
Distance Oracles for Sparse Graphs

SPUR Final Paper, Summer 2014
Georgios Vlachos

Mentor: Adrian Vladu
Project suggested by Adrian Vladu

July 30, 2014

Abstract

Suppose you are given a large network, such as the Internet or the US road net-
work. In many practical applications, one might be interested in querying shortest
path distances between pairs of nodes of the network. However, attempting to im-
plement a data structure that supports such operations will result either in a large
query time, or large space requirement, both of which are undesirable. In order to
overcome this barrier, better time vs. space trade-offs can be achieved by settling
for data structures that return approximate distances.

More formally, letG(V,E) be an undirected graph with nonnegative edge weights.
A stretch k distance oracle is a compact data structure that can efficiently answer
approximate distance queries between any pair of vertices: given a pair (u, v) it
returns an estimate δ(u, v) satisfying d(u, v) ≤ δ(u, v) ≤ k · d(u, v), where d is the
shortest path metric in G. This data structure has been introduced by Thorup and
Zwick [TZ01], who showed how to design stretch 2k−1 distance oracles, using space

O(|V |1+
1
k) and constant query time.

Although their trade-off is optimal for general graphs, assuming the Girth Con-
jecture of Erdös, little is known about the regime of sparse graphs, which appear in
most applications. Agarwal and Godfrey [AG13] presented one such result, which
we improve upon.

To summarize, our contribution is three-fold:

• We improve on the distance oracles of Agarwal and Godfrey. They present
stretch 1 + 2

t distance oracles using space O(n
2

a) and query time Õ(at) 1.
Under the same space-time trade-off, we improve the stretch to 1 + 1

t .

• We introduce a new approach for clustering for sparse graphs, that we apply
to known algorithms. For sparse graphs, there is a stretch 3 distance oracle
that uses space O(n2−2ε) and has query time Õ(nε), for ε ∈ [0, 12]. Applying
our clustering to the previous algorithm we obtain, for degree k expander
graphs of expansion c, distance oracles with space Õ(n2−2ε) and query time
O(nε−logk c(1−3ε)) for ε ∈ [14 ,

1
3].

• We reduce a class of set intersection problems to distance oracles of stretch
less than 1 + 1

t , for all integers t ≥ 1.

1We write f(n) = Õ(n) iff f(n) = O(n logβ n) for some constant β.

1

1 Introduction

In their seminal paper from 2001, Thorup and Zwick introduce distance oracles, a compact
data structure that can report approximate distances between nodes in graphs [TZ01].
More specifically, given an undirected weighted graph G = (V,E), we wish to create
a data structure which, whenever queried for a pair of nodes (u, v), efficiently returns
an approximate distance δ(u, v) satisfying d(u, v) ≤ δ(u, v) ≤ k · d(u, v), where d is the
shortest path metric in the graph, and k is an approximation factor which we will refer
to as stretch.

Trivially, one could simply store all the |V |2 pairwise distances in a matrix, and report
distances in constant time. However, for practical purposes (road networks, routing on the
internet), these matrices become prohibitively large. On the other side of the trade-off,
we could simply store the graph, and query distances by running Dijkstra’s algorithm;
but in this case the query time becomes impractical.

It is thus necessary to relax the requirements of the problem, and trade the quality of
the result and the query time in exchange for smaller storage space.

Thorup and Zwick managed to achieve, for all positive integers k, distance oracles of
size O(kn1+1/k) that return distances of stretch 2k − 1 in time O(k). They argued that
their space-stretch trade-off is nearly optimal by showing that if a well known conjecture
of Erdos (the Girth Conjecture) holds, then there are graphs with Θ(n1+1/k) edges for
which any stretch k distance oracle needs space Ω(n1+1/k), regardless of the query time.

The idea introduced in their paper, and used repeatedly thereafter, is to uniformly
sample a small subset of nodes L ⊆ V , which are designated as landmarks, and save all
the distances between V and L. Then, for any (u, v), if v is closer to u than u’s closest
landmark, then we will have already saved their distance, otherwise we will use u’s closest
landmark for an approximation of the distance.

The lower bound proof of Thorup-Zwick uses a compressibility argument, which can
only be used for graphs with many edges. So our work focuses in the regime of sparse
graphs, where m = O(n) and the above lower bound argument does not apply.

More recently, Patrascu and Roditty [PR10] managed to get stretch 2 with sub-
quadratic space and constant query time, by taking advantage of graph sparsity. They
also showed, using a widely believed conjucture about the hardness of the set intersection
problem, that even for sparse graphs we can’t hope for stretch less than 2 with constant
query time.

Finally, Agarwal and Godfrey [AG13] managed to obtain stretch less than 2 by allowing
large sublinear query times. In particular, for sparse graphs they achieve a three-way
trade-off; more specifically, for any positive integers a and t, they design stretch 1 + 2

t+1

oracles, with space O
(
n2

a

)
, and query time Õ(at).

2

2 Preliminaries

2.1 Definitions and notation

In this section we introduce the notation we will use throughout the paper. We are given as
an input a graph G(V,E), where V is the set of vertices and E is the set of edges. We will
let n = |V |, and m = |E|. For our purposes, we assume that G is sparse, i.e. m = O(n).
We will denote by d(u, v) the length of the shortest path from u to v, while δ(u, v) will be
the approximation of d(u, v) returned by our distance oracle. The stretch of a distance
oracle is the constant k, characteristic to the oracle, for which d(u, v) ≤ δ(u, v) ≤ k d(u, v)
In every algorithm, we will need to sample a set L of landmarks. For any vertex u, its
closest vertex in L is denoted by lu (ties broken arbitrarily). We will also need the notion
of the ball Bu around any vertex u, that is Bu = {v|d(u, v) < d(u, lu)}. The radius ru of
Bu is d(u, l(u)), while the vicinity Vu of Bu will be the set of vertices that have a neighbour
in Bu and are not contained in it. For v on the vicinity of Bu, we define duv to be the
length of the shortest path from u to v if only edges from Bu are used. Finally, let degu
be the degree of vertex u.

2.2 Review: Thorup-Zwick distance oracles for stretch 3

Theorem 2.1. For any graph, there exists a data structure of size O(n
3
2) that can answer

stretch 3. distance queries in time O(1). [TZ01]

Below we briefly describe the construction of the data structure, the querying algo-
rithm, and the theoretical analysis.

Preprocessing:
Sample each vertex of the graph into the set L of landmarks with probability n−

1
2 . We

save the distances from every vertex to every landmark. We also save, for each vertex u,
the distance to everything within Bu. All the calculated distances are saved in a hash
table H, from where they can be retrieved in constant time. We also save for each u its
closest landmark lu.

Query d(u,v):
We first check if the distance is inH. If it is not, then we know that v /∈ Bu, so ru ≤ d(u, v).
So our estimate will be δ(u, v) = ru + d(v, lu). By the triangle inequality,

d(u, v) ≤ δ(u, v) = d(u, lu) + d(v, lu) ≤ d(u, lu) + (d(u, lu) + d(u, v)) ≤ 3d(u, v)

so we get stretch 3.

Runtime Analysis:

E[|L|] = n
1
2 , so E[|L× V |] = n

3
2

3

E[|Bu|] = O(n
1
2), so E[Σu |Bu|] = O(n

3
2)

To see why E[|Bu|] = O(n
1
2), order the nodes of V by their distances from u, breaking ties

arbitrarily. The size of Bu is at most the position of the earliest landmark that appears
in the sequence, which is a geometric random variable with mean n

1
2

So total expected space is O(n
3
2) + O(n

3
2) = O(n

3
2), and we can resample until we get

space O(n
3
2).

Algorithm 1 Preprocess(G(V,E), k)

1: Uniformly sample L ⊆ V with probability n−1/2.
2: Store all the distances in L× V .
3: for v = 1→ |V | do
4: Store all the distances d(u, v), v ∈ Bu

5: end for

Algorithm 2 Query(u, v)

1: if d(u, v) has been stored then
2: return d(u, v)
3: end if
4: return d(u, lu) + d(lu, v)

3 Results

In the first section, we improve the stretch less than 2 distance oracles of [AG13]. More
specifically, under the same space-time trade-off that they get for stretch 1 + 2

t+1
, we get

stretch 1 + 1
t
.

Next, we present stretch 2 and 3 algorithms first appearing in [AGHP11] and show
how to improve the query time. In the case of expander graphs, we get a polynomial
improvement.

Finally, in the spirit of [CP10], [PR10], we reduce some set intersection problems to
the problem of creating distance oracles of stretch less than 1 + 1

t
.

In the following sections, we will use Lemma 3.1 repeatedly. The distance oracles we
present work for bounded degree graphs. But using this lemma we can transform any
sparse graph to a graph of bounded degree with a linear number of extra dummy nodes,
so it is enough to return queries on the new bounded degree graph, which asymptotically
has the same size.

Lemma 3.1. Given a sparse weighted graph G(V,E), we can create a graph G′(V ′, E ′)
with O(n) nodes, and degree O(1), that includes the nodes of our original graph and
preserves the distances between pairs of original nodes.

4

Proof. Let d = dm
n
e = O(1). If a vertex u has e > d neighbours, then we add a dummy

vertex u′, connect u and u′ with an edge of weight 0 and move d − 1 neighbours of u to
u′. So if u is connected to v through an edge of weight w, moving v from u to u′ means
deleting edge (u, v) and adding an edge (u′, v) of weight w. Clearly, the distance between
any two nodes from our original graph is preserved. Now consider the sum Σueu = O(n),
where eu = 0 if degu ≤ d and eu = degu − d otherwise. Each vertex has degree at most d
iff the sum is 0. Since the sum decreases by at least 1 each time we break a vertex and it
initially is O(n), we will get O(n) extra nodes and bounded degree in the end.

3.1 Improving Agarwal-Godfrey distance oracles

Theorem 3.2. Given a sparse weighted graph G(V,E) and integers a ∈ {1, . . . , n}, t ≥ 1,

one can construct a stretch 1 + 1
t

distance oracle with space O(n
2

a
) and query time Õ(at).

This in an improvement over the algorithm of Agarwal-Godfrey, whose distance oracles
have stretch 1 + 2

t+1
, under the same space-time trade-off. In view of Lemma 3.1, it is

enough to design an algorithm that works on bounded degree graphs.

3.1.1 Description of the algorithm

Preprocessing:
We construct L by independently including each vertex of the graph with probability 1/a.
From each vertex of L we run Dijkstra, so we get all distances in L × V . We save the
graph with the landmarks marked, and the distances from every node to every landmark.

Query:
Given two vertices u and v, we report an approximate distance by the following procedure.
We start by growing the ball Bu around u, using Dijkstra. We throw the nodes of the
ball, together with the vicinity of u, into a hash table augmented with their calculated
distances from u. For points w on the vicinity of Bu, we use duw. Let us denote the saved
distance by δ(u,w).
Next, from each point w on the vicinity of Bu, we grow the ball Bw. For each node z
reached, including those in Vw, add it to the hash table with distance δ(u,w) + d(w, z),
where d(w, z) is calculated by the Dijkstra algorithm (for points on the vicinity, use duv
instead of d(u, v)). If z is already in the hash table, update its distance to the minimum
of the old and the new one.
For t− 2 more steps, grow balls from the vicinities of all the balls grown in the previous
step, then update the distances from u. Repeat for v, so we have two hash tables Hu and
Hv.

Set ∆ =∞
For each node w in Hu:

5

If w is in Hv, update ∆ = min(∆, δ(u,w) + δ(v, w))
Update ∆ = min(∆, δ(u,w) + d(w, l(w)) + d(l(w), v)
For each w in Hv:
Update ∆ = min(∆, δ(v, w) + d(w, l(w)) + d(l(w), u))
Return ∆

3.1.2 The algorithm

Algorithm 3 Preprocessing

1: Uniformly sample L ⊆ V with probability 1
a

2: Store all distance in L× V

Algorithm 4 Query(u, v)

1: Create empty hash table Hu

2: Add u to Hu with d(u, u) = 0
3: for i = 1 to t do
4: for w ∈ Hu do
5: Do Dijkstra from w until lw is reached
6: For each node z explored by Dijkstra, add it to Hu with distance

δ(u, z) = min(δ(u, z), δ(u,w) + d(z, w)
7: For each node z in Vz, add it to Hu with distance

δ(u, z) = min(δ(u, z), δ(u,w) + dzw)
8: end for
9: end for

10: for w ∈ Hu do
11: if w ∈ Hv then
12: ∆ = min(∆, δ(u,w) + δ(v, w))
13: end if
14: ∆ = min(∆, δ(u,w) + d(w, l(w)) + d(l(w), v)
15: end for
16: for w ∈ Hv do
17: ∆ = min(∆, δ(v, w) + d(w, l(w)) + d(l(w), u))
18: end for
19: return ∆

3.1.3 Space-Time Analysis

All we save is |L× V | distances, for total expected space O
(
n2

a

)
. We will resample until

every ball has size Õ(a) and |L| = O
(
n
a

)
(since Bu > 2a log n with probability O

(
1
n2

)
,

we can make sure both bounds hold by resampling). Because the degree is bounded, the

6

vicinity of every ball contains Õ(a) points. So the size of our hash tables increases by

Õ(a) at each step and in the end |Hu| , |Hv| = Õ(at). Searching each ball using Dijkstra

takes Õ(a) so creating and comparing the hash tables takes time Õ(at).

3.1.4 Proof of Correctness

By the triangle inequality, every δ estimate is no less than the actual distance it estimates,
so ∆ can’t be less than d(u, v). Consider now a shortest path between u and v. When
we grow Bu, we either set the actual distance δ(u, v) = d(u, v), or there is a point u1 that
lies on the intersection of the shortest path and the vicinity of Bu, for which δ(u1, u) =
d(u1, u) ≥ r0, where r0 is the radius of Bu. Growing the ball around u1, we again either
get the actual distance from u1 to v, which will give us the actual distance from u to v
as u1 lies on their shortest path, or we get δ(u2, u) = d(u2, u) ≥ r0 + r1, where r1 is the
radius of the ball around u1. We continue like this for t steps in total, and we either get
the exact distance between u and v or a sequence of points u0 = u, u1, .., ut on the shortest
path, with their exact distances from u calculated and d(ui+1, ui) ≥ ri.
For v, we respectively get a sequence v0 = v, v1.., vt with d(vi+1, vi ≥ Ri), where Ri are the
radii for the vi. Consider now the paths from u to ut and from v to vt along the shortest
path form u to v. If these two paths intersect, the algorithm returns the exact distance
from u to v. Otherwise, the following inequality holds

r0 + r1 + ..+ rt−1 +R0 +R1 + ..+Rt−1 ≤ d(u, v)

Without loss of generality, let ri be the least of these radii. Then ri ≤ d(u,v)
2t

.
Therefore

d(u, ui) + d(ui, l(ui)) + d(l(ui), v)) ≤ d(u, ui) + d(ui, l(ui)) + d(ui, l(ui)) + d(ui, v)

= d(u, ui) + d(ui, v) + 2ri

= d(u, v) + 2ri ≤ d(u, v) + 2
d(u, v)

2t

=

(
1 +

1

t

)
d(u, v)

So ∆ ≤
(
1 + 1

t

)
d(u, v)

3.1.5 Improvement for small a

Theorem 3.3. Given a sparse weighted graph G(V,E) and integers a ∈ {1, . . . , n}, t ≥ 1,

one can construct a stretch 1+ 1
t+ 1

2

distance oracle with space O
(
n2

a

)
+Õ(nat+1) and query

time Õ(at). This improves on the previous algorithm for a < n
1
t+2 .

7

Proof. (sketch) We modify the algorithm a bit. Instead of creating the hash tables Hu, Hv

upon query, we just save them at preprocessing. For each node u, we also save a hash
table H ′u that contains the nodes of Hu explored in the first t − 1 steps of the previous
query algorithm. For the query, for each node of H ′u that is contained in Hv, update the
∆ estimate as in the original algorithm. If H ′u and Hv don’t intersect on the shortest

path, we will get a point z ∈ H ′u or H ′v on the shortest path with rz ≤ d(u,v)
2t+1

. Updating
∆ for every z ∈ H ′u ∪H ′v, we get the desired stretch. Since we only traverse hash tables
H ′u, H

′
v of total size O(at), this is our runtime.

Corollary 3.4. For t = 2, a = n0.25 we get stretch 1.4 for space n1.75, time n0.5.

3.2 Stretch 3 oracles for sparse graphs; improved oracles for
expanders

Theorem 3.5. [AGHP11] For bounded degree weighted graphs, we can design stretch-3

distance oracles of space O(n
2

a2
) and query time Õ(a), where a takes values in the interval

(n
1
4 , n

1
2].

3.2.1 The algorithm

Algorithm 5 Preprocessing

1: Uniformly sample L ⊆ U with probability 1
a

2: Store all distances in L× L

Algorithm 6 Query(u, v)

1: Run Dijkstra from u until lu is reached, then throw the explored nodes augmented
with their distance from u into hash table Hu. Add all w ∈ Vu to Hu with distance
duw.

2: Run Dijkstra from v until lv is reached, then throw the explored nodes augmented
with their distance from v into hash table Hv. Add all w ∈ Vv to Hv with distance
dvw.

3: ∆ =∞
4: for w ∈ Hu do
5: if w ∈ Hv then
6: ∆ = min(∆, d(u,w) + d(w, v))
7: end if
8: end for
9: ∆ = min(∆, d(u, lu) + d(lu, lv) + d(lv, v))

10: return ∆

8

3.2.2 Space-Time Analysis

We have E(|L|) = O
(
n
a

)
. We will resample until all balls have size Õ(a) and |L| = O

(
n
a

)
,

so total space will be |L× L| = O
(
n2

a2

)
(can be done since |Bu| > 2a log n with probability

O
(

1
n2

)
and log n ≤ 2 log a). Exploring Bu, Bv by Dijkstra takes Õ(a), while comparing

the two balls takes time linear in their size, so total query time Õ(a).

3.2.3 Proof of correctness

By the triangle inequality, any approximation is at least the actual distance d(u, v). If
the balls intersect, then let suv be the shortest path connecting u, v. Let pu be the node
farthest from u in suv ∩ Bu, pv the closest to v in suv ∩ Bv. If p′u ∈ Vu is next to pu on
suv, then dup

′
u = d(u, p′u), since the shortest path from u to p′u goes through pu. Define

p′v similarly and so we have the exact distances from u to p′u and from v to p′v in our
hash tables. If sup′u , svp′v intersect, then we will get the exact distance d(u, v). Otherwise
d(u, lu) + d(v, lv) ≤ d(u, v) so the final approximation will give

d(u, lu) + d(lu, lv) + d(lv, v) ≤ (d(u, lu) + d(v, lv) + d(u, v)) + (d(u, lu) + d(v, lv))

≤ 3d(u, v)

Theorem 3.6. Given an unweighted graph G(V,E) of degree at most k and edge expansion
c (for all V ′ ⊆ V such that |V ′| ≤ |V | /10, |∂V ′| ≥ c |V ′|2), we can construct stretch 3
distance oracles with space O(n2−2ε) and query time O(nε−logk c(1−3ε)).

Corollary 3.7. Given a degree 5 expander with edge expansion 4, we can construct stretch
3 distance oracles with space O(n1.4) and query time O(n0.2139).

3.2.4 The Algorithm

For this algorithm, let Cu be the set of all nodes within distance logk n
1−3ε from u.

Algorithm 7 Preprocessing

1: Uniformly sample L ⊆ V with probability 1
nε

2: Store all distances in L× L
3: Store all distances in u× Cu
4: for u ∈ V do
5: for v ∈ V do
6: if Bu ∩ Cv 6= ∅ then
7: Store d(u, v)
8: end if
9: end for

10: end for

2Given V ′ ⊆ V , ∂V ′ = {(u, v) ∈ E : u ∈ V ′, v /∈ V ′}.

9

Algorithm 8 Query

1: Grow ball B′u or radius ru − logk n
ε around u using Dijkstra

2: if v is found by Dijkstra then
3: return d(u, v) as found by Dijkstra
4: end if
5: for z ∈ B′u do
6: if Bv ∩ Cz 6= ∅ then
7: return d(u, z) + d(z, v)
8: end if
9: end for

10: return d(u, lu) + d(lu, lv) + d(lv, v)

3.2.5 Proof of correctness

Clearly, ∪z∈B′uCz covers Bu. So if Bu∩Bv 6= ∅ and v /∈ B′u, then for any z ∈ B′u, d(u, z) <
d(u, v), so line 7 of the query algorithm will give stretch-3 for any z for which Cz∩Bv 6= ∅.
If line 7 does not return an answer, then Bu ∩Bv = ∅ and line 10 will give stretch-3.

3.2.6 Space-Time Analysis

Resample until |L× L| = O
(
n2

a2

)
and all balls have size Õ(nε).

Consider the clusters of radius logk n
1−3ε around every vertex. Then consider any ball

Bu, of size Õ(nε). The number of points at distance at most logk n
1−3ε from the ball

are Õ(nε+1−3ε) = Õ(n1−2ε), so each ball intersects Õ(n1−2ε) clusters. So saving all the

ball-cluster intersections takes space Õ(n2−2ε).
The query time is proportional to the size of B′u. Increasing the radius of a ball by 1
incrases its volume by at least c, so since we have to increase logk n

1−3ε times to get

Bu which has volume Õ(nε), the volume of B′u and thus the runtime is Õ
(

nε

clogk n
1−3ε

)
=

Õ
(

nε

n(1−3ε) logk c

)
.

Theorem 3.8. We can improve the query time in Theorem 3.6 by a factor of log n for
a = nε ∀ε ∈ (1

4
, 1
3
). We can do the same in Theorem 3.9 for a = nε ∀ε ∈ (1

3
, 1
2
).

Proof. (sketch)
We use the same clustering as above, but we make the radius of the clusters logk n

1−3ε

and instead of saving the whole graph, for each u we store O(|Bu|
logn

) clusters that cover
Bu ∪ Vu

The above theorem gives an improvement for all sparse graphs, using a clustering that
yields a polynomial improvement for the more specific case of expanders. Although the
improvement we show for general sparse graphs is only by a logarithmic factor, we expect

10

this to fare pretty well in practice. Notice that whenever the ball of one of the queried
vertices has good expansion properties, the query time actually improves by a polynomial
factor. Furthermore, it looks like the more general property that is required by the ball is
only to have low diameter. In light of previous results concerning graph decompositions
(see [CKR04]), we believe that there is much more structure to exploit in order to achieve
provably better distance oracles. However, for now, we look forward to implementing this
improvement and comparing it against the previously designed oracles.

3.3 Stretch 2 oracles for sparse graphs; improved oracles for
expanders

Theorem 3.9. [AGHP11] For bounded degree weighted graphs, we can design stretch-2
distance oracles of space O(n

2

a
) and query time O(a log n), where a takes values in the

interval [1, n] (we use a similar approach to [AGHP11], who did this for a ∈ [1, n
1
2]).

3.3.1 The algorithm

Algorithm 9 Preprocessing

1: Uniformly sample L ⊆ V with probability 1
a

2: Store all distances in V × L
3: Store the graph

Algorithm 10 Query

1: Do Dijkstra from u until lu is reached, then throw the explored nodes augmented with
their distance from u into hash table Hu. Add all w ∈ Vu to Hu with distance duw

2: Do Dijkstra from v until lv is reached, then throw the explored nodes augmented with
their distance from v into hash table Hv. Add all w ∈ Vv to Hv with distance dvw

3: ∆ =∞
4: for w ∈ U do
5: if w ∈ V then
6: ∆ = min(∆, d(u,w) + d(w, v))
7: end if
8: end for
9: ∆ = min(∆, d(u, lu) + d(lu, v), d(u, lv) + d(lv, v))

10: return ∆

3.3.2 Space-Time Analysis

As before, we can resample until |V × L| = O
(
n2

a2

)
and |Bu| = O(a log n) ∀u.

Exploring Bu, Bv by Dijkstra takes O(a log n), while comparing the two balls takes time

11

linear in their size, so total query time O(a log n)

3.3.3 Proof of correctness

By the triangle inequality, any approximation is at least the actual distance d(u, v). If we
don’t get the exact distance on the shortest path, then as in the stretch 3 oracle proof,
described in section 3.2.3, we get d(u, lu) + d(v, lv) ≤ d(u, v). In that case, without loss
of generality let d(u, lu) ≤ d(v, lv) ⇒ 2d(u, lu) ≤ d(u, v) and the final approximation will
give

d(u, lu) + d(lu, v) ≤ d(u, lu) + d(u, lu) + d(u, v) ≤ 2d(u, v)

Theorem 3.10. Given an unweighted graph G(V,E) with maximum degree k and edge
expansion c (for all V ′ ⊆ V such that |V ′| ≤ |V | /10, |∂V ′| ≥ c |V ′|), we can construct

stretch 2 distance oracles with space O(n2−ε), query time Õ(nε−logk c(1−2ε)), for any ε ∈
(1
3
, 1
2
).

Proof. The algorithm uses exactly the same clustering as for the stretch 3 oracle, this
time with clusters of radius logk n

1−2ε. The algorithm and proof are almost identical, so
we won’t repeat them here.

3.4 Lower Bounds via Set Intersection Hardness

Below we describe a folklore problem on static data structures, for which we make a
conjecture concerning its space-query time tradeoff. While [CP10] already have a proof
in the same flavor, we use this conjecture to show conditional lower bounds for distance
oracles of stretch less than 2. We also introduce an additional version of Set Intersection
(called Set Intersection by distance 2), which we show that is harder than Set Intersection
and we reduce it to distance oracles of distance less than 1.5.

3.4.1 The Set Intersection Problem

We are given a ground set U and a family of k sets S1, .., Sk ⊆ U , such that |Si| = n/k
for all i. We wish to preprocess the input to create a data structure occupying space S
that can answer queries of the type ”is Si ∩ Sj empty?” in time T .

Below we give a conjecture concerning the space vs. query time tradeoff between S
and T . We believe that in some regimes, one can not do better than the naive solution.
That is, either store all intersecting pairs of sets (or the complement), or save the sets
and compare them on the fly when queried.

We believe that constructions such as the one below are the hardest instances for Set
Intersection. Consider, for r ∈ [1

2
, 1) and small ε > 0, an instance of Set Intersection with

|U | = n2−2r−2ε, k = nr. Its sets are constructed by uniformly sampling elements with
probability 1

n1−r−ε . In expectation, |Si| = n1−r−ε. Furthermore, every two sets intersect
with constant probability. So the expected number of set intersections is Θ(n2r+2ε) (the

12

size of the complement is the same). So the natural solution will require either space
Ω(n2r+2ε), or query time Ω(n1−r−ε).

One should note that at the extremes of the tradeoff curve lie the naive query algo-
rithm, which requires space S = Θ(n) and query time T = O(n1−r), respectively the data
structure that stores all the pairwise intersections, which requires space S = Θ(n2r) and
query time T = O(1).

Conjecture 3.11. Any data structure for the Set Intersection Problem in the regime
k = Θ(nr+ε) using space S = O(n2r) requires query time T = Ω(n1−r−ε), ∀r ∈ [1

2
, 1), for

all small ε > 0.

Next, we present a reduction of Set Intersection to distance oracles of stretch less than
2. We note that a similar result was given by [CP10]. However, we provide the specific
bounds for distance oracles that are implied by our conjecture.

3.4.2 Reduction to distance oracles of stretch less than 2

Consider an instance of Set Intersection with k sets over a universe of size n. Create a
graph with nodes u1, u2, . . . , un representing the elements of U , nodes s1, . . . , sk represent-
ing the sets S1, . . . , Sk. Connect si and um with an edge of length 1 iff m ∈ Si.

Now, it is easy to see that sets Si and Sj have a common element iff the distance of
nodes si and sj in the graph is 2, otherwise their distance will be at least 4. Since any
distance oracle of stretch less than 2 can distinguish between distances 2 and 4, such a
distance oracle can solve the set intersection problem.

Theorem 3.12. Assuming Conjecture 3.11, any distance oracle of stretch less than 2
with space O(n2r) requires query time at least Ω(n1−r−ε), for r ∈ [1/2, 1) and any constant
ε > 0.

Proof. (sketch) Suppose we have a distance oracle of stretch less than 2 that uses space
O(n2r) and query time o(n1−r−ε) on sparse graphs of n nodes. Given the instance of
the set intersection problem described before Conjecture 3.11, we can reduce it to the
problem of returning distances of stretch less than 2 on a graph of max(n2−2r, nr) vertices
and n edges. Adding dummy nodes, we get a sparse graph of n nodes. So using the
distance oracle, we can get query time o(n1−r−ε) with space O(n2r), which contradicts
Conjecture 3.11.

We compare the previous result against the upper bound given in Theorem 3.3. More
specifically, the upper bound gives stretch 5/3 distance oracles, with space O(n5/3) and

query time Õ(n1/3). The following corollary shows that assuming the Set Intersection
conjecture, this is not very far off from optimality.

Corollary 3.13. Assuming Conjecture 3.11, any distance oracle with stretch less than 2,
using space O(n5/3) requires query time Ω(n1/6−ε), for any constant ε > 0.

13

For the rest of the section, we introduce a new problem related in spirit with Set
Intersection. We prove that it is harder than standard Set Intersection, and show that it
also implies hardness for distance oracles with stretch less than 1.5. Our statements do
not include specific quantitative bounds for the time being, since we are still trying to
understand how hard this new problem actually is.

3.4.3 Set Intersection by distance 2

We are given a ground set U and sets S1, .., Sk over U . We wish to create a data structure
that can answer the following query: Given Si, Sj, does there exist an Sk with Si∩Sk 6= ∅
and Sj ∩ Sk 6= ∅? In other words, check whether Si and Sj intersect or have a common
neighbour.

3.4.4 Set Intersection by distance 2 is harder than Set Intersection

Consider an instance of the set intersection problem: Ground set U with |U | = n, sets
S1, .., Sm of total size P .

We can reduce it to an instance of the set intersection by distance 2 in the following
way: For each set Si, add a dummy element un+i to U and Si and create a new set S ′i
containing un+i alone. So we double the number of sets but leave the size of the universe
unchanged.

Notice that Si∩Sj 6= ∅ iff S ′i and Sj have distance at most 2, so creating a data structure
that answers distance 2 queries for the new sets also solves the previous problem.

Now suppose that we have a data structure that solves the set intersection by distance
2 problem using space s(n,m, P), time t(n,m, P). We showed that we can solve the set in-
tersection problem using space O(s(2n, 2m, 2P)) and query time O(t(2n, 2m, 2P)). What
is left is to show that s(2n, 2m, 2P) = O(s(n,m, P)) and t(2n, 2m, 2P) = O(t(n,m, P)).
To show this, partition U into 4 sets of size n

2
. Consider the

(
4
2

)
= 6 universes we can

get as the union of any two of these sets. Let them be Uk, k ∈ 1, .., 6. Now Si, Sj have
distance at most 2 over U iff their restrictions to Uk have distance at most 2 over Uk
for some k. We can check this using space 6O(s(n, 2m, 2P)), time 6O(t(n, 2m, 2P)), so
s(2n, 2m, 2P) = O(s(n, 2m, 2P)), t(2n, 2m, 2P) = O(t(n, 2m, 2P)). Doing the same for
m,P , we get s(2n, 2m, 2P) = O(s(n,m, P)) and t(2n, 2m, 2P) = O(t(n,m, P)).

3.4.5 Reduction to distance oracles of stretch less than 1.5

Suppose U is {1, 2, .., n} and we are given sets S1, .., Sk. Create a graph with nodes
u1, u2, .., un representing the elements of U , nodes s1, .., sk representing the sets S1, .., Sk.

Connect si, um with an edge of length 1 iff m ∈ Si.
Now, it is easy to see that sets Si, Sj have some common neighbour iff the distance of

nodes si, sj in the graph is at most 4, otherwise their distance will be at least 6. Since any
distance oracle of stretch less than 1.5 can distinguish between distances 4 and 6, such a
distance oracle can solve the set intersection problem by distance 2. So it can’t have a

14

better space-time trade-off than the optimal data structure that solves the set intersection
problem.

In a similar fashion with Set Intersection by distance 2, we can consider a more general
version, which uses distance t between sets. Just as above, it turns out that this can be
used to prove conditional lower bounds for the space vs time tradeoff for distance oracles
with stretch less than 1 + 1/t, for any positive integer t.

3.4.6 Generalized Set Intersection Reduction

We can define set intersection by distance t similarly. The query asks whether two sets
Si, Sj are connected by a sequence of at most t−1 neighbors. This problem can be reduced
to distance oracles of stretch less than 1 + 1

t
. It can similarly be shown that the problem

of set intersection by distance t+ 1 is harder than set intersection by distance t.

4 Discussion

In this paper, we presented some new approaches to distance oracles for sparse graphs.
We expect to extend these approaches and combine them with some other results we have
in mind. More specifically, it looks like we can take much advantage of various graph
decompositions in the spirit of [CKR04]. We already used a simple clustering scheme for
expander graphs, where our approach improves the query time by a polynomial factor.
We believe that this is a good heuristic that significantly improves a few algorithms in
practice, so we aim to implement our approach and see how well it fares in practice. We
support our claim by mentioning that our clustering performs well on expanders, and on
graphs with very poor expansion. We hope that we can bridge the gap between the two
by employing a more adaptive clustering scheme. For the sake of experimenting, graphs
of the internet topology and road networks should provide useful evidence.

5 Acknowledgements

I would especially like to thank my mentor, Adrian Vladu, who patiently guided my
research over the last weeks, for his enthusiasm and support. I would also like to thank
professors Pavel Etingof and David Jerison for giving me the opportunity to participate
in SPUR, and for taking the time to discuss my ideas.

References

[AG13] Rachit Agarwal and Philip Brighten Godfrey. Distance oracles for stretch less
than 2. In SODA, volume 52, page 526, 2013. 1, 2, 4

15

[AGHP11] Rachit Agarwal, Philip Brighten Godfrey, and Sariel Har-Peled. Approximate
distance queries and compact routing in sparse graphs. In INFOCOM, page
1754, 2011. 4, 8, 11

[CKR04] Gruia Călinescu, Howard J. Karloff, and Yuval Rabani. Approximation algo-
rithms for the 0-extension problem. SIAM J. Comput., 34(2):358–372, 2004.
11, 15

[CP10] Hagai Cohen and Ely Porat. On the hardness of distance oracle for sparse
graph. In CoRR, 2010. 4, 12, 13

[PR10] Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick
bound. In FOCS, volume 52, page 815, 2010. 2, 4

[TZ01] Mikkel Thorup and Uri Zwick. Approximate distance oracles. In STOC,
volume 52, page 183, 2001. 1, 2, 3

A Hash Tables

Hash tables are dynamic data structures for storing elements augmented with information.
They support searches, insertions and deletions, all of which can be executed in constant
amortized time. The space they require is asymptotically optima, since a hash table
holding k elements at a specific time occupies O(k) words of memory.

B Dijkstra’s Algorithm

Dijkstra’s algorithm is the textbook algorithm for calculating single source shortest paths
in graphs with nonnegative edge weights. Starting at u, it explores the closest node to
u not yet explored, adds it to the explored set and repeats. We can stop the algorithm
once it reaches some node v, and the explored set will contain all nodes closer than this
node. For bounded degree graphs, exploring a nodes costs O(a log a) = Õ(a).

C Expander Graphs

We use expander graphs to benchmark our algorithms against. A family of (k, c) expanders
is a family of sparse graphs of degree bounded above by some constant k, such that for
all V ′ ⊆ V, |V ′| ≤ |V | /10, we have |∂V ′| ≥ c |V ′|. The parameter c denotes the edge
expansion of a graph in the family.

16

	Introduction
	Preliminaries
	Definitions and notation
	Review: Thorup-Zwick distance oracles for stretch 3

	Results
	Improving Agarwal-Godfrey distance oracles
	Description of the algorithm
	The algorithm
	Space-Time Analysis
	Proof of Correctness
	Improvement for small a

	Stretch 3 oracles for sparse graphs; improved oracles for expanders
	The algorithm
	Space-Time Analysis
	Proof of correctness
	The Algorithm
	Proof of correctness
	Space-Time Analysis

	Stretch 2 oracles for sparse graphs; improved oracles for expanders
	The algorithm
	Space-Time Analysis
	Proof of correctness

	Lower Bounds via Set Intersection Hardness
	The Set Intersection Problem
	Reduction to distance oracles of stretch less than 2
	Set Intersection by distance 2
	Set Intersection by distance 2 is harder than Set Intersection
	Reduction to distance oracles of stretch less than 1.5
	Generalized Set Intersection Reduction

	Discussion
	Acknowledgements
	Hash Tables
	Dijkstra's Algorithm
	Expander Graphs

