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Abstract

The polynomial-time tractability of graph isomorphism is
a longstanding open problem. In this paper, we examine the
fixed-parameter tractability of graph isomorphism with re-
spect to crossing number and related parameters. We show
that graph isomorphism if fixed-parameter tractable with re-
spect to convex crossing number. We conjecture that graph
isomorphism is FPT in the regular crossing number, and ex-
plain why it is difficult to prove this conjecture.

Introduction

In general, the problem of determining if two graphs are
isomorphic is believed to be NP-intermediate. It is natu-
ral to ask what makes graph isomorphism so difficult and
if knowledge about the graph’s fundamental structure can
made it tractable. It is known that planar graph isomorphism
can be solved in polynomial time (Hopcroft, Wong 1974),
so it is natural to ask if graph isomorphism is also easy on
graphs which are nearly planar, i.e. have low crossing num-
ber. The framework of fixed-parameter tractability is used
to capture the feasibility of problems when controlling graph
structure. In this paper, we explore if Graph Isomorphism is
fixed-parameter tractable with respect to crossing number.

Only a few fixed-parameter tractability results for Graph
Isomorphism are known. It is known that Graph Isomor-
phism is fixed-parameter tractable with respect to tree-depth,
largest multiplicity of an eigenvalue of the adjacency matrix
(Evdokimov, Ponomarenko 1999), size of the largest class
color (Arvind, et. al. 2009), and a few other parameters
(Bouland, Dawar, Kopczynski 2012), but its tractability is
unknown with respect to crossing number. Unlike Colorabil-
ity, Clique, or Hamiltonian Cycle, Graph Isomorphism stud-
ies the relation between two graphs, not just the properties
of one. This oddity of Graph Isomorphism makes it a very
difficult problem to reduce to, so there are no hardness re-
sults known for the complexity of Graph Isomorphism with
respect to any parameters discussed in this paper.

On the other hand, quite a lot is known about crossing
number. It is known that in sufficiently dense graphs, the
crossing number is linear in the number of vertices (Fox,
Toth 2008). It is also known that computing crossing number

is fixed-parameter tractable with respect to crossing number
(Grohe 2002). Grohe’s proof relies on expressing crossing
number in monadic second-order logic and applying Cour-
celle’s Theorem, which states that properties that can be ex-
pressed in monadic second-order logic are decidable in linear
time on graphs of bounded tree-width. In fact, Grohe shows
that it is possible to explicitly construct a minimal embedding
of the input graph. Unfortunately, though, the construction
relies on a tree-width decomposition, which can not neces-
sarily be chosen in an isomorphism-invariant way. This is
what makes it difficult to apply in the present setting.

Of the several potential approaches to showing Graph Iso-
morphism is fixed-parameter tractable, many of theme have
a common theme. It would be sufficient to show that one can
find a crossing edge of a graph in an isomorphism invariant
way in f (k) steps (where k is the crossing number). One
could then remove the edge and proceed by induction on the
crossing number. The challenge with these algorithms is that
the removal of a single edge could completely change the set
of drawings with minimal crossing number, thus obviating
induction. That is, certain graphs are very unstable and small
perturbations of their minimal drawings require them to be
completely redrawn. Another approach would be to some-
how limit the number of embeddings of the graph to f (k).
In this case, the challenge is in understanding graph embed-
dings. In general, the behavior of graph embeddings of low
crossing number is poorly understood.

Following the definitions, this paper shows the fixed-
parameter tractability of graph isomorphism with respect to
convex crossing number. We then explain why it is difficult
to extend this result to regular crossing number.

Definitions

Parameterized Complexity

While traditional complexity theory evaluates the running
times of algorithms in terms of their input size, parameter-
ized complexity theory evaluates the running time of algo-
rithms in terms of their input size and a second parameter.

Definition 1. A parameter, k, is a map from problem in-
stances Q to the natural numbers N.
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Definition 2. A parameterized problem, with parameter k, is
said to be in XP with respect to k if there is an algorithm that
solves it in time n f (k) for some function f and some constant
c.

Definition 3. A parameterized problem, with parameter k, is
said to be fixed-parameter tractable with respect to k if there
is an algorithm that solves it in time f (k)nc for some function
f and some constant c (Flum, Grohe 2006).

Example 1. It is easy to prove that determining the crossing
number of a graph is at least in XP with respect to crossing
number. Given a graph, G, simply remove all subsets of k
edges and test for planarity. If at least one of the resulting
graphs is planar, then G has crossing number at most k. If no
resulting graph is planar, then G has crossing number larger
than k. The running time of the algorithm is

(
n
k

)
= O(nk).

Graph Isomorphism Problem

The Graph Isomorphism problem has numerous applica-
tions to Physics, Chemistry, Artificial Intelligence, and many
other fields. Its classical complexity has been well studied
and, in practice, good algorithms exist to determine isomor-
phisms between small graphs.

Definition 4. Two graphs are isomorphic if there exists a
bijection between their vertices which preserves edges and
vertex labels.

Definition 5. A canonical labeling algorithm assigns to each
graph G a bijection fG : VG → {1, 2, . . . , |VG |} such that if H
is isomorphic to G then f −1

H ( fG(v)) is an isomorphism.

Example 2. Note that any canonical labeling algorithm can
be turned into a graph isomorphism algorithm. Given two
graphs, each with a canonical labeling, we consider the bijec-
tion which maps 1 to 1, 2 to 2, . . ., and n to n. The two graphs
are isomorphic if and only if this bijection is an isomorphism.
Thus, the problem of determining a canonical labeling is at
least as hard as the graph isomorphism problem.

Crossing Number

The crossing number of a graph is, intuitively, the min-
imum number of edge crossings required to draw it in the
plane. In a sense, it captures how far a certain graph is from
being planar. Crossing number is an upper bound on the edge
deletion distance from planarity. Furthermore, the crossing
number is always at least as large as the genus of the graph.
A graph with crossing number k can always be drawn on
a genus k surface by looping edges through holes to avoid
crossings. This means that if graph isomorphism is fixed-
parameter tractable with respect to genus, it is immediately
fixed-parameter tractable with respect to crossing number.
Thus, it is easier to prove fixed-parameter tractability with
respect to crossing number than with respect to genus.

Definition 6. A graph is said to be simple if it contains no
loops and any two vertices are connected by at most one
edge. Equivalently, it has no cycles of length 2. In this paper,
we will assume all the graphs in question are simple.

Definition 7. The crossing number of a graph, denoted
Cr(G) is defined as the minimal number of crossings needed
to draw it in the plane. The crossing number of a planar graph
is 0 while the crossing number of K3,3 is 1.

Definition 8. The convex crossing number of a graph,
denoted Con-Cr(G) is defined as the minimal number of
straight edges necessary to draw the graph in the plane such
that its vertices lie on the unit circle (thus, all of its edges are
chords).

Definition 9. An embedding of a graph G is a drawing of G
in the plane with a minimal number of crossings.

Definition 10. A graph is said to be k-connected if there are
at least k vertex-disjoint paths between any two vertices.

Example 3. It is easy to see that Cr(G) ≤ Con-Cr(G). Given
a drawing of G with convex-crossing number k, it is also a
drawing with crossing number k.

Planar Graph Isomorphism

Since planar graph isomorphism can be solved in polyno-
mial time, it is natural to examine if the planar graph isomor-
phism algorithm can be generalized to graphs of low crossing
number. At the heart of planar graph isomorphism are three
very important results.

Lemma 1. Every graph can be decomposed into a rooted tree
of depth three such that each node is a subgraph of its parent.
The root of the tree is the original graph. Furthermore, the
nodes at depth two are at least 2-connected and the leaves are
at least 3-connected. This decomposition can be computed in
linear time. (Hopcroft, Tarjan 1974).

Lemma 2. There are only two embeddings of a planar, 3-
connected graph. (Whitney 1933).

Lemma 3. Tree Isomorphism can be solved in linear time.
(Lindell 1992).

Theorem 1. Planar graph isomorphism can be solved in
polynomial time (Hopcroft, Tarjan 1974).

Let T1 be the decomposition of G1 and T2 the decomposi-
tion of G2, as described in Lemma 1. We check isomorphism
of T1 and T2, where a node of T1 is equivalent to a node of T2
if and only if the corresponding graphs are isomorphic. By
Lemma 2, we can check if two leaves are equivalent in lin-
ear time. By Lindell’s algorithm for tree isomorphism, this
suffices to test for isomorphism of T1 and T2. By Lemma 1,
T1 is isomorphic to T2 if and only if G1 is isomorphic to G2.
This decides isomorphism with running time O(n). �
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Convex Crossing Number

We begin by showing that graph isomorphism is fixed-
parameter tractable with respect to convex crossing number.
We can extend the techniques of the planar result to convex
crossing number.

Theorem 2. Graph Isomorphism is fixed-parameter tractable
with respect to convex crossing number.

We rely heavily on the following lemma, which effectively
“replaces” Lemma 2.

Lemma 4. Any 3-connected graph with n ≥ 4 vertices has
convex crossing number k ≥ n

4 .

Let G be a 3-connected graph and fix it in one of its mini-
mal embeddings. Consider a vertex v ∈ G. The degree of v is
at least 3. Consider the edges which leave v. These edges are
chords in the unit circle. At least one of them will divide the
circle into two distinct regions such that each region contains
another edge. We can think of this edge as the “middle” edge,
call it (v, u2). By construction, there exist edges (v, u1) and
(v, u3) such that u1 and u3 are in separate regions of the circle.

By assumption, there must be at least three vertex disjoint
paths between u1 and u3. All three paths must pass through
(v, u2), but at most one can pass through v and at most one
can pass through u2. Thus, there is at least one path with
an edge that crosses the edge (v, u2), resulting in a crossing.
Map v to this crossing. Notice that any v will always map to
a crossing on an edge that it is adjacent to, so at most four
vertices will map to the same crossing. This gives us k ≥ n

4 .
Now, any graph can be decomposed into an isomorphism-

invariant tree with 3-connected components as leaves in time
O(n) (Lemma 1). Graph ismorphism can be solved on these
leaves in time (4k)! or constant time on graphs with n < 4.
As in the planar case, we can propagate upwards in lin-
ear time (Lemma 3). Thus, isomorphism of the original
graph is checked in time O((4k)!n), giving the desired fixed-
parameter tractability result. �

Extending Planar Graph Isomorphism

Ideally, we would like to extend the algorithm for pla-
nar graph isomorphism to graphs of low crossing number.
This would require us to generalize Lemma 2 and show that
graphs of low crossing number have few embeddings. Unfor-
tunately, the number of embeddings of a 3-connected non-
planar graph is not bounded by 2. In fact, it’s not even
bounded purely by a function of the crossing number. As
a simple counter-example, consider the following construc-
tion.

Example 4. Start by taking a wheel graph on n − 1 vertices
(an n − 2 cycle with all of its vertices connected to another
point outside the cycle). Add another vertex to the graph and
connect it to three adjacent vertices along the wheel as well
as to the vertex of degree n − 2.

This graph has at least n embeddings. In fact, the number
of embeddings of a 1-connected graph can be exponential in
n.

Example 5. Given an embedding of a graph graph G with
crossing number k, consider subdividing any edge involved
in a crossing. This increases the number of vertices by 1, but
doubles the number of possible embeddings. Thus, there are
O(n) vertices and O(2n) embeddings.

While this example makes it clear that there is no hope
for bounding the number of embeddings in a general graph,
subdivisions are not a valid operation in 3-connected graphs
because they result in a vertex of degree 2. Thus, it may still
be possible that any 3-connected graph with n vertices and k
crossings has a fixed-parameter tractable number of embed-
dings. That is, a number of embeddings that is exponential in
the number of crossings but only polynomial in the number
of vertices. We state this as a conjecture.

Conjecture 1. The number of embeddings of a 3-connected
graph with n vertices and crossing number k is bounded by
kkn2.

In the planar case, this is immediately true. Unfortunately,
we do not have any evidence supporting the conjecture other
than being unable to find a counter-example.
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Edge Classes

Given the failure of Lemma 2 in the generalization of the
planar isomorphism algorithm, we are interested in explor-
ing another avenue. One general method for proving prob-
lems are fixed-parameter tractable is the method of bounded
search trees (Flum, Grohe 2006). The method of bounded
search trees essentially shows that a recursive algorithm is
sufficient to solve the problem in fixed-parameter tractable
time. Given a problem instance p with parameter k, we
would like to show that the problem can be reduced to at
most f (k) instances with parameter k − 1. If we think of
these instances as children of the original instance, then we
have a tree of instances with height k and fan-out at most
f (k). If we know that the problem in question can be solved
in polynomial time on the leaves, i.e. when k = 0, then an
algorithm which recurses up the tree will solve the original
instance p in fixed-parameter tractable time.

If we are to have any hope of finding a recursive algorithm
and invoking the method of bounded search trees, we will
need to define a new parameter which does not depend on
fixing an embedding before recursing downwards. As was
mentioned in the introduction, computing crossing number
is fixed-parameter tractable with respect to crossing number
(Grohe 2002). This allows us to compute the following set in
fixed-parameter tractable time:

FG = {e ∈ G|Cr(G − e) < Cr(G)}

In other words, FG is the set of edges that participate in a
crossing in at least one embedding and thus decrease the
crossing number when they are removed. In a sense, FG cap-
tures the behavior of an edge across all embeddings. When
we were working with crossing number, an edge may or
may not have been crossed depending on the embedding.
FG has the advantage that every edge either is or is not in
FG. We would like to show that graph isomorphism is fixed-
parameter tractable with respect to |F|. Note that Cr(G) <
|FG | for all graphs G, so a fixed-parameter tractable algorithm
for Graph Isomorphism with respect to Cr(G) would imply
one for |FG |. In that sense, |FG | is a strictly easier parameter
to work with.

Unfortunately, FG is not as well-behaved under edge dele-
tions as it first appears. Consider the following (flawed) at-
tempt to prove that FG is closed under edge deletions.

Given a graph G, consider an edge e1 ∈ FG. Say that
Cr(G) = k and Cr(G − e1) = k′. We would like to show

e2 ∈ FG−e1 =⇒ e2 ∈ FG

which is equivalent to

e2 < FG =⇒ e2 < FG−e1

We will examine what happens when we remove e2 followed
by e1 and then we will examine what happens when we

remove e1 followed by e2. This will allow us to study if
e2 ∈ FG−e1 . Let Cr(G − e1 − e2) = k′′. At first, this seems
promising. We know that Cr(G − e2) = k. It would seem that
removing e1 from G − e2 would result in a crossing number
k′, thus showing k′ = k′′, but that is deceptive. It is possi-
ble that deleting e2 gives G − e2 sufficient flexibility to be
drawn in a way such that it has crossing number k + k′′′, for
some k′′′, but now with e1 having more than k′′′ + (k − k′)
crossings. The other direction is equally hopeless. If we
delete e1 first, it is possible that the resulting graph can be
completely redrawn such that there is some minimal embed-
ding containing e2, in which case deleting e2 after e1 further
decreases the crossing number. Note that if the graph were
to be completely redrawn, it would have to be redrawn such
that restoring e1 to the drawing would result in a crossing
number significantly larger than k. In short, there is simply
no good way to characterize minimal drawings of G − e1 in
terms of minimal drawings of G and so nothing useful can be
said about |FG |.

In summary, we believe the following conjecture is false.
If it were true, it would show that Graph Isomorphism is
fixed-parameter tractable with respect to |FG | by the method
of bounded search trees. That is, deleting an edge of G would
always decrease |FG |, so we could construct a bounded search
tree with depth and fan-out both equal to |FG |.

Conjecture 2. If FG is the set of edges which decrease the
crossing number of G, then FG−e ⊂ FG for all e ∈ FG.

Ordering Embeddings

Yet another approach would be to order the embedding
of a graph to define a small set of minimal embeddings and
check isomorphism on them in polynomial time. That is,
we would like to define an ordering or partial ordering on
embeddings of G that satisfies the following two criteria.

1. The set of minimal embeddings of G has fixed-
parameter tractable size.

2. The set of minimal embeddings of G can be found in
fixed-parameter tractable time.

The planar graph isomorphism algorithm is actually a
canonical labeling algorithm (Hopcroft, Wong 1974). This
canonical labeling lends itself naturally to an ordering on pla-
nar graph embeddings. That is, we begin by canonically la-
beling the graph and defining the tuple (e1,2, e1,3, . . . , en−1,n),
where ea,b is 1 if there exists an edge from a to b and 0 other-
wise. The ordering of graphs follows immediately from the
ordering on vectors (ex. lexicographic ordering). We say that
this ordering is induced by the canonical labeling algorithm.

Given this ordering, it is natural to wonder if a similar or-
dering can be imposed on embeddings of low crossing num-
ber. Even if the ordering is only partial, having at most f (k)nc
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embeddings on each level of the partial ordering would be
sufficient to imply our result. All we would need to do is
efficiently find the minimal embeddings, thereby restricting
ourselves to at most f (k)nc embeddings to check. Unfor-
tunately, the existing ordering for planar graphs relies on a
canonical labeling algorithm, so it does not immediately gen-
eralize. This leads us to propose two definitions for ordering,
with the goal of defining the ordering such that finding the
minimal embeddings is easy.

Definition 11. Given a graph G with n vertices and cross-
ing number k, draw it in the plane with exactly k crossings.
Study each crossing and remove one of the two edges that
crosses there. When at most k edges have been removed, the
remaining graph is planar. Label this graph canonically and
then restore the edges that were removed. As in the planar
case, construct a tuple representing the edge set with respect
to this canonical labeling. This tuple, associated with the
particular embedding, would be the basis for an ordering of
embeddings.

The only flaw in this ordering is that there is no isomor-
phism invariant way to choose which edges will be involved
in crossings. For example, in K5, any pair of edges be the
pair that cross in a minimal drawing. This means that finding
the minimal embedding could take nk time. In terms of the
criteria above, this definition satisfies criterion 1, but fails
criterion 2. We consider the next definition, which attempts
to approach the ordering problem directly without appealing
to the planar case.

Definition 12. It is not difficult to show that any graph can
be drawn such that its vertices lie on a sufficiently large lat-
tice. To see this, imagine creating an arbitrary lattice and
perturbing each vertex a distance ε such that it lies at rational
coordinates. The lattice can then be subdivided to match the
graph. Given a lattice, it is easy to define an ordering on
points in the lattice and thus assign a value to each vertex. To
compare two graph embeddings, consider the value of their
smallest vertex. If they differ in the value of their smallest
vertex, consider the second-smallest vertex. Repeat until a
difference is found. If two graphs have the same vertex set,
then compare the set of edges between the vertices as in the
previous definition.

The flaw in this ordering is, as mentioned in the introduc-
tion, that small perturbations in the graph will dramatically
affect its minimal embedding. This leaves little hope for ap-
proaching the problem of finding minimal embeddings as it
immediately obviations recursion, leaving only brute force
as a viable option. Thus, again, we have satisfied criterion 1,
but not criterion 2.

It is interesting that both of the orderings above had the
same flaw. Although one ordering was based on an extension
of planar graph ordering and the other was more ad hoc, both

resulted in a small number of minimal embeddings which
were hard to find. In the case of the first algorithm, the com-
putational time was well-defined but too large. In the case of
the second algorithm, the minimal drawings were poorly un-
derstood due to their instability under edge deletion. While
neither definition works, their flaws lend some insight into
what makes this problem so difficult.

Conclusion

Using the planar graph isomorphism algorithm, we have
shown that Graph Isomorphism is fixed-parameter tractable
with respect to convex crossing number. Unfortunately, ex-
tending this result to traditional crossing number is quite dif-
ficult. The number of minimal embeddings can be large in
n and drawings can be highly unstable under edge deletion.
We conjecture that Graph Isomorphism is fixed-parameter
tractable with respect to crossing number, but a proof would
require more advanced techniques.
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