
Computational Power of Quantum vs Classical Oracles

SPUR Final Paper, Summer 2013

Hyun Sub Hwang
Mentor: Adam Bouland

Project suggested by Scott Aaronson

January 23, 2014

Abstract

Comparing the computational power of quantum computers vs classical computers has been
extensively studied since the invention of quantum computing. A related question is whether
a quantum oracle is more powerful than a classical oracle. In this paper, we examine two
topics that give partial answers to this question. We show that we can imitate a polynomial
number of columns of a quantum oracle with a classical oracle. We generalize the quantum
oracle separation of QMA and QCMA to obtain a quantum oracle generated by a classical oracle
separation between these classes.

1 Introduction

Computer scientists conceptualize proofs as a protocol between a prover and a verifier. The prover
sends a statement to the verifier and then the verifier runs an efficient polynomial time algorithm
to check if the statement is true. We want the verifier to accept true statements with a high proba-
bility and reject false statements with a high probability. This type of system is known as a Merlin
Arthur(MA) protocol and has been extensively studied in classical computer science theory.
Recently, with the rise of quantum computing, researchers have considered Quantum Merlin Arthur
(QMA) protocols, which allows the proof statement to be a quantum state and the verifier to be a
quantum computer. Likewise, they have defined proof systems in which the proof is classical, but
the verifier is quantum. These are called QCMA proof systems. Then the natural question arises: is
QMA powerful than QCMA? Many believe this is true, but no separation has been proven. The best
known result is a quantum oracle separation between QMA and QCMA by Aaronson and Kuperberg
[1]. A quantum oracle O is a set of unitary operations, {Ui} for each i ∈ N. An algorithm A with
access to O, AO, can apply Ui at cost O(1) on inputs of length i. The quantum oracle separation
gives a quantum oracle O such that QCMAO (QMAO.
Also, we define a classical oracle, O, as a set of permutations of computational basis qubits, {Pi}
for each i ∈ N. An algorithm A with access to O, AO, can apply Pi at cost O(1) on inputs of length
i.
If a separation by a quantum oracle is possible, then is a separation by a classical oracle possible?

1

This project examines a broader question first. Can we approximate a quantum oracle with a
classical oracle? Specifically, we examine the following question:

Is there a polynomial time quantum oracle algorithm A such that for all unitary matrices U,

there exists an oracle O so that AO approximately implements U?

This is basically a question about what subset of U(2n) can be generated by quantum circuits
with poly(n) fixed 2-local quantum gates interleaved with poly(n) permutations in S2n which are
variable. It is known that we can prepare one arbitrary state, one column of unitary matrix, with
classical oracles. If the answer for the question is “yes”, it would show that classical oracles have
roughly the same computational power as quantum oracles on BQP machines. We also examine
whether we can separate QMA and QCMA with a classical oracle.
In section 2, we give background knowledge about quantum computing and interactive proof sys-
tems. We also review how to prepare one arbitrary state with a classical oracle. In section 3, we
discuss how to prepare a quantum oracle with a classical oracle. We show how to implement a
polynomial number of columns of a target unitary matrix U with a classical oracle. Although, we
do not have the scheme to prepare all columns of a unitary matrix, we describe two arguments
why preparing all columns of a unitary is hard. In section 4, we examine a proposed roadmap
for separating QMA and QCMA by a classical oracle. The basic idea is to first separate them by
a quantum oracle which is generated by a classical oracle, and then generalize this to a classical
oracle separation. We describe a decision problem which can prove a separation by a quantum
oracle generated by a classical oracle and may be useful in proving the separation by a classical
oracle.

2 Preliminaries

2.1 Background

In a classical computer, we represent information with a bit, 0 or 1. A quantum bit, a qubit, is a
linear combination of |0〉 and |1〉 with norm 1. Simply, a qubit is an element of C2 with norm 1.
The space of quantum states of dimension n is Hilbert space (C2)⊗n, a Hilbert space of dimension
2n with computational basis states of form |x〉 for x ∈ {0, 1}n.
A quantum algorithm is a quantum circuit where inputs and outputs are qubits and operations are
quantum gates. In the circuit, we get input qubits and ancilla qubits, and we solve a quantum deci-
sion problem by measuring output qubits. Because a quantum state evolves unitarily, all quantum
gates perform unitary operations. We can freely use 2-local gates. In other words, we can apply
any unitary operation acting on 1 or 2 qubits. A polynomial time quantum algorithm is a circuit
that can be written down by a polynomial time classical algorithm. A classical oracle in the paper
is a gate on poly(n) qubits that performs any permutation. Simply, a classical oracle is an element
of Spoly(n).
In our definition of an oracle, we can only use a fixed oracle fi in the algorithm A acting on i
qubits. However, if we add extra qubits as a counter and increase a counter by one at each stage,
we can apply a different permutation at each stage. Therefore, without loss of generality, we can

2

apply different oracles/permutations at each call in the algorithm.

We also discuss two interactive proof system, QMA and QCMA.

Definition 2.1 (QMA and QCMA). QMA is a class of language L that there exists a polynomial
time quantum verifier Q and a polynomial p(n) such that
(i) If x ∈ L , there exists a quantum proof |φ〉 of length p(n) such that Q accepts |x〉|φ〉 with a
probability at least 2

3 .
(ii) If x /∈ L , for all quantum proofs |φ〉 of length p(n) such that Q rejects |x〉|φ〉 with a probability
at least 2

3 .

In QCMA, we have a classical proof of length p(n), C ∈ {0, 1}p(n), instead of a quantum proof |φ〉.

For some n×n unitary matrix U , if we can map input state |x〉 to U |x〉 for all x ∈ {0, 1}n, then
we can apply U on an arbitrary state, which is superposition of some |x〉 for x ∈ {0, 1}n. We start
with creating a circuit which maps |0〉⊗n to U |0〉⊗n and maps the other basis states arbitrarily.
This implements one column of the target unitary matrix.

2.2 Prepare one arbitrary state

We will first explain the case of two qubits. We generalize the idea later.

Proposition 2.2. There exists a classical oracle circuit that sends |00〉 to an arbitrary state |ψ〉.

Proof. The basic idea of the algorithm is purely classical, and is based on the fact that there is a
randomized algorithm to prepare an arbitrary probability distribution of binary strings of length n
with a classical oracle. The algorithm first queries the oracle to get the probability of getting 1 on
the first bit. It then sets the first bit to one with that probability. In the next step, it queries the
oracle to find the probability of getting a 1 on the next bit, conditioned on the outcome of its first
bit. In later stages, it queries the oracle for the probability the next bit is one, conditioned on its
previous measurements. This allows one to query the oracle “in superposition” - asking different
questions in different cases - to approximately sample from an arbitrary distribution.
The basic idea is same as the idea of a randomized algorithm to prepare an arbitrary probability
distribution of binary strings of length n with a classical oracle. We query the oracle to get a
probability of getting 0 or 1 at first. Then, at each point, we query the oracle to get a probability
of getting 0 or 1 based on the result we have gotten so far. With a classical oracle, we can query
in superposition so we can get the exponential amount of information in a polynomial number of
queries.
Likewise, using a classical oracle, we prepare a target 2 qubit state |ψ〉 in 4 queries to an oracle.
Let px = |〈x|ψ〉|2 be the probability of getting x upon measurement for x ∈ {0, 1}2 in which∑
x∈{0,1}2

px = 1. Then, we can write |ψ〉 =
√
p00|00〉+ eiθ1

√
p01|01〉+ eiθ2

√
p10|10〉+ eiθ3

√
p11|11〉 up

to global phase.
We prepare the state in two stages. We prepare |φ〉 =

√
p0|00〉+eiθ2√p1|10〉, in which p0 = p00+p01

and p1 = p10 +p11 at the first stage and send it to |ψ〉 at the second stage. At each stage, we query

3

an oracle in superposition so that we can proceed each stage with 2 queries to an oracle because
an oracle can output different results for different cases.

|00〉 −−→ |φ〉 =
√
p0|00〉+eiθ2√p1|10〉 −−→ |ψ〉 =

√
p00|00〉+eiθ1√p01|01〉+eiθ2√p10|10〉+eiθ3√p11|11〉.

Note that there exist θx,0, θx,10, θx,11, θz,0, θz,10 and θz,11 such that

|ψ〉 = cos θx,0 cos θx,10|00〉+eiθz,10 cos θx,0 sin θx,10|01〉+eiθz,0 sin θx,0 cos θx,11|10〉+ei(θz,0+θz,11) sin θx,0 sin θx,11|11〉.

For the first step of our algorithm, we prepare cos θx,0|0〉 + eθz,0 sin θx,0|1〉 in the first qubit.
Approximate θx,0 and θz,0 in two sets of ancilla qubits such that they are approximated as θx,0 ≈
k−1∑
i=0

xi
π

2i−1
and θz,0 ≈

k−1∑
i=0

yi
π

2i−1
. (The error here is exponentially decreased by increasing the

number of ancilla qubits.)
Set an oracle f with counter 0 to send first ancilla qubits |0〉 to |0〉⊕ |x0x1 . . . xk−1〉, second ancilla
qubits |0〉 to |0〉⊕ |y0y1 . . . yk−1〉 and leave the other qubits as they were. Then, applying controlled
Rx gates on first ancilla qubits, we can rotate |0〉 to approximate cos θx,0|0〉 + sin θx,0|1〉. Also,
applying controlled Rz, we can control the relative phase to cos θx,0|0〉+ eiθz,0 sin θx,0|1〉
After Rx and Rz gates, we get the states we want on workspace. However, the state we have gotten
is the entangled state |0〉|x1x2 . . . xk−1〉|y1y2 . . . yk−1〉|φ〉 where the x and y are the binary represen-
tation of θx,0 and θz,0. To disentangle these ancilla qubits from our workspace, we “uncompute” f
by applying f again and get |0〉|0〉⊗n|0〉⊗n|φ〉.

Counter
0 /

f f

Ancilla
|0〉

θx,0
•

...
...

|0〉
. . .

•
Ancilla

|0〉
θz,0

•
...

...
|0〉

. . .
•

|0〉
Workspace

Rx(π) Rx(π
2k−1) Rz(π) Rz(

π
2k−1)

|0〉

Let’s see how this circuit works in detail.

|0〉|0〉⊗k|0〉⊗k|0〉|0〉 f−−−→ |0〉|x0x1 . . . xk−1〉|y0y1 . . . yk−1〉|0〉|0〉
Rx gates−−−−−−−−→ |0〉|x0x1 . . . xk−1〉|y0y1 . . . yk−1〉(cos θx,0|0〉+ sin θx,0|1〉)|0〉
Rz gates−−−−−−−−→ |0〉|x0x1 . . . xk−1〉|y0y1 . . . yk−1〉(cos θx,0|0〉+ eiθz,0 sin θx,0|1〉)|0〉
f−−−→ |0〉|0〉⊗k(cos θx,0|0〉+ eiθz,0 sin θx,0|1〉)|0〉

4

Now let’s apply operations on the second qubit. We rotate |00〉 and |10〉 by different angles, θx,10
and θx,11, and control phase also by different angles, θz,10 and θz,11. We use the state of the first
qubit to determine which angle to apply.

Counter
1 /

f f

Ancilla
|0〉

θx,1i
•

...
...

|0〉
. . .

•
Ancilla

|0〉
θz,1i

•
...

...
|0〉

. . .
•

|i〉
Workspace

|0〉 Rx(π) Rx(π
2k−1) Rz(π) Rz(

π
2k−1)

The circuit above allows us to send |00〉 → cos θx,10|00〉+eθz,10 sin θx,10|10〉 and |10〉 → cos θx,11|10〉+
eθz,11 sin θx,11|11〉 using a single query to the oracle. More precisely, the state evolves as follows:

|0〉|0〉⊗k|0〉⊗k(cos θx,0|00〉+ eiθz,0 sin θx,0|10〉) f−−−→ cos θx,0|0〉|θx,10〉|θz,10〉|00〉+ eiθz,0 sin θx,0|0〉|θx,11〉|θz,11〉|10〉
Rx gates−−−−−−−−→ cos θx,0|0〉|θx,10〉|θz,10〉(cos θx,10|00〉+ sin θx,10|01〉)

+ eiθz,0 sin θx,0|0〉|θx,11〉|θz,11〉(cos θx,10|10〉+ sin θx,11|11〉)
Rz gates−−−−−−−−→ cos θx,0|0〉|θx,10〉|θz,10〉(cos θx,10|00〉+ eiθz,10 sin θx,10|01〉)

+ eiθz,0 sin θx,0|0〉|θx,11〉|θz,11〉(cos θx,10|10〉+ eiθz,11 sin θx,11|11〉)
f−−−→ cos θx,0|0〉|0〉⊗k|0〉⊗k(cos θx,10|00〉+ eiθz,10 sin θx,10|01〉)

+ eiθz,0 sin θx,0|0〉|0〉⊗k|0〉⊗k(cos θx,10|10〉+ eiθz,11 sin θx,11|11〉)
= |0〉|0〉⊗k|0〉⊗k|ψ〉

Note that disentanglement is necessary because the workspace is entangled with ancilla qubits
before we uncompute them by f . By entangled, we mean the state cannot be written as a tensor
product. We can disentangle the state with the first qubit as an indicator. From the circuit above,
we get the desired states

|ψ〉 = cos θx,0 cos θx,10|00〉+eiθz,10 cos θx,0 sin θx,10|01〉+eiθz,0 sin θx,0 cos θx,11|10〉+ei(θz,0+θz,11) sin θx,0 sin θx,11|11〉.

Therefore, we can approximately prepare any state we want by choosing an appropriate classical
oracle.

5

This quantum circuit does not exactly prepare |ψ〉, but prepares |ψ〉 approximately. Here we
say that two unitary matrices U and V are ε-close if they differ by ε in the operator norm that is
max
ψ
‖(U − V)|ψ〉‖2. Note that this type of error adds linearly from operation to operation. Thus,

if we have error tolerance ε, a polynomial number of gates and ancilla qubits, we can have up to
ε

poly(n) error at each stage and, therefore only need log ε
poly(n) qubits of ancilla qubits to achieve this

accuracy.
Now we look at the general case.

Proposition 2.3. There exists a polynomial time classical oracle circuit C such that for any state
|ψ〉 of length n, there exists a classical oracle such that sends |0〉⊗n to |ψ〉 for all n ∈ N.

Proof. We can make an arbitrary state in n stages as we have done for two qubits. We generalize
how to implement different operations to different states. Querying in superposition, we can specify
2k−1 states in the kth oracle query, which allows us to prepare an n-qubits state in O(n) queries.

Specifically, on kth stage, we have prepared
∑

x∈{0,1}k−1

tx|x〉|0〉⊗n−k+1. Then, if first k − 1 qubits

are |x〉 then prepare appropriate angles θx and θz,x, apply rotation and phase correction, and then
apply the oracle again to disentangle the state with the ancilla qubits. We can disentangle ancilla
qubits using first k − 1 qubits as an indicator. As before, one can easily check that this performs
the right operations and prepares the arbitrary states.

We have shown that we can prepare an arbitrary state starting from |0〉⊗n in a polynomial time.
Note that we can also prepare an arbitrary state from any computational basis states. In the proof
above, we have used some portion of workspace to indicate which case we are in to apply different
angles in different cases. We can generalize this scheme to add extra n bits, copy our workspace on
them, and use them as to create different states U |x〉 for each computational basis state |x〉. Thus,
next corollary follows.

Corollary 2.4. For an arbitrary unitary matrix U , there exists a classical oracle circuit that sends
|x〉|0〉⊗n to U |x〉|x〉 for all x in {0, 1}n.

However, this is not the same as applying U to the workspace because the workspace is entangled
with the ancilla qubits. This performs a more general super operator on the workspace which maps

ρ to
∑
x

ExρE
†
x where Ex = U |x〉〈x|U †. To preform U on the workspace, we would need to map

|x〉|0〉⊗n to U |x〉|0〉⊗n.
At least, we have seen that we can prepare U |x〉 somehow by entangling it with n extra workspace
qubits. The open question is if it is feasible to produce U |x〉 using only n bits of workspace without
entangling it with any other qubits.

3 Prepare unitary matrix with a classical oracle

In this section, we give a proof that there exists an algorithm to prepare a polynomial number
of columns of a unitary matrix with a classical oracle. Then, we give a counting argument that

6

provides why the current scheme cannot be generalized to prepare all columns. We also describe
another difficulty with our scheme.

3.1 Preparing a polynomial number of Columns

To prepare a polynomial number of columns, we prepare one desired state at a time. We stabilize
the other basis states using the following lemma.

Lemma 3.1 (Stabilization Lemma). Let S be a set of computational basis states and U be a unitary
gate we can perform. Then, there is a classical oracle circuit C that performs a unitary mapping
|x〉 → |x〉 for x ∈ S unitarilly and |y〉 → U |y〉 for y /∈ span(S) as a super operator. If 〈x|U |y〉 = 0,
C maps |y〉 → U |y〉 unitarilly. Furthermore if U can be implemented in a polynomial time, then so
can C.

Proof. Add an extra qubit on the workspace. We use it as an indicator. Then, using a classical
oracle, we can switch the extra qubit to 1 if and only if the basis state on the workspace is not in
S. Then, add the extra bit to our controlled gates as a control bit. In other words, let f be a map
that sends |x〉|i〉 → |x〉|i〉 for x ∈ S and |y〉|i〉 → |y〉|i⊕ 1〉 for y /∈ span(S).
Then, we can apply the operation on only the states we want in the following circuit.

|x〉 /
f

U
f

|0〉 •

The circuit above applies the operation on the basis states as follows:

if x ∈ S, |x〉|0〉 f−−→ |x〉|0〉 U gate−−−−→ |x〉|0〉 f−−→ |x〉|0〉

if y /∈ span(S), |y〉|0〉 f−−→ |y〉|1〉 U gate−−−−→ U |y〉|1〉 f−−→ U |y〉|0〉

Note that this operation is reversible if 〈x|U |y〉 because for x ∈ S and y /∈ S, we have 〈x|y〉 = 0
and 〈x|U |y〉 = 0. In either case, the ancilla qubit is left in the |0〉 state so is unentangled with the
workspace. If this were not the case, then we would have that

U |y〉 =
∑
x∈S

αx|x〉+
∑
y/∈S

αy|y〉

with αx 6= 0 for some x ∈ S. Then the circuit evolves as

|y〉|0〉 f−−→ |y〉|1〉 U gate−−−−→ U |y〉|1〉 =
∑
x∈S

αx|x〉|1〉+
∑
y/∈S

αy|y〉|1〉
f−−→
∑
x∈S

αx|x〉|1〉+
∑
y/∈S

αy|y〉|0〉

which leaves the workspace entangled with the ancilla qubits. Therefore, we need to have 〈x|U |y〉 =
0 not to have entanglement generated by a circuit.

Using the Stabilization Lemma, we can prepare a polynomial number of columns of a target
unitary matrix in a polynomial time.

7

Theorem 3.2. There exists a polynomial time quantum oracle algorithm such that for any set S
of computational basis states of length n where |S| = O(poly(n)), and any set of orthonormal states
{ψi}|i〉∈S, there exists a classical oracle such that the algorithm maps |i〉 to ψi for all |i〉 ∈ S.

Proof. For simplicity, we consider S to be {|1〉, |2〉, . . . , |k〉}.
The basic idea is to send a state |i〉 to its target state |ψi〉 at each stage while stabilizing the other
computational basis states. The difficulty with doing this, however, is that once one has prepared
|ψi〉, there is no way to stabilize |ψi〉 since the Stabilization Lemma gives us the power to stabilize
only computational basis states.
To fix this, we make use of the orthogonality of the |ψi〉. Consider the case that k is 2. First,
we implement the circuit which maps |1〉 to |ψ1〉. Since this map is unitary, there exists some
state |φ2,1〉 which is mapped to |ψ2〉 under this transformation where 〈φ2,1|1〉 = 0. Thus using the
Stabilization Lemma, we can create a circuit which maps |1〉 → |1〉 and |2〉 → |φ2,1〉 due to this
orthogonality. Composing these circuits map |1〉 → |1〉 → |ψ1〉 and |2〉 → |φ2,1〉 → |ψ2〉.
We can generalize this to map k states to ψ1, ψ2, . . . , ψk in k stages. The basic flow of the algorithm
is below.

Stage 1
|1〉→|1〉
|2〉→|2〉

...

...
|k−1〉→|k−1〉
|k〉→|φk,1〉

→

Stage 2
|1〉→|1〉
|2〉→|2〉

...
|k−2〉→|k−2〉
|k−1〉→|φk−1,2〉
|φk,1〉→|φk,2〉

→ · · · →

Stage k
|1〉→|φ1,k〉

|φ2,k−1〉→|φ2,k〉
...
...

|φk−1,k−1〉→|φk−1,k〉
|φk,k−1〉→|φk,k〉

For all i ∈ S, φi,k = ψi and we will define φa,b inductively in reverse direction.
At stage t, we implement the circuit which maps |k − t+ 1〉 to |φk−t+1,t〉. Then, there exists
|φj,t−1〉 which is mapped to |φj,t〉 for j ≥ k− t+ 2. Since we have 〈i|φj,t〉 = 0 for 1 ≤ i ≤ k− t and
k − t+ 2 ≤ j ≤ k in stage t+ 1, there exists a circuit that send |i〉 to |i〉 for 1 ≤ i ≤ k − t, |φj,t−1〉
to |φj,t〉 for k − t+ 2 ≤ j ≤ k, and |k − t+ 1〉 to |φk−t+1,t〉 by the Stabilization Lemma.
Thus, there exists a circuit that implements the operation at stage t as in the diagram, so we can
implement a polynomial number of columns of a target unitary matrix.

Note that the circuit in Theorem 3.2 does not act unitarilly on the other computational basis
states. The circuit acts as a more general super operator on these states. At stage t, the state |x〉
is mapped to |y〉 where 〈y|i〉 is not guaranteed for i ∈ S. Then, as we have seen in Lemma 3.1, our
state is entangled with an ancilla qubit.
However, we can prepare a unitary matrix if all the other computational basis states are stabilized.

Corollary 3.3. There exists a polynomial time quantum oracle algorithm such that for any set
S of computational basis states of length n where |S| = O(poly(n)), and any basis {|ψi〉}|i〉∈S of
span(S), there exists a classical oracle such that the algorithm maps |i〉 to |ψi〉 for all |i〉 ∈ S and
|j〉 to |j〉 for all the other computation basis states |j〉 /∈ S

8

We have shown that there exists a classical oracle circuit that prepares a polynomial number
of columns of a unitary matrix. However, the current scheme cannot be generalized to prepare all
columns of a unitary matrix. We give a counting argument which shows this is not possible in the
next section.

3.2 Counting Argument

We now show our current approach to make a polynomial number of arbitrary qubits cannot be
generalized to prepare an arbitrary unitary matrix. Note that we want to prepare all 2n columns
of a unitary matrix. Our current scheme is as follows:
Prepare angles in ancilla qubits with total error ε and apply a prepared angle on workspace using
quantum gates.
Note that quantum gates do not help in preparing multiple columns: quantum gates do fixed op-
erations. Thus, we only consider our classical oracles to look at how many states we can prepare.
Ancilla qubits prepare ε

poly(n) error in each oracles. Then, we have log poly(n)
ε bits in the oracle

and can make poly(n)
ε number of angles. Also, we prepare each angle for each basis vector |x〉 for

x ∈ {0, 1}n.

Therefore, we can prepare
(
poly(n)

ε

)2n
states in one oracle. We have poly(n) number of oracles, so

we can prepare
(

(poly(n)ε)2
n
)poly(n)

=
(
poly(n)

ε

)2npoly(n)
states in total.

The volume of an ε-ball around a state is ε2
n
. Then, we need a (1ε)

2n states to represent a single

state. Then, to represent a unitary matrix which has 2n columns, we need
(
(1ε)

2n
)2n

= (1ε)
22n

states.

Let’s compare two cases. Our scheme can prepare roughly
(
poly(n)

ε

)2npoly(n)
different unitary

matrices, but the number of distinct unitary matrices up to error tolerance ε is roughly (1ε)
22n .

Taking log on each side, we need

2npoly(n) log
poly(n)

ε
≥ 22n log

1

ε
.

However, it is easy to see that (1ε)
22n grows much faster as n → ∞. Thus, our scheme cannot

implement an arbitrary unitary matrix for large n.
Note that in our previous scheme, we had only used a small fraction of the number of classical oracles
available. In particular, we only consider oracles that act as an identity on the workspace rather
than perform 2n! different permutations. Using the Stirling’s formula, we have 2n! ≈ (2n)2

n
= 2n2

n

different oracles at each stage. Thus, in total we have 2n2
npoly(n) number of states we can prepare.

However, the inequality

n2npoly(n) ≥ 22n log
1

ε

also does not hold for large n.

9

The above counting argument shows that we cannot prepare an arbitrary unitary matrix using
our current scheme. Also, it shows that we need to use at least 22n different oracles setting in
our algorithm if we want to generate all columns of a unitary matrix. For instance, enlarging the
workspace to size 2n would suffice.

Also, Corollary 2.4 shows that there are no information theoretic barriers in preparing a unitary
in this fashion. This suggests that there might be another scheme to prepare a unitary matrix with
a classical oracle.

3.3 Difficulties in extending our current scheme

We attempted to extend our scheme to implement a super polynomial number of columns of a target
unitary matrix while evading the counting argument shown above. However, we ran into several
difficulties when working with this. For instance, we tried to extend our scheme to implement more
than one quantum state at each stage. The problem we ran into is that it is difficult to disentangle
the ancilla qubits when preparing multiple states. For instance, suppose we want to map |00〉 to
|ψ〉 and |01〉 to |φ〉 using the same number of queries as is required to map |00〉 to |ψ〉. We can
easily prepare a unitary to map

|00〉 → √p0|00〉+
√
p1|10〉 and |01〉 →

√
p′0|01〉+

√
p′1|11〉.

Furthermore, we can easily specify the rotation angles θij to rotate |i〉|j〉 to map

√
p0|00〉+

√
p1|10〉 → |ψ〉 and

√
p′0|01〉+

√
p′1|11〉 → |φ〉.

However, after this operation the total state of the system evolves as

|0〉|00〉 → |θ00〉
√
p00|00〉+ |θ00〉

√
p01|01〉+ |θ01〉

√
p10|10〉+ |θ01〉

√
p11|11〉

|0〉|10〉 → |θ10〉
√
p′00|00〉+ |θ10〉

√
p′01|01〉+ |θ11〉

√
p′10|10〉+ |θ11〉

√
p′11|11〉

which is highly entangled with ancilla qubits. It does not seem possible to remove this entanglement
with the ancilla qubits.

4 Classical Oracle Separation

In this section we denote A to be a classical oracle and U(A) to be a unitary matrix that is generated
by a classical oracle A. To separate QMA and QCMA with a classical oracle, we first try to prove a
quantum oracle separation where the quantum oracle is generated by a classical oracle A. We later
explore separating QMA and QCMA using the classical oracle underlying this construction directly.
We implement the hybrid argument by Aaronson and Kuperberg[1], which is a generalization of
the argument of Bennett et al[2].
We propose a problem that is in QMAU(A) but not in QCMAU(A) that leads to prove QCMAU(A) (

10

QMAU(A). We also conjecture that QMAA 6= QCMAA can be proven with the same problem. We
take the definition of p-uniform and Lemma 3.2 that bounds the difference between oracles the
paper by Aaronson and Kuperberg[1]

Definition 4.1. For all p ∈ [0, 1], a probability measure σ over CPN−1 is called p-uniform if
pσ ≤ µ. Equivalently, σ is p-uniform if it can be obtained by starting from µ, and then conditioning
on an event that occurs with probability at least p.

Lemma 4.2. Let σ be a p-uniform probability measure over CPN−1. Then for all ρ,

E
|ψ〉∈σ

〈ψ|ρ|ψ〉 = O

(
1 + log 1

p

N

)

We define the ball around |ψ〉 with radius ε on CPN−1, Bε(|ψ〉) as

{|φ〉|‖|φ〉 − |ψ〉‖ ≤ ε}

Also, we define µ(K) as a uniform measure on K.
Dealing with a classical oracle, we do not have continuous measure on quantum sapce. Instead,

we have a distribution on quantum space. We will see how to apply Lemma 4.2 to a classical
distribution. We define a similar concept on distribution as p-uniform measure on measure space.

Definition 4.3 (ε error p-pseudo uniform distribution). A distribution X on CPN−1 is ε error

p-pseudo uniform if probability measure 1
|X|

∑
|φ〉∈X

µ(Bε(|ψ〉)) is p - uniform measure.

To consider multiplicity when summing up measure, we need following lemma.

Lemma 4.4. For a distribution X on CPN−1 such that P
|φ〉∈CPN−1

[|φ〉 ∈
⋃
|ψ〉∈X

Bε(|ψ〉)] ≥ p for

|ψ〉 ∈ CPN−1, 1
|X|

∑
|φ〉∈X

µ(Bε(|ψ〉)) is p
|X| -uniform measure.

Proof. µ(
⋃
|ψ〉∈X

Bε(|ψ〉)) is p-uniform measure. Then, each x ∈
⋃
|ψ〉∈X

Bε(|ψ〉) has at most |X| mul-

tiplicity when summing up measures and 1
|X|

∑
|φ〉∈X

µ(Bε(|ψ〉)) is p
|X| -uniform.

The following lemma gives the connection between inequality on ε error p-pseudo uniform
distribution and inequality on p-uniform measure.

Lemma 4.5. For a density matrix ρ,

〈ψ|ρ|ψ〉 ≤ 2 E
|φ〉∈Bε(|φ〉)

〈φ|ρ|φ〉

Proof. It is enough to show that

11

〈ψ|α〉2 ≤ 2 E
|φ〉∈Bε(|φ〉)

〈φ|α〉2.

We know,

〈φ|α〉2 = (〈φ− ψ|α〉+ 〈ψ|α〉)2 ≥ 〈ψ|α〉2 + 2〈ψ|α〉〈φ− ψ|α〉

Then, for hemi-sphere of Bε(ψ), 〈ψ|α〉〈φ− ψ|α〉 is positive and 〈φ|α〉2 ≥ 〈ψ|α〉2. Thus, we get

〈ψ|α〉2 ≤ 2 E
|φ〉∈Bε(|φ〉)

〈φ|α〉2.

Corollary 4.6. For ε error p-pseudo uniform distribution X,

E
|ψ〉∈X

〈ψ|ρ|ψ〉 = O

(
1 + log 1

p

N

)

Proof. By definition, 1
|X|

∑
|φ〉∈X

µ(Bε(|ψ〉)) is p-uniform. Then, by Lemma 4.2,

E
|ψ〉∈X

〈ψ|ρ|ψ〉 ≤ 2 E
|ψ〉∈X

E
|φ〉∈Bε(|ψ〉)

〈φ|ρ|φ〉

= 2 E
|φ〉∈Bε(|ψ〉)

〈φ|ρ|φ〉

= 2O

(
1 + log 1

p

N

)
= O

(
1 + log 1

p

N

)

By Corollary 2.4, we know how to implement a target unitary matrix if we entangle the results
with ancilla qubits. In fact, we will implement any unitary matrix that can be prepared with a
classical oracle on the workspace using ancilla bits as indicators. Also, using the last half of the
workspace as indicators, we can implement a unitary operation on the first half of the workspace.
In other words, let Oc to be a set of unitary matrix that is implemented by a classical oracle and
Oq to be a set of unitary matrix that consists of Oc. Then, we define Oc and Oq as follows: for
simplicity let an denotes a succesion of a for n times for a ∈ {0, 1}.

Definition 4.7. Let Uψ,x be a unitary matrix performed by an algorithm in Proposition 2.3 when
preparing |ψ〉 starting from |x〉. In other words, U consists of n oracles in which kth oracle encodes
angles to apply on kth qubit on the workspace.
Let U({ψx}x∈{0,1}n) to be a unitary matrix which performs the unitary operation which maps |y〉|x〉
to (Uψx,x|y〉)|x〉 for all x ∈ {0, 1}

n
2 . In other words, U({ψx}x∈{0,1}n) performs Uψx,x on the first n

2
qubits of the workspace if the last n

2 qubits is |x〉.
Oc is a set of Uψ,x and Oq is a set of U({ψx}x∈{0,1}n) for all ψ ∈ CPn−1, ψx ∈ CPn−1 and
x ∈ {0, 1}n.

12

Oqq is a set of U such that U = (I ⊗ U †
φ,0

n
2

)U({ψx}x∈{0,1}n)(I ⊗ U
φ,0

n
2

) for some φ ∈ CP
n
2
−1,

ψx ∈ CPn−1 and x ∈ {0, 1}n. In other words, U performs Uψx,x on the first n
2 qubits of the

workspace if the last n
2 qubits is |ψx〉 and performs I otherwise.

Note that the oracle U ∈ Oq is a unitary matrix of length n+k where k is a constant because we
have a counter and ancilla bits to encode angles. Now we want to prove the following conjecture.

Theorem 4.8. Given access to a quantum oracle U of length n+ k, we want to decide which case
U is in between the following two cases:

(i) U is an identity (drawn from Oqq).

(ii) U is drawn uniformly at random from Oqq conditioned on that there exist two quantum states
of length n

2 |ψ〉 & |φ〉 and a state of length n
2 |ξ〉 such that U |ψ〉|ξ〉 = |φ〉|ξ〉 and U |γ〉|δ〉 = |γ〉|δ〉

for all |δ〉 orthogonal to |ξ〉.

Then, even with a classical proof of length m, we need at least Ω(

√
1+m+n log 1

ε

2
n
2

) queries to an oracle

U .

Proof. If m = O(2n), it is obvious. We consider the case where m = o(2n). Let ω be a classical
proof of length m we get. Let Uf = I and Us be a quantum oracle drawn with first condition and
second condition respectively. Suppose we have an algorithm A and A queries the oracle T times.
A want to accept if U = Us. Fix ψ and φ. Then, for each ξ, there exists ω ∈ {0, 1}m such that
probability of accepting Us is largest for ω. Let X be a uniform probability distribution of states

represented in Oc. By definition,
⋃
|ψ〉∈X

Bε(ψ) = CPN−1. Also, we know that |X| = O
(
(1ε)

n
)

as we

have seen in Section 3.2. Then denote S(ω) be a set of ξ such that probability of accepting Us is
largest with a classical proof ω. Then, there exists ω∗ such that

P
|ξ〉∈X

[|ξ〉 ∈ S(w∗)] ≥ 1

2m

Then, it is enough to prove that when we hardwire ω∗ into a circuit and draw |ξ〉 uniformly at

random from S(ω∗) with o

(√
1+m+n log 1

ε

2
n
2

)
quries, we cannot distinguish Us and Uf with a high

probablilty. Let |Φt〉 be a state after applying Uf for first t queries and Us for last T − t queries. We

want the difference between |Φ0〉 and |ΦT 〉 to be Ω(1). Let ρt =
k∑
i=1

pi|φi〉〈φi| be a density matrix

of |Φt〉. Note that Uf and Us differ only in states that end with ξ. Let |α〉 =
∑

x∈{0,1}
n
2

|x〉|ξ〉. Then,

|Φt+1〉 and |Φt〉 differ by at most 2
∑

pi〈α|φi〉. Denote ρ′t =

k∑
i=1

pi

2
n
2∑

j=1

qi,j |j〉〈j| =

s∑
i=1

ri|δi〉〈δi|

13

where qi,j is the probability of getting j from |φi〉 when j is represented in binary form. Thus,

‖|Φt+1〉−|Φt〉‖2 = ‖(UfU †s−I)|Φt〉‖2 ≤
s∑
i=1

2ri〈δi|ξ〉 = 2
s∑
i=1

ri
√
〈δi|ξ〉〈δi|ξ〉 ≤ 2

√√√√ s∑
i=1

ri〈δi|ξ〉〈δi|ξ〉 =

2
√
〈ξ|ρ′|ξ〉.
Let σ be a unifrom probability measure from S(w∗). Note that S(w∗) is 1

2m|X| -uniform measure.
By Lemma 4.6,

E
ξ∈σ
〈ξ|ρ′|ξ〉 ≤

√
1 + log 1

2−m

2
n
2

=

√
1 +m+ log |X|

2
n
2

=

. Therefore,

E
ξ∈σ
‖|Φt+1〉 − |Φt〉‖2 ≤ E

ξ∈σ
〈ξ|ρ|ξ〉 ≤

√
1 +m+ log |X|

2
n
2

and

E
ξ∈σ
‖|ΦT 〉−|Φ0〉‖2 ≤

T−1∑
t=0

E
ξ∈σ
‖|Φt+1〉−|Φt〉‖2 ≤

T−1∑
t=0

E
ξ∈σ
〈ξ|ρ|ξ〉 ≤

T−1∑
t=0

√
1 +m+ log |X|

2
n
2

= O

T
√

1 +m+ n log 1
ε

2
n
2

Because we want ‖|ΦT 〉 − |Φ0〉‖2 to be Ω(1), we need at least T = Ω

(√
1+m+n log 1

ε

2
n
2

)
queries to

the oracle.

Thus, the separation between QMA and QCMA follows as in [1].

Theorem 4.9. There exists U(A) such that QMAU(A) 6= QCMAU(A).

We extend Theorem 4.9 to the following conjecture:

Conjecture 4.10. There exists a classical oracle A that consists of a classical oracle A such that
QMAA 6= QCMAA.

5 Acknowledgements

I would like to thank the SPUR program for providing an opportunity to work on this project
and to Professor Jacob Fox, Pavel Etingof and Scott Aaronson for their helpful conversations and
suggestions. I especially would like to thank my mentor, Adam Bouland, for his wholehearted help
in guidance of research, studying and writing.

14

References

[1] Scott Aaronson and Greg Kuperberg. Quantum Versus Classical Proofs and Advice.
http://theoryofcomputing.org/articles/v003a007/v003a007.pdf

[2] C. Bennett, E.Bernstein, G.Brassard, and U. Vazirani: Strengths and weaknesses
of quantum computing. SIAM J. Computing, 26(5):15101523, 1997. quant-ph/9701001.
[SICOMP:10.1137/S0097539796300933, arXiv:quant-ph/9701001].

[3] Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press.

[4] Sanjeev Arora and Boaz Barak. Computational Complexity: A Moden Approach. Cambridge
University Press.

15

