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Abstract. Given a chessborad with a small number of blocks being removed,
we want to figure out in which case it is possible to tile the rest of the board

with 2 × 1 dominoes. In this paper, we prove that if the number of removed

blocks is small enough, then the tiling is always possible. We give a proof for
both an infinite chessboard case and a finite chessboardcase. Moreover, a draft

proof for three dimensional case is given as well.
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1. Tileability Problem

Problem. Given a chessboard with a small number of blocks removed, we want to
figure out in which case it is possible to tile the rest of the board with 2×1 dominoes.

The first condition for the board to be tiled with 2× 1 dominoes is the numbers
of black and whites blocks that are left need to be equal. This first condition is a
global condition, and certainly is not enough to guarantee the tileability.

Let consider two examples in Figure 1 where no tiling is possible (though it is not
obvious in the second example). These two bad examples suggest that the removed
blocks should not be too dense in one area. A further question is how dense the
removed blocks should be so that we can guarantee the tileabililty.

(a) (b)

Figure 1. Bad Examples

Let us implement a density-limit condition: in any R×R square, no more than
dcRe blocks are removed. The constant c is called a density constant.

In this paper we are going to give a proof that we can always tile 2×1 dominoes
in a chessboard with some blocks removed in such the way that white and black
blocks are remained equally and that the density-limit condition is satisfied.

In section 2, we will discuss about Hall’s matching theorem that we will mainly
use in this paper. We will prove the tileability for an infinite chessboard (in section
3) and for a finite n × n chessboard (in section 4). In section 5, we will expand
our result from a two-dimensional chess board into a three-dimensional gridboard.
Section 6 is a comments section where we will discuss the ideas beyond this paper.

2. Hall’s Theorem

Theorem 1 (Phillip Hall’s Theorem). [1] In a finite bipartite graph with the bipar-
titions X and Y , there exists a matching that covers X if and only if every subset
A of X is connected to at least |A| vertices in Y .

Hall’s theorem provides a necessary and sufficient condition for the existence of
a matching in the graph. It is directly related to our problem here as a chessboard
can be viewed as the bipartitions of black blocks and white blocks, and a pair of
black and white blocks are connected when they are neighbors (i.e. they share the
same edge).
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The Hall’s theorem is originally for a finite graph, but is later extended for a
infinite graph as followed.

Theorem 2 (Extended Hall’s Theorem). [1] In a bipartite graph with the biparti-
tions X and Y such that the degree of every vertex is finite, there exists a matching
that covers X if and only if every finite subset A of X is connected to at least |A|
vertices in Y .

Before investigating more into our problem, as for the convenience we will clarify
the denotations that we will be using in this paper. Denoted by W an arbitrary
finite set of white blocks that we want to verify the Hall’s condition. The set of
the neighbor black blocks of W is denoted by N(W ). The set of blocks that are
removed is called E, which is divided into the whites Ew and the blacks Eb.

The Hall’s theorem says that the domino tiling is possible if for any W (suppos-
edly W ∩ Ew = ∅),

|N(W )− Eb| ≥ |W |

or equivalently,

(1) |N(W )| − |W | ≥ |N(W ) ∩ Eb|

In the other words, the difference ∆ = |N(W )| − |W | needs to be larger than the
number of removed black blocks in N(W ). Call this number R. Our required Hall’s
condition for the tileability is in short ∆ ≥ R.

Moreover, we define an expanded region of W as

Exp(W ) := W ∪N(W )

(the region W and its black neighbors). And we call W to be semi-connected if the
expanded Exp(W ) is a connected region.

3. Infinite Chessboard

What we are going to prove in this section is: for an infinite chessboard, with
some blocks removed satisfying a density-limit condition, it is always possible to
tile the rest of the board.

We want to verify the Hall’s condition for a set W . Without the loss of generality
we can assume the W to be semi-connected. The reason is that if we partition
W = W1 ∪ W2 where Exp(W1) and Exp(W2) are disjoint, then the inequality
∆ ≥ R can be obtained by verifying W1 and W2 separately.

Consider that a semi-connected set W , so that the connected expanded region
Exp(W ) occupies row number of rows and col number of columns. Denote m =
max(row, col). Then the region Exp(W ) can fit in some square m×m. It follows
from the density-limit condition that R ≤ cm. On the other hand, in each row of
the board, the number of black blocks in Exp(W ) will be more than the number of
white blocks in Exp(W ) by at least 1. This gives ∆ ≥ row. Similarly, we will also
have ∆ ≥ col, and therefore

∆ ≥ m ≥ 1

c
R.

Choosing c = 1 results in the desired inequality ∆ ≥ R.
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4. Finite n× n Chessboard

In this section, we are going to give a proof of the main result of this paper.

Problem. For an n×n chessboard, with some blocks are removed so that the same
number of black and white blocks are left, and so that the density-limit condition is
satisfied, we can guarantee the domino-tiling on the rest of the board.

We will consider only the case that n is even. A proof for n being odd will be in
a similar manner.

The case of the finite n × n chessboard is a little more complicated than the
infinite one because of the restriction at the boundary of the chessboard. The
inequality ∆ ≥ R is more difficult to verify. We also need to use the fact that
the numbers of removed black blocks and white ones are equal (|Ew| = |Eb|).
Consider a set of white blocks W (which does not include any removed white blocks:
W ∩ EW = ∅). By our previous definition, N(W ) is the set of black neighbors of
W . Let B = {all black blocks} −N(W ) be the set of all black blocks that are not
in N(W ), and let N(B) be the set of white neighbors of B.

Observe that Exp(W ) and Exp(B) are disjoint and the union of both sets con-
tains all but a few white blocks of the entire board. Call the set of those white
blocks V .

Consider the following inequality:

(2) |N(B)| − |B| ≥ |N(B) ∩ Ew|

This inequality is very similar to the Hall’s condition (ineq.(1)):

|N(W )| − |W | ≥ |N(W ) ∩ Eb|

except that instead of starting with the set W we start with the set B instead.
The inequality (2), in fact, implies our condition (1) because given (2) is true,

|N(W )| − |W | = |N(B)| − |B|+ |V |
≥ |N(B) ∩ Ew|+ |V |
≥ |Ew ∩ (N(B) ∪ V )|
= |Ew| = |Eb|
≥ |N(W ) ∩ Eb|

The equation |Ew ∩ (N(B) ∪ V )| = |Ew| comes from the fact that Ew ∩W = 0
which means Ew ∈ {all black blocks} −W = N(B) ∪ V .

To verify the Hall’s condition, we can do it from either inequality (1) considering
the region Exp(W ) directly, or inequality (2) which consider the region Exp(B)
instead.

Like in the previous section, we consider the Exp(W ) to be connected and oc-
cupies row number of rows and col number of columns. Let m = max(row, col),
so Exp(W ) can be fit in a m×m rectangle. Before continuing on the proof, let us
consider the following lemma.

Lemma 1. Define a double-stripe as a rectangle of size 2 × n or n × 2. In a
double-stripe S which contains some part of Exp(W ), the number of black blocks
from Exp(W ) is more than the number of white from Exp(W ) blocks, except the
case that the entire S is contained in Exp(W ).
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Or algebraically if Exp(W ) ∩ S 6= ∅, then

|N(W ) ∩ S| − |W ∩ S|

{
= 0, S ⊂ Exp(W )

≥ 1 otherwise

Proof of Lemma 1 is straightforward and we will not write it down here.

Back to our main problem, we have 3 separate cases to check as follow:

Case 1 There is no double-stripe that is fully occupied by Exp(W ). Then in each
two consecutive rows which are partially occupied by Exp(W ), we will
apply the lemma 2. We then have the inequality ∆ ≥ b 12rowc. In fact, one

can check that ∆ ≥ 1
2row. Similarly, ∆ ≥ 1

2col. Therefore,

∆ ≥ 1

2
m ≥ R

The last inequality is from a density-limit condition with a density constant
c = 1

2 .
Case 2 There is either a 2 × n or n × 2 double-stripe (but not both) that is fully

occupied by Exp(W ). Without lost of generality, assume that there is such
a 2 × n double-stripe, and there is no n × 2 one. Then we will have the
inequality

∆ ≥ 1

2
col =

1

2
n ≥ R

Case 3 There are double-stripes of both types (2 × n and n × 2) which are fully
occupied by Exp(W ). Then it implies that there is no double-stripe that
is fully occupied by Exp(B). Then the inequality (2) can be verified, using
a similar argument as in Case 1 (also without loss of generality assume
Exp(B) to be connected).

In conclusion, with the condition that the number of blacks and whites are equal
and with a density-limit condition (c = 1

2 ), we verify the Hall’s condition. Then it
implies the tileability of the rest of the board. Our problem is proved.

5. Three Dimensional Gridboard

The Hall’s theorem can be carried out in the case of a three dimensional grid-
board as well. The density-limit condition can be adapted for the three dimensional
case: in any R × R × R cube, no more than dcR2e blocks are removed. Our ap-
proach to prove the inequality ∆ ≥ R is that . One idea that we have is that ∆ (the
difference between white blocks and their black neighbors) can be approximated by
the surface area of Exp(W ), and the R (the number of removed black blocks)
can be approximated by the volume of the region and the density-limit condition.
Specifically, we will show that

∆ = c1δExp(W ) ≥ inf
∑
C
dc2d2e ≥ R

where δExp(W ) denotes the surface area of the region Exp(W ). And the summa-
tion is summed over a set C of grid cubes that covers region Exp(W ) and d is the
side length of each cube.

Next investigate the leftmost inequality. if we slice the region Exp(W ) along
grid lines that are parallel to z-axis, we will obtain small vertical pieces 1× 1× k.
For each of this pieces, the top-end and bottom-end are on the surface of Exp(W ).



6 SUPANAT KAMTUE MENTOR: BEN YANG

On the other hand, this vertical piece are alternating black and white blocks, and
both of the ending block are black (because the region Exp(W ) only has black
blocks on the boundary. Thus, in this vertical piece, the number of black blocks
will be more than the number of white blocks by one. Altogether, we will have
2∆ = surface of Exp(W ) that is parallel to the xy-plane. A similar equation will
hold for the surface that is parallel to the yz-plane(or zx-plane). As the result,

6∆ = δExp(W )

(a) (b)

Figure 2. Vertical Slice

And the left equation follows. The rightmost inequality can be obtained immedi-
ately from the density-limit condition. What is left to prove is the most important
and most difficult part: the inequality

δExp(W ) ≥ inf
∑
C
dkd2e

We believe that this inequality δS ≥ inf
∑
C
dkd2e is true, and the idea to prove

is to find a set of suitable cubes that cover the region. This can be done by staring
from a unit grid cube inside S, and we try to enlarge that unit cube into a bigger
cube of a suitable size: not too big but contains a good amount of surface area of
Exp(W ) inside. Then we will delete this cube from our original region Exp(W ),
and continue investigating the rest region. We do not provide an explicit proof in
here.

6. Comments

This problem has started with a matching between black and white blocks in
a well-mannered graph, like a chessboard. This can be considered as a partial
matching problem: when some blocks are randomly removed and we try to find a
matching in the rest of board. One way that this problem can be carried on is to
consider a matching in not only a chessboard or a gridboard but a more abstract
graph with a similar property. A possible further question is: what is the ”similar
property”, in the way that a matching exists in the original graph, but when some
points are removed off a matching becomes questioned.
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