(xi) = r(g)(xi) for all i ≤ n. But, for
i ≤ n, r(f)(xi) = f(xi) and r(g)(xi) = g(xi). So, we get f(xi) = g(xi) for all
i ≤ n which implies f = g.

This result explains why we only look at the p-typical chunks of certain sizes.
The ones we consider are exactly when a new generator pops up. For a formal
group law chunk F we get a formal sum just like with formal group laws.

Lemma 3.6. If F
f−→ G is a strict isomorphism of formal group law chunks of

size n over a Z(p)-algebra R and F is p-typical, then G is p-typical iff

f−1(x) =
∑

0≤i≤k

F
tix

pi

with pk ≤ n < pk+1, ti ∈ A and t0 = 1.

Proof. First we prove the if part. Pick a F ′ ∈ Ob(FGp(R)) such that ρ∗(F
′) =

F . Note that the triple (F, f,G) is determined by (F, f). Let f̃ ∈ R[[x]] be such
that,

f̃−1(x) =
∑

0≤i≤k

F ′

tix
pi

then, ρ∗(f̃) = f . By Theorem 2.8 (F ′, f̃) is a strict isomorphism between p-
typical formal group laws. Applying ρ∗ we get (F, f) back again so it must be
a morphism between p-typical chunks. p Next we prove the only if part. We
proceed by contradiction. Let n be the smallest size where a counterexample
(F, f,G) occurs. By the hypothesis ρ∗(f) does not provide a counterexample so
we have,

f−1 ≡
∑
i≥0

F
tix

pi

mod (xn)

Thus, there exists some r ∈ R such that f−1 = rxn +
∑

i≥0
F
tix

pi

.

Case 1: n = pk. we have that,

f−1 ≡ rxp
k

+
∑

0≤i≤k−1

F
tix

pi

≡ rxp
k

+F

∑
0≤i≤k−1

F
tix

pi

mod (xp
k+1)

This expresses f−1 in exactly the form it wasn’t allowed to be in so we are done.
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Case 2: n = pk + a. This time we seek to show that r = 0. Let g−1(x) =
f−1(x) − rxn, by the first half of this theorem (F, g) has a target G′ which is
p-typical. Then,

G ≡ G′ mod (xn)

which by the comparison lemma means that,

G ≡ G′ mod (xn+1)

(g(x)− rxn) ◦ f−1(x) ≡ g(f−1(x))− r(f−1(x))n

≡ g(g−1(x) + rxn)− rxn

≡ g(g−1(x)) + rxn − rxn

≡ x mod (xn+1)

This gives us a way to write f in terms of g. To finish the proof we perform a
calculation which implies that r = 0.

G ≡ f(F (f−1(x), f−1(y)))

≡ f(F (g−1(x) + rxn, g−1(y) + ryn))

≡ f(F (g−1(x), g−1(y)) + r(xn + yn))

≡ f(F (g−1(x), g−1(y))) + r(xn + yn)

≡ g(F (g−1(x), g−1(y)))− r(F (g−1(x), g−1(y)))n + r(xn + yn)

≡ G′ − r(g−1(x) + g−1(y))n + r(xn + yn)

≡ G′ − r(x+ y)n + r(xn + yn)

≡ G′ − r((x+ y)n − xn − yn) mod (x, y)n+1

Equipped with this lemma we can now attack the problem of representability
of Chn

p,s.

Theorem 3.7. V Tn = Vn ⊗ Z(p)[t1, . . . , tn] where |ti| = 2(pi − 1) represents
Chn

p,s.

Proof. A strict isomorphism (F, f,G) can be specified by giving (F, f). By
Lemma 3.6 f can be chosen independently of F . Lemma 3.6 also says that
specifying f is the same thing as specifying each of the ti. The expansion of
f−1 as a formal sum of ti is unique. Thus, specifying a (F, f) is that same as
giving a map F ∈ [Vn, R] and a map f ∈ [Z(p)[t1, . . . , tn], R]. By the universal
property for colimits these two maps are exactly a map V Tn → R.
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Corollary 3.8. In the p-typical case ρ∗ is induced by i : V Tn → V Tm and is
surjective on objects and arrows.

Proof. We note that ρ∗(F )(vi) = F (vi) for i ≤ n and that this determines the
behavior of ρ∗ i obviously has the same property so they are the same. The
second part is an obvious corollary of the first.

4 Classification of Chunks

In this section we give a classification of the strict isomorphism classes of p-
typical formal group law chunks over a torsion-free Z(p)-algebra. For a formal
group law or chunk, F , we let [F ] denote its strict isomorphism class.

Before proceeding further we introduce fibrations of groupoids as seen in [2].
We let I denote the groupoid with two objects pictured below.

∗ ∗

This grouoid is an analog of the unit interval in topology.

Definition 4.1. Let E and B be groupoids and p : E → B a morphism between
them. p is a fibration if for every commutative square as shown we have the lift
indicated.

0 E

I B

p

Theorem 4.2. ρ∗ : Chn
p,s(R)→ Chn−1

p,s (R) is a fibration.

Proof. A map I → Chn−1
p,s (R) is the same thing as a strict isomorphism (F, f) ∈

Chn−1
p,s (R). A map 0→ Chn

p,s(R) is the same thing as a F ′ ∈ [Vn, R]. Commu-
tativity of the square is the same as saying ρ∗(F

′) = F . What we need to find
is a (F ′, f ′) ∈ [V Tn, R] such that ρ∗(f

′) = f .
ρ∗ is surjective so we can choose some pair (G, g) ∈ Chn

p,s(R) such that
ρ∗(G, g) = (F, f). Now, consider the pair (F ′, g) ∈ Chn

p,s(R), it obviously has
the desired properties.

As a corollary of this result we have that (π0ρ∗)
−1([F ]) ∼= π0(ρ−1∗ (F )). Our

goal will be to determine the right hand side of this bijection.

Lemma 4.3. There is an action of R (as an abelian group) on Chn
p,s(R) such

that Chn
p,s(R)/R ∼= Chn−1

p,s (R).

14



Proof. First we define the action of R on objects. Let F ∈ Ob(Chn
p,s(R)) and

a ∈ R, then

(a.F )(vi) := F (vi) +

{
0 i 6= n

a i = n
.

By the comparison lemma this tells us that, (a.F )(x, y) = F (x, y) + aCpn(x, y).
Now, define a.(F, f) = (a.F, f). The only non-trivial thing to verify in order

for this to be an action on a groupoid is that a is a morphism of groupoids.
Thus, we must show that for a strict isomorphism (F, f,G) that (a.F, f, a.G) is
also a strict isomorphism.

f((a.F )(x, y)) = f(F (x, y) + aCpn(x, y))

= f(F (x, y)) + aCpn(x, y)

= G(f(x), f(y)) + aCpn(f(x), f(y))

= (a.G)(f(x), f(y))

Because this action is exactly modifying the value of vn the second part of
the lemma is clear.

For the remainder of this section A will denote a torsion-free Z(p)-algebra.

Theorem 4.4. If F ∈ Chn−1
p,s (A), G,H ∈ Chn

p,s(A) and ρ∗G = ρ∗H = F , then
G and H are strictly isomorphic iff G(vn) ≡ H(vn) mod (p).

Proof. Any strict isomorphism G
f−→ H will have ρ∗(f) = Id(x) = x by Lemma

4.4.d. Thus, we can write f in the form f(x) = x + bxn. By the comparison
lemma,

G(x, y) ≡ H(x, y) + (G(vn)−H(vn))Cn(x, y) mod (x, y)n+1

We put all of this together and get,

f(G(x, y)) ≡ H(f(x), f(y)) mod (x, y)n+1

G(x, y) + b(G(x, y))n ≡ G(x+ bxn, y + byn) + (H(vn)−G(vn))Cn(f(x), f(y)) mod (x, y)n+1

G(x, y) + b(x+ y)n ≡ G(x, y) + b(xn + yn) + (H(vn)−G(vn))Cn(x, y) mod (x, y)n+1

bBn(x, y) ≡ (H(vn)−G(vn))Cn(x, y) mod (x, y)n+1

bp = (H(vn)−G(vn))

This last equation is solvable exactly when G(vn) ≡ H(vn) mod (p), which
completes the theorem.

Theorem 4.4 is the crux of all of our results. It allows us to compute the the
fibers of ρ∗ and thereby determine strict isomorphism classes.

Lemma 4.5. There is a free action of A/pA on π0Chn
p,s(A) such that

π0Chn
p,s(A)/(A/pA) ∼= π0Chn−1

p,s (A).
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Proof. Applying π0 to the action in Lemma 4.3 we get an induced action of A
on π0Chn

p,s(A) which is defined by a.[F ] = [a.F ]. This actions factors to be an
action of A/pA iff [F ] = [(pa).F ] for all a ∈ A. This is exactly the statement
of Theorem 4.4 so we have the desired action. This action is free because for
a ∈ A such that a /∈ pA Theorem 4.4 gaurantees that F /∈ [a.F ] = a.[F ].

In order to prove the last part of the theorem, let F,G and H be such
that [ρ∗(G)] = [ρ∗(H)] = [F ], then by Theorem 5.2 we can pick F ′ ∈ [G] and
F ′′ ∈ [H] such that ρ∗(F

′) = ρ∗(F
′′) = F . Thus, there is a so that a.F ′ = F ′′

which completes the proof.

Corollary 4.6.
π0Chn

p,s(A) ∼= (A/pA)× π0Chn−1
p,s (A)

Proof. The free action in Lemma 4.5 gives us this.

Corollary 4.7.
π0Chn

p,s(A) ∼= (A/pA)n

Proof. Obvious.

5 Classification of Formal Group Laws

In this section we prove results that allows us to recombine the information
about strict isomorphism classes of chunks into information about strict iso-
morphism classes of formal group laws.

Theorem 5.1.

FGp,s and lim(Chn
p,s) are naturally isomorphic.

Proof. This result is intuitively obvious from representability and Corollary 3.8.

Theorem 5.2. π0FGp,s and lim(π0Chn
p,s) are naturally isomorphic.

Proof. We already have natural transformations π0FGp,s → π0Chn
p,s, so by

the universal property for limits we get a natural transformation π0FGp,s →
lim(π0Chn

p,s), so we just need to show that this is an isomorphism. Injectivity
is easy to show. If [F ], [G] ∈ FGp,0(A) map to the same class then we have
a strict isomorphism between ρ∗(F ) and ρ∗(G) for every Chn

p,s(A), which by
theorem 5.1 means F and G are strictly isomorphic, so [F ] = [G]. Showing
surjectivity is slightly more complicated. Suppose we have a ∈ lim(π0Chn

p,s),
which is determined by its images an ∈ π0Chn

p,s. There is only 1 object in

Ch1
p,s(A), so set F1 = x + y ∈ Ch1

p,s(A). Now we proceed by induction. By
lemma 2.2 we can choose an Fn ∈ an such that ρ∗Fn = Fn−1. The choices of
Fn determine an F ∈ lim(Chn

p,s(R)) ∼= FGp(R) which means that [F ] maps to
a as desired.

Theorem 5.3. Let A be a torsion-free Z(p)-algebra.
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a.
π0FGp,s(A) ∼= (A/pA)N.

b. Given a map of sets s : A/pA → A which is a section of A → A/pA and
a F ∈ FGp,s(A/pA) let s∗F be such that (s∗F )(vi) = s(F (vi)). Then,
π0FGp,s(A) ∼= Ob(FGp(A/pA)).

Proof. a.) By Corollary 4.7 and Theorem 5.2,

π0FGp,s(A) ∼= lim(A/pA)n = (A/pA)N

b.) Let S = {s∗F | F ∈ Ob(FGp(A/pA))}. The proof proceeds in two parts.
First we show that no two distinct F,G ∈ S are strictly isomorphic. Second we
show that every F ∈ Ob(FGp(A)) is strictly isomorphic to some F ′ ∈ S.

Suppose F,G ∈ S are distinct. Let n be the smallest number such that
F (vn) 6= G(vn). Then, we know F (vn) 6≡ G(vn) mod (p) by the definition of S.
Thus, by Theorem 4.4, ρn∗(F ) is not strictly isomorphic to ρn∗(G), so F and
G are not strictly isomorphic.

For the second part, by Theorem 5.2 it is sufficient to show that if ρn∗(F ) =
ρn∗(G) for G ∈ S then there is H ∈ S and F ′ such that F ∼= F ′ and ρn+1∗(F

′) =
ρn+1∗(H).

Let a = s(F (vn+1)+pA)−G(vn+1). Then, F (vn+1) ≡ G(vn+1)+a mod (p),
so by Theorem 4.4, ρn+1∗(F ) ∼= a.(ρn+1∗(G)) and (a.ρn+1∗(G))(vn+1) ∈ img(s)
so we are done.

Theorem 5.4. If R is torsion-free, then

π0FGs(R) ∼=
∏

p prime

(A/pA)N.

Proof. This is proved by Corollary 2.13 in combination with Theorem 5.3 and
the fact that,

(A⊗ Z(p))/p(A⊗ Z(p)) ∼= A/pA.

In the case where there is torsion we do not have the local global result.
However, (at least in the p-typical case) we still do have an action of R on the
p-typical chunks and the projection map is still a fibration. Thus, a classification
of p-typical formal group laws requires only that we determine the fibers of this
fibration. We may be able to do this by looking at the stabilizers of the induced
action of A on strict isomorphism classes.
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