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Abstract. In this paper we study embeddings of complete ternary
trees in a 2-D lattice. Suppose we are given an n-node complete
ternary tree Tn with height h. We can construct an embedding of
Th on a 2-D lattice L so that every node in Th corresponds to a
vertex in L, and every edge in Th corresponds to a horizontal or
vertical path in the lattice. We provide a better upper bound on
the area requirement of straight-line orthogonal drawings of tern-
ery trees, namely O(n1.118) area. Further, we consider abstract
configurations of ternary trees, where subtrees of level h − k for
an integer h < k are modeled by disjoint boxes, providing lower
bounds on the space requirements for Th.
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1. Background and Preliminaries

Planar graph drawings have been an important field of study, as
they lend themselves to applications in circuit design and cartography,
among others, where it is convenient to have readable representations
of the graphs. An early result in the study of planar graphs states that
every planar graph admits a straight-line planar drawing. That is, if a
graph can be drawn on the plane without edge crossings with arbitrary
shaped curves, then it can be drawn without edge crossings using only
straight-lines.

Then, in 1979, Lipton and Tarjan presented a separator theorem for
planar graphs. It states that an n-vertex planar graph can always be
partitioned into two disjoint sets, each with no more than 2n

3
vertices,

with O(
√
n) edges between them [3]. In fact, this implies that planar

graphs are never good expanders. With this in mind, it seems possible
that planar graphs can be embedded into 2-dimensional lattices with
small area.

In this paper, we will study a class of planar graphs, trees, and their
embeddings into lattices.

Next, we formally define and introduce the notation we will use
throughout the paper.

1.1. Planar Graphs and Trees. A planar drawing of a graphG(V,E)
is an embedding into a lattice in which every vertex of V is mapped to
a point in the lattice and each edge in E is mapped to a path in the
lattice such that no distinct edges intersect except at their endpoints.
Thus, an equivalent definition for a planar graph is a graph admitting
a planar drawing.

The degree of a vertex of the number of edges that are incident to it,
and the degree of a graph G(V,E) is the maximal degree of its vertex
set.

A tree is a connected acylic graph, and a complete binary tree (a
complete ternary tree) is a rooted tree such that each non-leaf node
has exactly two (exactly three) children. Complete binary trees are of
degree three, and complete ternary trees are of degree four.

A spine in a rooted tree T is a path connecting the root r(T ) to a
leaf.

1.2. Drawing Standards. An orthogonal planar drawing is a planar
drawing Γ of a graph G(V,E) where each node v ∈ V is represented by
a point in a 2-D lattice, and each edge e ∈ E is represented by a path
composed by horizontal and vertical segments in the lattice. Clearly, a
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graph must have degree at most four in order to admit an orthogonal
drawing.

A straight-line orthogonal planar drawing is a planar drawing Γ
where the path is composed of a single horizontal or vertical line seg-
ment. There are classes of drawings, like four-connected graphs, that
do not admit a straight-line orthogonal drawings.

In this paper, we will assume that the drawings are all planar.
Qualitative features of optimal graphs include minimal area, and

ideal aspect ratio. The area of a planar drawing of a graph G is the
area of the smallest rectanglular grid, the bounding box, that contains
the drawing completely. The aspect ratio of a planar drawing is the
ratio of the width to the height of the bounding box.

2. Known Results

In 1981, Les Valiant addresses orthogonal drawings of planar graphs
with minimal area. He proves that every n-node tree with degree at
most four can be embedded in Θ(n) area [4]. Valiant’s algorithm for
constructing the embeddings in O(n) area uses a recursive splitting
procedure on separaters of the tree, and combines the subtrees using
exit tracks with bounded size to glue the components together.

Regarding straight-line orthogonal drawings, Garg and Rusu showed
that O(n) is a tight bound for the area of binary trees [2].

On the other hand, the best-known upper bound for drawing ternary
trees is O(n1.5) [1]. Previously, for complete ternary trees, the best-
known upper bound is O(n1.262) area, and there are no non-trivial lower
bounds. The goal of this paper is to investigate a tight bound on the
minimal area of straight-line orthogonal drawings of complete ternary
trees.

3. Abstract Configurations

In general, finding the minimal area straight-line orthogonal drawing
of a complete ternary tree for a given level h is a difficult problem; it has
been shown that the problem is NP -hard (GD 2008). Because of this,
we can make tree constructions more general by considering abstract
configurations, where we draw a tree of level h with boxes representing
subtrees of size h − k (see figure for the abstract configuration Frati
uses to prove the upper bound O(n1.262)).

According to the layout, the abstract configuration will satisfy linear
recurrence relations in the width Wh−k and height Hh−k of the form:
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r(T)

Figure 1. Frati’s abstract configuration with subtrees
of level h− 1

(
Wh

Hh

)
= Mk

(
Wh−k
Hh−k

)
Let the dominant eigenvalue of Mk be µ. Then, Wh = α · µh + . . .

and Hh = β · µh + . . . . Then, the area of the configuration grows
with µ2h. With respect to the number of nodes, the area grows with
µ2O(log

3h
n) = O(nlog

3h
µ2) and the aspect ratio approaches α

β
.

Then, in order to have a valid abstract configuration, we must have
that the layout of boxes with aspect ratio λ representing the subtrees fit
in a box of aspect ratio λ as well. This condition leads to the following
definition of abstract configurations:

Definition 3.1. An abstract configuration C(λ, k) of a complete ternary
tree Th of level h is a layout of aspect ratio λ > 1 composed of non-
overlapping boxes representing subtrees of level h−k with aspect ratio
λ. We normalize the drawing by scaling the subtrees so that the width
of the h− k subtrees is λ, and the height is 1.

With a way to calculate the growth of these abstract configurations,
we now define notation regarding the minimal area abstract configura-
tions. Let Ak(λ) be the minimal area abstract configuration for a given
aspect ratio λ and subtrees h − k. Then, let λ(k) be the aspect ratio
that minimizes Ak(λ)/λ (normalized so the area of the subtrees is 1).
Thus, Ak(λ(k))/λ(k) = Ak is the minimal area abstract configuration
for a fixed k.

Moreover, if Ak is the minimal area abstract configuration for a fixed
k, then we construct inductively a family of trees Thk+` where ` is in
the range [0, k − 1], and T(h+1)k+` is constructed from Thk+` using the
layout from the abstract configuration Ak and k initial trees. Next, we
define Rk = (Ak)

1
k , so that the growth of the area of the trees is Rh

k .
Then, we want to estimate infk Rk. Ideally, it should be as close to 3
(linear growth) as possible.

3.1. Finding Ak: Abstract Configurations for Fixed k. We now
investigate finding Ak for small values of k. These provide lower bounds
onAk(λ). That is, asking for the minimal area configurationAk(λ(k))/λ(k)
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r(T)

r(T)

Figure 2. Configuration 1 (left) and Configuration 2
(right) with ` represented by the dashed line

is equivalent to asking: how optimally can a tree be drawing only using
level h− k size subtrees?

4. h− 1 Layouts

The current best-known upper bound O(n1.262) for the minimal area,
due to Frati, was based on constructing a level h tree from level h− 1
subtrees, where the aspect ratio was 2. In our language, Frati found
an upper bound by finding A1(2)/2.

Let k = 1. We have the following lower bound on how well an
inductive strategy can work with subtrees of size h− 1 by finding A1:

Theorem 4.1. An abstract configuration with k = 1 has at least
O(nlog3 4) ≈ O(n1.262) area.

Proof. An abstract configuration of level 1 is a configuration Γh of a
complete ternary tree Th of three boxes, each with width Wh−1 and
height Hh−1. Let the aspect ratio of Γh and the three subtrees be λ, so
Wh−1 = λHh−1.

Assume, without loss of generality, that the width Wh−1 is λ, and
the height Hh−1 is 1. Let r(Th) be the root of Th. Two of the three
subtrees lie on the same straight line passing through r(Th). We orient
the tree so that this line is horizontal. Then, the third box is centered
on the vertical.

Let ` be the horizontal line extending from the top of the third box.
There are two configurations: ` intersects the two other subtrees, or `
lies below them (see Figure 2.)

In the case where ` intersects them, the width of Γh is 2 + λ and
the height is at least 1

2
λ + 1. The area is 2 + 2λ + 1

2
λ2. Enforcing the

condition that the aspect ratio of the full box must be λ, we have that
λ = 2, and the area is 8.

In the case where ` lies below the two boxes, the width Wh of Γh is
max(2, λ) and the height Hh is 1 +λ. If 2 ≤ λ, there are no values of λ

5



r(T)

Figure 3. Construction from h − 2 subpieces with
growth O(n1.118)

that produce a tree of the same aspect ratio, and if 2 > λ, λ = 1 and
the area is 4.

Both of these configurations produce minimal area configurations.
Take λ(k) = 1.

Then, the minimal area is A1(λ(k))/λ(k) = 4. Thus, the least
area the abstract configuration of level 1 can produce is O(nlog3 4) =
O(n1.262) with aspect ratio 1. �

5. Upper Bounds from the h− 2 Layouts

Next, we extend Frati’s method and present an algorithm that con-
structs a tree 2 steps in higher in tree depth and has an area bound
O(n1.118). Let Γh be a straight-line orthogonal drawing of a complete
ternary tree Th with height h. We inductively assume to have box
drawings Th−2 and arrange the boxes without overlapping in a minimal
area configuration. Then, we have the following:

Theorem 5.1. An n-node complete ternary tree Th with height h ad-

mits a straight-line orthogonal drawing with area O(nlog (2+
√
2)2/ log (3)2) ≈

O(n1.118).

Proof. Construct a drawing Γh of the complete ternary tree Th by in-
ductively using the construction shows in Figure 3. Let Wh, Hh be the
width and height of the bounding box of Γh repectively. By the con-
struction, we have Wh = 2Wh−2+2Hh−2 and Hh = max(Wh−2, Hh−2)+
2Hh−2.

Assume by inductive hypothesis that Wh−2 > Hh−2. At the base case
this is true: W1 = 2 > H1 = 1. Then, by the hypothesis Wh = 2Wh−2+
2Hh−2 and Hh = Wh−2+2Hh−2, so Wh > Hh, and Hh = Wh−2+2Hh−2.

Thus we have the recurrence relation:(
Wh

Hh

)
=

(
22
12

)(
Wh−2
Hh−2

)
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The dominant eigenvalue in the system is µ = 2 +
√

2. Thus, the

area of Γh grows as O(nlog (2+
√
2)2/ log (3)2) ≈ O(n1.118). We find that the

aspect ratio is λ =
√

2.
�

Next, we approach the abstract configuration problem described in
Section 3.1 for level k = 2.

Lemma 5.2. There exists a minimal area abstract configuration of a
complete ternary tree Γh of level h that is symmetrical over the vertical
line passing through the root node.

Proof. Let v be the vertical line passing through the root node. Assume
that the configuration is not symmetrical over v. Then, find the area of
the right and left half-tree, where the right (or left) half-tree is defined
to be the tree containing all of the vertices and edges lying on or to
the right (or left) of v. Choose the minimal area half-tree, say, γh. If
there is a tie, then choose randomly. We reflect γh over v to obtain a
v-symmetrical complete ternary tree of level h, Γ′h.

If A(Γ′h) < A(Γh), then Γh was not area minimal, and we have a
contradiction.

Else, if A(Γ′h) = A(Γh), then we have a minimal area symmetrical
configuration.

�

Theorem 5.3. An abstract configuration of level 2 has at least O(nlog9(6+4
√
2))

≈ O(n1.118) area.

Proof. Here, we consider abstract configurations of 9 boxes with aspect
ratio λ. We aim to find A2. Assume, without loss of generality, that
the height is 1 and the width is λ. By Lemma 5.2, we only need to
consider configurations symmetrical over the root node.

First, we define a 2 main cases (shown in Figure 4) and minimize
the area for each subcase. Let ` be the leftmost vertical line from the
subtree labelled R, and A the rightmost leaf.

Case 1 ` intersects A.
Case 2 ` does not intersect A.

Next, for each of these cases, we consider the placement of B, and
then compute the value for λ that will ensure that the aspect ratio of
the subtrees is equal to the aspect ratio of the configuration. Then, we
compute A2(λ) for each layout and λ.

We enumerate the eight possible configurations in Case 2. The con-
figurations for Case 1 are similar.
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Figure 4. 2 cases, with ` shown as a dashed line
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Figure 5. Subcases for Case 2

We demonstrate the calculation for the optimal area case, the second
configuration in Figure 2. In this case, the height Hh = 2 + 2λ and
the width Wh = 1 + 2λ. We minimize and enforce the aspect ratio
equivalence between the subtrees and Γh. This leads to the following
condition:

1

λ
=

2 + 2λ

1 + 2λ

Then, λ = 1√
2
, and the area of the configuration is (6 + 4

√
2)λ, and

so the configuration grows a factor of 6 + 4
√

2 at each inductive step.

Thus, the area grows as O(nlog33 6+4
√
2) ≈ O(n1.118). �
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6. Limitations and Further Strategies

The strategies presented for producing better upper bounds on the
area of a complete ternary tree by arranging boxes representing subtrees
of size h − k has a large disadvantage. For any given k, recursing
on the optimal area configuration produces diminishing returns as h
approaches infinity. The subtrees represented by the boxes are each
contained in their own bounding boxes, and so each strategy does not
benefit from interleaving subtrees contained in the drawings of Th−k at
each recursive step.

Moreover, for k > 3, it is already difficult to construct increasingly
optimal drawings.

6.1. Relating Ak(λ) and Ak(1). In order to simplify the problem, we
can look at the class of abstract configurations for a given aspect ratio
λ. For this to be useful, there would need to be some relation between
minimal area configurations for different ratios.

We now explore the relation between an abstract configuration of
aspect ratio λ and an abstract configuration of aspect ratio 1.

Theorem 6.1. Let Ak(λ) be the minimal area abstract configuration
using level 3k boxes, and Ak(1) be the minimal area abstract configura-
tion for square pieces. Then we have:

λAk(λ) ≥ Ak(1)

Proof. Take the optimal layout Ak(λ) with pieces of aspect ratio λ. We
can stretch the layout vertically by a factor of λ, so that the aspect
ratio of the new drawing is 1. Then, inside each box, we can draw a
1× 1 box. This provides an abstract configuration for λ = 1 with area
Ck(1). Because Ak(1) is minimal, Ak(1) ≤ Ck(1). Then,

λAk(λ) = Ck(1) ≥ Ak(1)

�

Next, we bound Ah(1) from below:

Theorem 6.2. Let Ak(λ) be the minimal area abstract configuration
using 3k boxes, and Ak(1) be the minimal area abstract configuration
for square pieces. Then we have:

Ak(1) ≥ Ak(λ)

λ3

Proof. We follow a procedure similar to the proof of Theorem 6.1.
Given the minimal area configuration for aspect ratio 1, Ak(1), we
stretch the lattice by λ2 horizontally and λ vertically. Thus, we have
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a layout with aspect ratio λ. Inside each box, we can now draw a box
with aspect ratio λ, obtaining a configuration with area Ck(λ). Then,
we have the following bound on the size of the layout.

λ3Ak(1) = Ck(λ) ≥ Ak(λ)

�

More generally, we can use the method from Theorem 6.1 and 6.2
to compare trees with different aspect ratio λ and µ. We obtain the
following:

Corollary 6.3. Let Ak(λ) and Ak(µ) be the minimal area abstract
configurations for aspect ratio λ and µ (with λ > µ). Then,

λ

µ
Ak(λ) ≥ Ak(µ)

Combining Theorem 6.1 and 6.2 allows us to compare the growth of
optimal trees in the following Corollary:

Corollary 6.4. If the sequence λ(k)1/k → 1, then Rk

(Ak(1)1/k)
→ 1.

Proof. Recall that λ(k) is the λ that provides the minimal area con-
figuration for a given k, and Rk = (Ak(λ(k))/λ(k))1/k is the growth
factor with respect to the height for a configuration.

We take the bound from Theorem 6.1. Then, dividing by λ2, we
have and raising to the power 1/k:(

Ak(λ)

λ

)1/k

≥
(
Ak(1)

λ2

)1/k

Then, taking λ = λ(k), we have:

Rk ≥
(
Ak(1)

λ(k)2

)1/k

(1)
Rk

(Ak(1))1/k
≥ 1

λ(k)2/k

We now show that Rk

(Ak(1))1/k
≤ 1. Taking the bound from Theorem 6.2,

we obtain the following bound:

(2) λ(k)2/k ≥ Rk

Ak(1)1/k

If λ(k)1/k → 1, then combining (1) and (2) gives:
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Rk

Ak(1)1/k
→ 1

�

One observation on the behavior of the growth of Ak(λ) is the fol-
lowing:

Theorem 6.5. Let Aa+b(λ) be an abstract configuration with 3a+b boxes
and ratio λ. Then,

Aa+b(λ) ≤ Aa(λ)Ab(λ)

Proof. Let Aa(λ) be a layout with 3a boxes, and Ab(λ) be a layout
with 3b boxes. Then, in each box of the Aa(λ) layout, we place a
layout identical to that of Ab(λ). This provides a construction with
3a · 3b boxes all of ratio λ, say Ca+b(λ). Clearly, Aa+b(λ) ≤ Ca+b(λ) =
Aa(λ)Ab(λ). �

Thus, if we assume that λ(k)1/k → 1, then we can restrict our ab-
stract configuration problem to looking at minimal square configura-
tions, because it has the same order of growth as Rk. With this ap-
proach, the next questions to continue the study would be: how do λ(k)
and Ak(1) behave? We hope that answering these questions will help
tighten the bounds for minimal area embeddings for complete ternary
trees. We conjecture a tight O(n1+ε) with ε fixed bound on the minimal
area for an n-node complete ternary trees.
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