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Abstract. Inspired by the representation theory of rational Chered-
nik algebras, we consider whether certain rings corresponding to
hyperplane arrangements in Cn satisfy the Cohen-Macaulay prop-
erty. Specifically, for a partition λ = (λ1, . . . , λr) ` n we define
a certain variety Xλ ⊂ Cn and study its coordinate ring C[Xλ].
The question which we work towards is: for which λ is Xλ Cohen-
Macaulay? We consider the sub-question of when the coordinate
ring of Xλ/Sn, defined below, is Cohen-Macaulay, and compute
related information such as its Hilbert series and formulas for gen-
erating higher degree polynomials in terms of lower-degree gener-
ators.

1. Preliminaries

1.1. Dimension. Let us briefly define an affine algebraic variety, and
its corresponding ring of functions. These rings of functions, for a
specific class of varieties, will be the main object of our study.

Let C[x1, . . . , xn] denote the ring of polynomials with coefficients in
C, and let V({fi}i∈I) denote the intersection of zeros of the polynomials
{fi}, i.e. V({fi}) =

⋂
i∈I f

−1
i (0). As a convention, we usual write An

instead of Cn when we are talking about the domain of a polynomial
or set of polynomials, so V({fi}) ⊂ An.

Definition 1. A complex affine algebraic variety (which we will nor-
mally refer to as just an affine variety) is a subset V = V({fi}) ⊂ An

for some set of polynomials {fi} ⊂ C[x1, . . . , xn].
The collection of affine varieties V ⊂ An forms a topology of closed

sets, called the Zariski topology.
A subvariety of V is a closed subset of V in the subspace topology.

A variety V is irreducible if it cannot be written as the nontrivial union
of two closed subsets.
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Clearly V({fi}) = V(〈fi〉) since finite sums of polynomials that vanish
still vanish, i.e. we may as well assume that the collection of {fi}
forms an ideal in C[x1, . . . , xn]. We naturally get a partially inverse
construction – given an affine variety V , we can construct I(V ) = {fi ∈
C[x1, . . . , xn] : fi vanishes on V }. Clearly this is again an ideal, and it
is not hard to show that V(I(V )) = V for any affine variety V . The
content of Hilbert’s Nullstellensatz is that these operations are inverses
when we restrict to radical ideals, i.e. I(V(I)) =

√
I.

If two polynomials f1, f2 are equal mod I(V ) for some variety V ⊂ An,
then they restrict to the same function on V . This motivates the defini-

tion that the coordinate ring of V is the ring C[x1, . . . , xn]/I(V )
def
= C[V ].

Using geometric intuition as a guide, we define the dimension of an
algebraic variety as follows:

Definition 2. The dimension of an affine variety V ⊂ An is the largest
d such that there is a strictly decreasing chain of irreducible subvarieties
(i.e. nonempty intersections of varieties with V ) V = Vd ) Vd−1 )
. . . ) V0.

It is straightfoward to verify that a variety V ⊂ An is irreducible
if and only if I(V ) ⊂ C[x1, . . . , xn] is a prime ideal. Therefore we
can define a corresponding algebraic definition of dimension, called the
Krull dimension:

Definition 3. The (Krull) dimension of a ring R is the supremum of
lengths of chains of prime ideals in R. If I ⊂ R is an ideal then we
write dim I to mean the dimension of R/I as a ring, i.e. dimR/I.

Another definition is that of codimension:

Definition 4. For a prime ideal I ⊂ R, the codimension of I is the
dimension of the localization RI , localized at R− I.

It is not difficult to show this corresponds to our geometric intuition
in the case that the ring R contains a subfield which it is finitely gen-
erated over (see: [Eis]). In general, this is true for irreducible varieties,
but not in general, as the following example illustrates:

Example 1. Take the variety of a plane with a line intersecting it,
and the corresponding coordinate ring R = C[x, y, z]/(xy, xz). We
see that dimR = 2, perhaps more easily by thinking of the ring R
as the coordinate ring of a two-dimensional variety. Take the ideal
I = (x + 1, y, z) ⊂ R, which corresponds to a point. Then dim I = 0,
yet codim I = 1.

Here codim I = dimR−dim I is only true when we take R to be the
coordinate ring of the irreducible component containing I. This is the
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sense in which the definition given is local – codim I only “sees” the
dimension of the variety near the point corresponding to I.

1.2. Depth. The concept of depth is another algebraic concept that
intuitively corresponds to the geometric notion of dimension. Depth
essentially tells us how many equations we need to define our variety V .
The Cohen-Macaulay condition on a ring R will then be a certificate
that depth and dimension agree locally.

Definition 5. Let R be a ring and M a finitely generated R-module.
A regular M -sequence is a sequence of elements r1, . . . , rn such that:

• The ideal (r1, . . . , rn) is proper, i.e. not equal to all of R
• The first element r1 is a nonzerodivisor on M
• Inductively, ri+1 is a nonzerodivisor on M/(r1, . . . , ri)M

The basic facts about regular sequences needed are proven using a
homological tool known as the Koszul complex, which we define here:

Definition 6. Given a ring R, a free finitely generated R-module N =
Rn, and an element x ∈ N , the corresponding Koszul complex is the
complex

K(x) = 0→ R→ N → Λ2N → . . .→ ΛnN → 0

where each map is defined by a 7→ x∧a (here ∧ denotes multiplication
in the exterior algebra). The fact that x ∧ x = 0 exactly tells us that
this is a complex.

Notice that ΛiN ∼= R(n
i), and in particular if i > n then ΛiN =

0. It is a straightforward argument in Eisenbud that Hn(K(x)) =
R/(x1, . . . , xn), where x = (x1, . . . , xn) (here Hn is the homology at
the last nonzero term in K(x).

The fundamental result we need about the Koszul complex, which
much of chapter 17 in Eisenbud is devoted to proving, is the following:

Theorem 1.2.1 (17.4 in Eisenbud).

• Let M be a finitely generated module over a ring R. Define
M⊗K(x) as the complex 0→M⊗R→M⊗N →M⊗Λ2N →
. . .→M ⊗ ΛnN → 0.
• If the first r − 1 homology groups of M ⊗ K(x) vanish, but
Hr(M ⊗ K(x)) 6= 0, then every maximal regular M-sequence
contained in the ideal I = (x1, . . . , xn) has length r. Also,
Kn(M ⊗K(x)) = M/xM , so there is such an r ≤ n.

Definition 7. The integer r guaranteed by the previous theorem is
called the depth of I in M , written depthR(I,M). When M = R we
write depth I for short.
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A ring R is called Cohen-Macaulay if depth p = codim p for all prime
ideals p ⊂ R. Equivalently, R is CM iff this holds for all maximal ideals
of R (see [Eis]).

Remark 1. We should note that in the case (R,m) is a local ring, this

is equivalent to depthm = codimm
def
= dimRm = dimR. Moreover, it

follows that a general ring R is CM iff every localization of it Rm, for
m ⊂ R a maximal ideal, is CM; that is, CM-ness is a local property.

Remark 2. This previous remark holds even if (R,m) is a graded local
ring (to be defined below).

Example 2. Taking R = C[x, y, z]/(xy, xz) and I = (x + 1, y, z) as
before, we saw that codimR I = 1. However, we can see that y ∈ I is a
nonzerodivisor, and that x+1 ∈ R/y = C[x, z]/(xz) is a nonzerodivisor.
Thus (y, x + 1) form a regular sequence, thus a maximal regular-R
sequence in I has length at least 2. Thus depth(I, R) 6= codimR I, and
thus R is not Cohen-Macaulay (hereby abbreviated CM).

This example illustrates the general fact that if a variety V has two
irreducible components of different dimensions which intersect, then
C[V ] is not CM as a ring.

Example 3. Any curve (i.e. 1 dimensional affine variety V ) is CM.
An irreducible subvariety of a curve corresponds to a point, which has
codimension 1, which is also the depth of the ideal which generates the
point in the coordinate ring of the curve.

2. Previous results

Let λ = (λ1, ..., λr) be a partition of n. Then the equations

x1 = . . . = xλ1 , xλ1+1 = . . . = xλ2 , . . . , xn−λr+1 = . . . = xn

define an r dimensional hyperplane, which we denote as Eλ. Letting Sn
(the symmetric group on n letters) act on the xi in the obvious way, we
get Xλ = Sn · Eλ, the union of some finite number of hyperplanes (at
most n! of them; it can be less, for example if |λ| = 1 then Eλ = Xλ).
Thus Xλ is defined by the points for which some λ1 coordinates are
equal, some other λ2 coordinates being equal, etc. Moreover, we see
Xλ is still a variety, but it is not so obvious if it is CM or not – we have
many different planes intersecting, but the dimension of each plane is r
and thus Xλ is equidimensional (meaning all its irreducible components
have the same dimension).

Let us note that we think of the coordinate rings of these varieties
as graded rings, graded by degree of the polynomial.
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Definition 8. A graded ring is a ring R = ⊕i≥0Ri such that Ri ·Rj ⊂
Ri+j.

A homogeneous element of a graded ring R is an element of some Ri.
A graded ideal I of R is an ideal generated by homogeneous elements.
A graded local ring is a ring with a unique maximal graded ideal.

All theorems we mention for local rings, such as the Auslander-
Buchsbaum formula, have analogous versions for graded local rings. We
don’t call attention to this distinction much in the interest of avoiding
repeating the word “graded” too much, but it is worth remembering
throughout that Rλ is indeed a graded ring.

Obviously (0, . . . , 0) ∈ Xλ for any λ, and if x ∈ Xλ then so is cx for
any c ∈ C. Thus Xλ = X0

λ × C where X0
λ = {x ∈ Xλ :

∑r
i=1 xi = 0}.

Also dimX0
λ = r − 1, making X0

λ a more computationally amenable
variety to consider (we describe the coding and computational aspects
of this project later).

In this question we can replace Xλ with X0
λ (taking a product with

an affine line C does not change the question). Also note that if Xλ is
CM then Xλ/Sn is CM as well.

The following theorem was proved in [EGL], Proposition 3.11, and
was motivated in the context of the paper by the representation theory
of rational Cherednik algebras, which the author here is not at all
qualified to discuss:

Theorem 2.0.2. Suppose that λ = (m, ...,m, 1, ..., 1). Then:

(1) Xλ is CM if either the number of ones is < m, or m ≤ 2;
(2) Xλ is not CM if m ≥ 3 and the number of ones is at least m.

Example 4. We can see that if λ = (p, q), i.e. |λ| = 2, then Xλ is a
curve. By Example 3 above, we then see that Xλ must be CM.

A reduction of the conjecture can be obtained by using the technique
of formal neighborhoods, again from Prop. 3.11 in [EGL]. Namely,
arguing as in this proof, one can show:

Proposition 1. Suppose ` ≤ λr. Then if Xλ ⊂ Cn is not CM, Xλ,` ⊂
Cm+` is not CM either.

Proof. Consider the point x = (1, . . . , 1, 0, . . . , 0) ∈ Xλ,` where the
number of ones is `. A formal neighborhood of x in Xλ,` looks like the
product of the formal neighborhood of zero in Xλ with a formal disk,
which implies the statement. �
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3. Computational tactics: theory

To consider the entire ring Rλ, which scales in dimension with n =
λ1 + . . . + λr, is intractable for n > 4 with Macaulay. Theorem 2.0.2
above shows us for λ = (p, p, p), (p, p, 1), or (p, 1, 1) where p ≥ 2, that
Xλ is CM. Computations previously done by Steven Sam in Macaulay2
also tell us that (4, 2, 2) gives a CM ring, but we don’t have a theo-
retical proof of this assertion. So, as a more computationally viable
alternative, we study an associated ring of invariants. Let us describe
now the various approaches we have used to glean information from
the ring of invariants.

3.1. Ring of invariants. The ring of invariants, which we write as R,
is the coordinate ring of Xλ/Sn, the variety where we identify points of
Xλ in the same Sn-orbits. It can be shown if we write λ = (λ1, . . . , λr)
then this ring is generated by the polynomials of the form Pi = λ1x

i
1 +

. . .+λrx
i
r; in fact by Hilbert’s invariant theorem, Corollary 1.5 in [Eis],

this ring is finitely generated. We can reduce the number of variables
once more to r−1 by observing the following: as noted in the previous
section, Xλ is CM iff X0

λ is CM; to consider the ring of invariants of X0
λ

by projecting out one of the variables is the same as to impose P1 = 0.
Thus we can substitute xr = −λ1

λr
x1 − . . . λr−1

λr
xr−1 in for all the other

Pi, and thus consider instead R = C[X0
λ/Sn].

3.1.1. The Auslander-Buchsbaum formula and its applications. Let us
recall the notion of the projective dimension of a module:

Definition 9. A projective module is a module P such that for any
epimorphism α : M � N and map β : P → N there is a map γ : P →
M such that αγ = β, i.e. the following diagram commutes:

P

β
��∃γ~~

M
α
// // N

A finite projective resolution of an A-module M is an exact sequence
of the form K : 0 → Pn → Pn−1 → . . . → P1 → P0 → M → 0
where each Pi is projective. The projective dimension of M , written
pdimAM , if it is finite, is the minimal such n that there exists a pro-
jective resolution of M of the previous form.

Fact 1. A free module is projective, and when A = k[x1, . . . , xn] the
converse is true (this is the Quillen-Suslin theorem). This is much easier
to prove in the graded case, which is albeit the one we are working with.
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Also, every finitely generated module, i.e. our A, has finite projective
dimension by Corollary 19.8, [Eis].

As projective dimension is a computationally amenable quantity, the
following theorem is an important tool in detecting CM-ness:

Theorem 3.1.1 (Auslander-Buchsbaum formula). If (A,m) is a (graded)
local ring, and M is a finitely generated (graded) A-module of finite
projective dimension, then

pdimAM = depthA(m, A)− depthA(m,M).

One important way we will use projective dimension is through the
following. From now on, we set A = C[P2, . . . , Pr], and R is as in the
previous section.

Theorem 3.1.2. The ring R is CM iff pdimAR = 0.

Proof. Let us note that depthAA = dimA since A is CM (it is a poly-
nomial ring, hence corresponds to a nonsingular variety, i.e. affine
space), and that dimA = dimR since R is finite over A. Additionally,
depthAR = depthRR.

As we noted before, since R is graded local, CM-ness is equivalent to
depthRR = dimR. By the previous remarks, we see then that this is
equivalent to depthAR = dimR (the third remark), which is equivalent
to depthAR = dimA, which is equivalent to depthAA−depthAR = 0.
But by the Theorem 3.1.1 this is equivalent to pdimAR = 0. �

Corollary 1. The ring R is CM iff it is free over A = C[P2, . . . , Pr].

Proof. Let us show that pdimAR = 0 is equivalent to R being free.
Well, pdimAR = 0, by the definition of projective dimension, is equiv-
alent to R being a projective A-module. It is then the content of the
graded Quillen-Suslin theorem, mentioned earlier, that, for A a poly-
nomial ring, R is free. �

The background on projective dimension might seem like overkill,
since the previous theorem uses only the case pdimAR = 0 (which is
only a lemma in the full proof of Auslander-Buchsbaum). However,
the following additional theorem will be crucial in the isCM function:

Theorem 3.1.3. If (S,m) is a CM graded local ring with a (graded)
surjection ϕ : S → R, and I = kerϕ, then R is CM iff pdimS R =
codim I.

Proof. By Theorem 3.1.1 withA = S we get that pdimS R = depthS(m, S)−
depthS(m, R) (we use ϕ to make R an S module in the obvious way:
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s · r = ϕ(s)r). Now since S is CM and graded local, dimS = depthS,
and since ϕ is surjective we get depthS(m, R) = depthR.

Now let I = kerϕ, so that codim I = dimS−dimR, and pdimS R =
dimS − depthR by the above. Thus dimR = depthR is equivalent to
codim I = pdimS R. �

4. Computational tactics

4.0.2. The isCM method. We can exploit Theorem 3.1.3 to determine
in some cases whether or not R is CM. This is only computationally
viable for simple cases of λ, such as where |λ| ≤ 3 or |λ| = 4 and
λ contains only two distinct elements. The method is not completely
rigorous because it does not prove that the map ϕ : S → R is surjective,
but rather makes sure that this is very likely, and its results have so
far been consistent.

As we mentioned, the ring of invariants R is finitely generated by
Hilbert’s invariant theorem. We now describe the guess(p,q,r) method,
which determines N such that P2, · · · , PN very likely generate R as a
C-algebra, in the case λ = (p, q, r) (higher variable cases will be analo-
gous).

The method guess(p,q,r) checks, for increasing N , whether PN+1

is in the subalgebra generated by P2, · · · , PN . To check this, it calls
surf(p,q,r,N), which computes the relations between P2, · · · , PN , for
N = N and N = N + 1. It then compares the Hilbert series of
surf(p,q,r,N) and surf(p,q,r,N+1) and checks whether they are
the same. It stops when this is the case, and this is the point at which
our algorithm is not rigorous.

Note 1. For λ = (1, 1, . . . , 1), notice that if we don’t set P1 = 0 to
eliminate a variable, R is the algebra of symmetric polynomials in r
variables. Then the above method provably does work in this case, as
a result of the fundamental theorem of symmetric polynomials, which
in our notation gives us that R = 〈P1, P2, . . . , Pr〉.

We now take S = C[v2, . . . , vN ], where N =guess(p,q,r), and maps
vi 7→ Pi ∈ R, which (empirically) gives us a surjection ϕ : S → R. Then
by Theorem 3.1.3, CM-ness of R is equivalent to codim I = pdimS R.
The method isCM precisely calculates both of these quantities.

4.0.3. Hilbert series coefficients. The previous works for simple cases,
but for cases where |λ| > 4 or some where |λ| = 4, such as (4, 3, 3, 1),
does not terminate within a reasonable amount of time. A quicker
method, which can be used to show that a ring is not CM, but does
not show when it is CM, is to compute the Hilbert series of R.
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Working from the definitions of the Hilbert series, and using that the
Hilbert series of a tensor product of graded modules is the product of
their respective Hilbert series, it is simple to show:

Proposition 2. If a finitely generated, free C[x1, . . . , xn]-module M
has generators mi, where degmi = di, and we assign deg xi = pi, then
the Hilbert series hM(t) of M is

hM(t) =
td1 + . . .+ tdn

(1− tp1) . . . (1− tpn)
.

Thus if we compute the Hilbert series of R, then if (1− tp1) . . . (1−
tpn)hA(t) has any negative coefficients, then A cannot be free over
C[P2, . . . , Pr], which is equivalent to it not being CM by Corollary 1.
Note that it is theoretically possible for this polynomial to have non-
negative coefficient, yet A not be free.

This method was used to show that R is not CM for λ = (4, 4, 2, 1),
(4, 4, 3, 1), (4, 4, 3, 2) and (4, 1, 1, 1, 1) among others.

4.0.4. Taking fibers. The case λ = (4, 3, 3, 1) was of interest, since com-
puting its projective dimension was intractable, and the above method
of computing its Hilbert series yielded t13 + t12 + 2t11 + 2t10 + t9 +
t8 + t7 + t6 + t5 + 1, suggesting that it may have been CM. Steven
Sam suggested an additional method to resolve cases left indefinite by
the previous method of looking for negative coefficients in the Hilbert
series; we describe his method here. First, we recall another definition
from commutative algebra:

Definition 10. For a ring R, an R-module M is called flat if, for
all R-modules K,L and injective R-homomorphism ϕ : L → N , then
ϕ⊗ 1M : L⊗AM → N ⊗A L is injective.

Alternatively, since the tensor product is right-exact, for every short
exact sequence 0 → L′ → L → L′′ → 0 the sequence 0 → L′ ⊗M →
L⊗M → L′′ ⊗M → 0 is exact.

In general, free modules are flat, and it is known that finitely gen-
erated flat modules over a local ring are free. So, if we show that R
is flat over C[P2, . . . , Pr], we get that R is free, which we showed by
Corollary 1 is equivalent to CM-ness.

Referring to section 13.7.4 in [Vak], given a prime ideal p ⊂ A we
can define the rank of R at p to be the dimension of the vector space
Rp/mRp = Rp ⊗ κ(p), over the field κ(p) = Ap/Pp, and note that this
is the rank of Rp as an Ap-module.

As in exercise 13.7.J of the same reference, this defines an upper semi-
continuous function on SpecA, which by interpreting this condition in
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terms of the Zariski topology implies that if the rank at (0) equals the
rank at m, then rank is constant. By the following, R is flat hence free:

Theorem 4.0.4 (13.7.K, [Vak]). If M is a finitely generated module
over the coordinate ring of a variety, then its rank is constant iff M is
flat.

So, we takeM = R, and thus want the rank ofR⊗AC(P2, . . . , Pr) and
R/mR to be the same. Alas, it is even quicker to compute the Hilbert
series of R/mR, and we thus showed that R is CM for λ = (4, 3, 3, 1).

4.1. Flat families. We now look at families of partitions, such as λ =
(a, . . . , a, 1, . . . , 1) where there are r copies of a and s of 1. Doing this
both allows us to prove that for all but finitely many a, each partition
in this family is CM, and gives us tools to compute the exceptional set
for which λ is not CM, which we denote B(r, s).

For a given a ∈ C we can consider Ra = 〈Pi〉; we also consider the
ring which we denote R[a] = C[a, P2, . . .], where the a in the definition
of the Pi is now a variable. We let X be the variety whose coordinate
ring is R[a]. We have a map ϕ : X → A1 by projecting onto a. Then
Ra is the fiber of ϕ at a ∈ A1.

We want to find some finite S ⊂ A1 such that ϕ−1(A1 − S) is a flat
family over A1−S. For S = ∅ this means that R[a] is flat over C[a], and
in general removing the points {s1, . . . , sn} = S corresponds to taking
the ring R[a][ 1

a−s1 , . . . ,
1

a−sn ] and asking whether it is flat over C[a]. By
the upper-semicontinuity of rank as discussed above, we can always
remove a proper closed subset of A1, which is exactly just a finite set
S, to attain a flat family.

Now it is known that the CM property is an open condition for flat
families, i.e. if Ra is CM and a /∈ S then for some neighborhood U of
a we have Rb is CM for b ∈ U ; this means that if a single Ra is CM,
then almost all are.

Well Theorem 2.0.2 tells us that Ra is CM for all integral a > r,
hence for infinitely many a. Thus whatever finite set S we remove to
get a flat family, infinitely many (hence at least one) of these Ra remain
in the family. Thus we have proven:

Theorem 4.1.1. Almost all such Ra are CM.

4.1.1. Detecting non-CM Ra. Our computations, which used the pro-
jective dimension method described first, showed that λ = (3, 1, 1, 1)
and (3, 3, 2, 2, 2) do not yield CM rings, so 3 ∈ B(3, 1), 3

2
∈ B(2, 3).

To calculate these B(r, s) is to answer the question of whether Ra is
CM or not completely, on the given families of λ, hence it is directly
of interest to us.
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To this end, we have an empirical method again for answering this
question. By Theorem 9.9 in [Har], we know that the Hilbert poly-
nomial of Ra is constant, for all a representing the flat family which
we constructed. Therefore there is a generic Hilbert series, which is
easy to determine after computing the Hilbert series for a few integral
a. For example, for the family (a, a, 1, 1), after multiplying through by
(1−t2)(1−t3)(1−t4), we get 1+t5+t6+t7+t8+t10 for a = 3, 4, . . . , 50.
While we have not proven that this is the generic Hilbert series for this
family, we presume that it is.

Now, this polynomial tells us which degrees to pick generators in, and
once we have picked them we can write a general expression for how to
generate higher degree Pi; for example, in this case we must have P11 =
(α1P

4
2P3 + α2P2P

2
3 + α3P

2
4P3 + α4P

2
2P3P4)+(α5P

3
2 + α6P

2
3 + α7P2P4)P5+

α8P2P3P6 + (α9P
2
2 + α10P4)P7 + α11P3P8. We can then solve for αi as

rational functions in a, and the values outside of S for which Ra is not
CM will always appear as roots in the denominator of at least one αi.

To state this formally:

Proposition 3. If the ring R for a given λ has the generic Hilbert
series 1 + a1t + . . . + amt

m, with nonnegative integer coefficients, and
is generated by a finite subset S which consists of ai elements of degree
i, for 1 ≤ i ≤ m, then R is CM.

Proof. Let M be the free graded A-module, with generators in the same
degrees as the chosen basis elements, and take the map ϕ : M → Ra

which maps the free elements of M to the generators of Ra. Assuming
that these elements generate Ra, ϕ must be a surjection. Then, since
M and Ra have the same Hilbert series (the generic one), Md and (Ra)d
have the same dimension for all degrees d. This tells us that ϕ is an
isomorphism and thus Ra is free over A, hence CM. �

If a particular value a0 of a and a particular choice of basis which
has a solution for the αi (in the notation above) exist, such that a0 is
not a root of any of the denominators of αi, we know that Ra must be
CM, provided that the family is flat at a0. We can simply plug a = a0
into the αi, which shows that the given basis generates Ra. This allows
us to compute a finite set of a outside of which Ra must be CM.

5. Results

Let us collect the results of our various computations here:

5.1. Projective dimension calculations. Here are the results about
the ring of invariants R for various λ, for which it was computationally
viable to compute the projective dimension to verify CM-ness. We
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noted that every curve is CM, so all |λ| = 2 are CM cases. We also
don’t list λ of the form (a, . . . , a, 1, . . . , 1) since Theorem 2.0.2 gives a
complete answer for this type.

First we list the cases for |λ| = 3. Since all |λ| = 2 give CM rings,
we never have occasion to use Proposition 1, so the only λ we have
already accounted for are those of the form (a, a, 1) and (a, 1, 1).

λ CM λ CM λ CM λ CM
321 false 322 true 332 true 421 false
431 true 432 false 433 true 443 true
521 false 522 true 531 false 532 true
533 true 541 true 542 false 543 false
544 true 552 true 553 true 554 true
621 false 631 false 632 false 641 false
643 false 651 true 652 false 653 false
654 false 655 true 665 true 721 false
722 true 731 false 732 false 733 true
741 false 742 false 743 true 744 true
751 false 752 true 753 false 754 false
755 true 761 true 762 false 763 false
764 false 765 false 766 true 772 true
773 true 774 true 775 true 776 true
821 false 831 false 832 false 833 true
841 false 843 false 851 false 852 true

853 true 854 false 855 true 861 false
863 false 865 false 871 true 872 false
873 false 874 false 875 false 876 false
877 true 883 true 885 true 887 true
921 false 922 true 932 false 941 false
942 false 943 false 944 true 951 false
952 false 953 false 954 true 955 true
961 false 962 false 964 false 965 false
971 false 972 true 973 false 974 false
975 false 976 false 977 true 981 true
982 false 983 false 984 false 985 false
986 false 987 false 988 true 992 true
994 true 995 true 997 true 998 true

Now let us list the values for which |λ| = 4 which we computed; we
know that if the ring of invariants is not CM, then the whole ring Rλ is
not CM, so we can use Proposition 1 and the previous table of |λ| = 3
data to eliminate some cases. We do not list these redundant cases (for
example, the entire ring for λ = 3211 mustn’t be CM, since it isn’t for
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λ = 321, since the ring of invariants isn’t, as indicated by the above
table).

λ CM λ CM
3321 false 3222 true
3322 true 3332 true

For λ1 = 4, let us give the time, in seconds, the computation ran
for as well, to give some indication of how difficult these computations
get. We also make note of cases which did not terminate.

λ CM Time (s) λ CM Time (s)
4211 false 29.7 4311 false 56.2
4221 false 75.8 4321 – ∞
4331 – ∞ 4431 – ∞
4322 false 62.2 4333 true 0.94
4433 true 3.8 4443 true 0.96

For λ1 = 4, let us give the time, in seconds, the computation ran
for as well, to give some indication of how difficult these computations
get. We also make note of cases which did not terminate.

λ CM Time (s) λ CM Time (s)
4211 false 29.7 4311 false 56.2
4221 false 75.8 4321 – ∞
4331 – ∞ 4431 – ∞
4322 false 62.2 4333 true 0.94
4433 true 3.8 4443 true 0.96

Most cases after this with three or more unique parts do not termi-
nate.

5.2. Hilbert series calculations. As we argued before, given our
graded ring of invariants R if we consider (1− t2) . . . (1− tr)hR(t), since
CM-ness of R is equivalent to freeness as a C[P2, . . . , Pr] module, if R is
CM then the given polynomial must have nonnegative coefficients. We
list here some λ for which we proved that R is not CM by exhibiting
a negative coefficient in this polynomial. We abbreviate some polyno-
mials once we have exhibited a negative coefficient, so they take up a
single line:
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λ hM(t) · (1− t2)(1− t3)(1− t4)
4321 t28 + t27 + t26 − 4t24 − . . .+ t9 + t8 + t7 + t6 + t5 + 1
4421 t22 − t19 − 2t18 − . . .+ t9 + t8 + t7 + t6 + t5 + 1
4431 t22 − t19 − t18 − . . .+ t9 + t8 + t7 + t6 + t5 + 1
4432 t22 − t19 − 2t18 − . . .+ t9 + t8 + t7 + t6 + t5 + 1
5322 t22 − t19 − 2t18 − . . .+ t9 + t8 + t7 + t6 + t5 + 1
5532 t20 − t17 − 2t16 + 2t13 + 2t12 + 2t11 + 2t10 + t9 + t8 + t7 + t6 + t5 + 1
5541 t20 − t17 − 2t16 + 2t13 + 2t12 + 2t11 + 2t10 + t9 + t8 + t7 + t6 + t5 + 1
5542 t22 − t19 − 2t18 − . . .+ t9 + t8 + t7 + t6 + t5 + 1
5543 t22 − t19 − 2t18 − . . .+ t9 + t8 + t7 + t6 + t5 + 1

5.3. Generating higher degree Pi. As in the previous section, we
noted that if we took a set of ostensible generators of the degrees indi-
cated by the Hilbert polynomial, and showed that they generated the
family via rational functions of a, then for all values of a but the roots of
the denominators, Ra is generated by their specialization (i.e. plugging
a in). We collect here some empirical evidence that this holds, in the
form of rational expressions for some of the lower degree polynomials
in terms of lower generators.

Let us note, additionally, that for families such as (a+ 1, a, 1, 1) and
polynomials such as P14, which we do not list here since these expres-
sions are so large (see [Bro] for more data, specifically
polynomial_generator_expressions.txt), these systems of coeffi-
cients are very overdetermined, i.e. on the order of 20 variables and
over 200 equations. While empirical, the existence of any solutions at
all over C(a) indicates to us that there is something more happening
here.

To begin, the family (a, 1, 1) has generic Hilbert polynomial 1+t4+t5,
hence we pick generators 1, P4, P5 for R over C(a)[P2, P3]. We then get
the following expressions for P6, P7:

P6 =
3a2 − 3a+ 2

a(2 + 3a+ a2)
P 2
3 −

5− 3a+ a2

2(2 + 3a+ a2)
P 3
2 +

(
1

2
+

5− 3a+ a2

2 + 3a+ a2

)
P2P4

P7 = −a
3 − a2 + 5a+ 2

2a(2 + 3a+ a2)
P 2
2P3 +

a2 + 5

2 + 3a+ a2
P2P5 +

a3 + 5a2 − 2a+ 4

2a(2 + 3a+ a2)
P3P4

The choice of generators P6, P7 is the only nontrivial one we can
make, since we are working over C[P2, P3], and hence the roots of the
denominators above are roots of all denominator expressions, i.e. are
all bad values of a (belonging to the set B(1, 2)). Moreover, for P10, we
get
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P10 = −5a9 + 30a8 + 30a7 − 30a6 + 305a5 − 476a4 + 384a3 − 752a2 + 32a− 32

4(a− 2)a2(2 + 3a+ a2)3
P 2
2P

2
3

+
3(a6 − a5 − 12a4 + 23a3 − 69a2 + 50a− 100)

8(2 + 3a+ a2)3
P 5
2

+
8− 4a+ 10a2 − 5a3 + 10a4 + 5a5

2a2(2 + 3a+ a2)2
P 2
3P4

+

(
1

8
− 3(−100 + 50a− 69a2 + 23a3 − 12a4 − a5 + a6)

4(2 + 3a+ a2)3

)
P 3
2P4

+
−64 + 32a− 80a2 + 35a3 − 5a4 + 5a5 + 5a6

2(a− 2)a(2 + 3a+ a2)2
P2P3P5

Of note, we see that the roots of these denominators are a = −2,−1, 0, 2,
and we note that for (2, 1, 1), R is not CM. We conjecture that these are
all the bad values, i.e. B(1, 2) = {−2,−1, 0, 2}, and simliarly for the
families (a, a, 1), (a, 1, 1, 1), (a, a, 1, 1), (a, 1, 1, 1, 1), and (a, a, 1, 1, 1),
the data of which is in the aforementioned resource.

5.4. Further results. More data, including the source codes for all
the programs written here, is all available on Github at [Bro].

6. Future work and conjectures

Much of the work in this paper is empirical, and applies to the ring
of invariants R of the larger ring Rλ, hence there is much to be done
still. Let us describe some ideas for future research.

6.1. Generic CM-ness of (a + 1, a, 1, 1). Using Theorem 2.0.2, we
were able to prove that families of the form (a, . . . , a, 1, . . . , 1) are CM
generically, using arguments from algebraic geometry about flat fami-
lies. The next most simple type of family to consider, for which there
is no corresponding theorem from Cherednik algebra theory to furnish
infinitely many values of a for which the partition is CM (giving us at
least one such value of a when we remove a finite set S to get our flat
family), is (a + 1, a, 1, . . . , 1). Note that if we could prove this is CM
for infinitely many a, the same argument tells us it is CM for almost
all a.

Conjecture 1. The family (a+ 1, a, 1, . . . , 1) is generically CM.

In the case of (a + 1, a, 1), calculations previously done by Steven
Sam suggest that R is generated for generic a by P2, . . . , P7. Further
calculations show that for 4 ≤ a ≤ 50 the partition (a + 1, a, 1, 1) has



16 AARON BROOKNER AND DAVID CORWIN

the generic Hilbert series t13 + t12 +2t11 +2t10 + t9 + t8 + t7 + t6 + t5 +1,
and calculations in the file polynomial_generator_expressions.txt

in [Bro] show that Pi, i ≥ 14 seem to be generated by a basis of elements
of the appropriate degree; proving this would show that the family is
generically CM, by previous arguments.

Another extrapolation of the data collected is the following conjec-
ture, which may be helpful in proving the above one:

Conjecture 2. The ring of invariants R is CM for λ = (a+1, a, 1, . . . , 1),
where there are p 1s, if and only if R is CM for (a, a, 1, . . . , 1), where
there are p+ 1 1s.

This is consistent with all the data we have collected so far, as well
as for λ = 54111, 65111, 7433, and 5322.

6.2. The sets B(r, s). We know that the sets B(r, s) as defined above
are finite, and that they consist of the values of a which are roots of
a denominator in all choices of basis for the coefficients in C(a) to
generate higher degree Pi, using lower degree ones as indicated by the
Hilbert series. We can show from Theorem 2.0.2 that:

Proposition 4. B(r, s) ⊂ B(r + 1, s) ∩B(r, s+ 1)

Proof. It is immediate that B(r, s) ⊂ B(r + 1, s) from Theorem 2.0.2.
Now, if a is not an integer then the same method as in Proposition 1
gives us that a ∈ B(r+1, s); if a is an integer, then Theorem 2.0.2 tells
us that this is equivalent to saying that a ≤ s, which immediately tells
us that a ∈ B(r + 1, s) as well. �

However, not much else is known about these B(r, s). In particular,
we would like to know the following:

Conjecture 3. The sets B(r, s) consist of rational values.

The computations to do with expressions for higher degree polyno-
mials in terms of generators give us evidence for this claim. Let us here
list the roots of denominators in these expressions, for each family, to
see that at least for low degree Pi all the coefficients in C(a) of the
generators have only rational roots in their denominators:

Family Roots
(a, 1, 1) −2,−1, 0, 2
(a, a, 1) −1,−1

2
, 0

(a+ 1, a, 1) −2,−1,−1
2
, 1
2
, 2

(a, a, 1, 1) −2,−1,−1
2
, 0, 1

2
, 2

(a+ 1, a, 1, 1) −3,−2,−3
2
,−1,−1

2
, 0, 1

2
, 1, 3

2
, 2, 3

(a, 1, 1, 1, 1) −4,−3,−2,−1, 0, 2, 3, 4
(a, a, 1, 1, 1) −3,−2,−3

2
,−1,−1

2
, 0, 1

2
, 3
2
, 2, 3
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6.3. The isotypic component of the reflection representation.
We analyzed the ring of invariants R of the larger ring Rλ for most
of this paper. Interpreting the ring Rλ as a certain representation of
Sn, this corresponds to analyzing the isotypic component of the trivial
representation of Sn. The next simplest case to analyze is accordingly
the isotypic component of the reflection representation of Sn.

Let us describe this for |λ| = 3, the general case being entirely
analogous. Recall that for λ = (p, q, r) we set a = p

r
, b = q

r
and

that the ring of invariants can be described by R = 〈Pi〉 where Pi =
axi+byi+(−1)i(ax+by)i. Then we can describe the isotypic component
of the reflection representation as the submodule M ⊂ R⊕R generated
by Rj = (xj + (ax+ by)j)u+ (yj + (ax+ by)j)v with j = 1, 2, . . ., where
u = (1, 0), v = (0, 1), and we define deg u = deg v = 0.

Given this expression for the module M , we wish to modify much of
the code and methods described above to this case.
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