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Abstract

In this paper we compute ExtRpF, F q for modules over the representation Green functor R with F
given to be the fixed point functor. These functors are Mackey functors, defined in terms of a specific
group with coefficients in a commutative ring. Previous work by J. Ventura [1] computes these derived
functors for cyclic groups of order 2k with coefficients in F2. We give computations for general cyclic
groups with coefficients in a general field of finite characteristic as well as the symmetric group on three
elements with coefficients in F2.
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1 Introduction
Mackey functors are algebraic objects that arise in group representation theory and in equivariant stable
homotopy theory, where they arise as stable homotopy groups of equivariant spectra. However, they can be
given a purely algebraic definition (see [2]), and there are many interesting problems related to them. In
this paper we compute derived functors Ext of the internal homomorphism functor defined on the category
of modules over the representation Green functor R. These Mackey functors arise in Künneth spectral
sequences for equivariant K-theory (see [1]). We begin by giving definitions of the Burnside category and of
Mackey functors. These objects depend on a specific finite group G. It is possible to define a tensor product
of Mackey functors, allowing us to identify ’rings’ in the category of Mackey functors, otherwise known as
Green functors. We can then define modules over Green functors. The category of R modules has enough
projectives, allowing us to do homological algebra. We compute projective resolutions for the R-module
F , the fixed point functor, and then proceed to compute ExtRpF, F q. We perform these computations for
cyclic groups with coefficients in a field and for the symmetric group on three elements with coefficients in
F2 using techniques derived from those used by J. Ventura in [1] to compute ExtpF, F q for the group C2k

with coefficients in F2.
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3 Background and Notation

3.1 Mackey Functors
We begin with definitions of the Burnside category and Mackey functors. For a finite group G we shall
denote the Burnside category as BG. Before defining BG it is convenient to begin with an auxiliary category
B1G. Given a finite group G, B1G is the category whose objects are finite G-sets and morphisms from T to S
are isomorphism classes of diagrams

We define composition of morphisms to be the pullback of two diagrams:

If we define addition of morphisms as
it follows that HompS, T q is a commutative monoid. This construction of B1G allows us to define BG:

Definition 3.1. Given a finite group G, the Burnside category BG is the category whose objects are the same
as the objects of B1G and for two G-sets S and T , HomBGpS, T q is the Grothendieck group of HomB1GpS, T q.
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Given a map of G-sets f : S Ñ T , there are two corresponding morphisms in BG. The first is depicted on
the left in the figure below and is referred to as a ’forward arrow’ (denoted by f) and the second is on the
right and is referred to as a ’backward arrow’ (denoted by f̂).

Definition 3.2. A Mackey functor for a group is an additive contravariant functor from the Burnside
Category BG to the category of Abelian groups. A morphism of Mackey functors is a natural transformation.

Recall that as a consequence of additivity and functoriality we have the following:

Proposition 3.3. It is sufficient to define Mackey functors on G-sets of the form G{H for any subgroup
H, quotient maps between these orbits, and conjugation maps from an orbit to an isomorphic orbit.

Definition 3.4. Denote by πHK , the quotient map from G{K to G{H where K Ă H and by γx,H the
conjugation map that maps H Ñ Hx´1. Given a Mackey functor M , we refer to MpπHK q as a restriction
map, Mpπ̂HK q as a transfer map, and Mpγx,Hq as a conjugation map. We shall denote restriction maps as
rHK , transfer maps as tHK , and conjugation maps as τ .

We recall three examples of Mackey functors that we will be concerned with in this paper.

Example 3.5. We denote by R the representation functor defined by RpG{Hq “ RUpHq where RUpHq is
the complex representation ring of H. The restriction maps are restriction of representations, the transfer
maps are induction of representations, and the conjugations Rpγx,Hq send a vector space with an action of
H to the same vector space where the action is redefined as h ¨ v “ xhx´1v.

Example 3.6. Let M be an abelian group with G-action. Denote the fixed point functor by FPM . Then
FPM pG{Hq “ MH . Restriction maps are inclusions of MH into MK and transfer maps send m Ñ
ř

hPH{K hm. The conjugations are maps from MH Ñ M
xH which send m Ñ xm. In this paper we only

consider the fixed point functor for G-modules M with trivial G-action. Then FPM pG{Hq “M , the restric-
tions are multiplication by 1, the transfers are multiplication by the index rH : Ks, and the conjugations are
identity maps.

Example 3.7. The representable functor r´, Xs “ HomBGp´, Xq is a Mackey functor.

Definition 3.8. If M is a Mackey functor and X is a G-set, then we can define the Mackey functor MX

where

MXpY q –MpY ˆXq

for any G-set Y .

We can define a tensor product on Mackey functors such that given X,Y, Z there is a one to one correspon-
dence between maps X b Y Ñ Z and natural transformations XpSq b Y pT q Ñ ZpS ˆ T q for G-sets S and
T [1]. The unit for this tensor product is r´, es, the burnside ring Mackey functor Ae.
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Definition 3.9. The internal hom functor HompX,Y q is the Mackey functor for which

HompA,HompX,Y qq – HompAbX,Y q.

There are several useful identities related to the internal hom functor. We list them here and refer to proofs
in [1, 2, 4].

HompM,NqpG{Hq – HompM |H , N |Hq
HompM,N b r´, G{Hsq

HompM b r´, G{Hs, Nq

HomRpRX ,MqpG{Hq –MXpG{Hq –MpG{H ˆXq.

We also have the property of duality which gives us the identity

HompM,N b r´, Xsq – HompM b r´, Xs, Nq.

3.2 Green Functors
A Green functor should be thought of as a Mackey functor with an additional ring structure where multi-
plication is given by a tensor product of Mackey functors. There are two equivalent definitions of a Green
functor: the first reflects the previous statement and the second simplifies the task of identifying Green
functors and modules over Green functors.

Definition 3.10. A Green functor R for a group G is a Mackey functor for G with maps R bRÑ R and
r´, es Ñ R with associative and unital properties.

Definition 3.11. A Mackey functor R is a Green functor if for any G-set S, RpSq is a ring, restriction
maps are ring homomorphisms that preserve the unit, and the following Frobenius relations are satisfied for
all subgroups K Ă H of G with a P RpKq and b P RpHq:

bptHKaq “ tHKppr
H
Kbqaq

ptHKaqb “ tHKpapr
H
Kbqq

Definition 3.12. Given a Green functor R, a Mackey functor M is an R-module if for a G-set S, MpSq is
an RpSq-module, and for a G-map f : S Ñ T the following are true [1]:

Mpfqpamq “ RpfqpaqMpfqpmq @ a P RpY q,m PMpY q

aMpf̂qpmq “Mpf̂qpRpfqpaqmq @ a P RpY q,m PMpXq

Rpfqpaqm “Mpf̂qpaMpf̂qpmqq @ a P RpXq,m PMpY q

Definition 3.13. A morphism f of R-modules is a morphism of Mackey functors that preserves the action
of R.

Example 3.14. The representation functor R is a Green functor.

Example 3.15. The fixed point functor is an R-module where R is the representation functor. The action
of R on F is given by the augmentation map σ ÞÑ dimpσq for a representation σ.

Example 3.16. The functor RG{e – Rb r´, G{es is an R-module.

This setup allows us to compute the homology of modules over Green functors.
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4 Computation for G “ Cn

From this point onward we will let R denote RbK for a fixed field K. Simlarly, F will denote FPK for the
trivial G-module K. We intend to compute the derived functors ExtRpF, F q for the group G “ Cn.

There are three steps to computing ExtRpF, F q. We first compute a projective resolution of F . Next we
must apply the functor HomRp´, F q to this projective resolution. We then compute the homology groups
of the resulting chain complex to get ExtRpF, F q. One additional computation gives us the ring structure
induced by the Yoneda composition products.

4.1 Projective Resolution for F
Proposition 4.1. The 4-periodic chain complex

0 ÐÝ F
aug
ÐÝÝ R

pσ´1q
ÐÝÝÝÝ R

1br
ÐÝÝ RG{e

1bpτ´1q
ÐÝÝÝÝÝ RG{e

1bt
ÐÝÝ R

¨¨¨
ÐÝ (4.2)

is a four periodic projective resolution for F .

Proof. To show that this is an exact sequence it suffices to show that this sequence is exact when applied
to orbits of G-sets. We begin with the Burnside category for G “ Cn. Since F ,R, and RG{e are all Mackey
functors, we will apply each functor to orbits in BG. We will then apply the differentials and show that the
resulting sequence is exact.

We start with the diagram of G-maps between groups in the Burnside category:

Let us apply R to BG. We have that

RpG{Cmq “ RUpCmq – K `Kσ `Kσ2 ` ...`Kσm´1,

where σ is an irreducible representation of Cm. We choose a particular σ as follows: Let g be a fixed
generator of Cm, then let σ be the representation that sends gn{m ÞÑ e

2πi
m . The restriction and transfer maps

are restriction and induction of representations, and the conjugation maps are identity maps. Let L “ Cl
and H “ Cm with L Ă H and m “ kl. Then if σH and σL are the above irreducible representations of H

and L respectively, we have rHL pσ
i
Hq “ σiL t

H
L pσ

i
Lq “ σiH

k´1
ÿ

i“0

σilH . Applying R to the diagram of orbits in the

Burnside category, we have:

If we apply the fixed point functor with trivial action F to BG each object maps to the coefficient field
K. The restrictions are the identity map, the transfers are multiplication by the index rH : Ls, and the
conjugations are the identity. The resulting diagram is
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If we apply RG{e to G{H, then RG{epG{Hq –
à

xPG{H

K. The transfer map maps
à

xPG{L

K to
à

xPG{H

K by

performing the augmentation map that sums the terms in groups of m{l coordinates. The restriction map
is a diagonal map that makes m{l copies of each coordinate. There are also n{m conjugations denoted by
τ1, ..., τpn´k (each conjugation corresponds to a power of the generator, so τ1 corresponds to conjugation by
the generator) that operate cyclicly on the coordinates.

Now we need a map from RpG{Hq “
m´1
ÿ

i“0

KσiH to F pG{Hq “ K. We choose this map to be the augmentation

map that sends
ph´1
ÿ

i“0

aiσ
i
H Ñ

ph´1
ÿ

i“0

ai. This map is a natural transformation of Mackey functors, so it is a

morphism of Mackey functors. Since it preserves the action of R, this map is also a map of R-modules.

The kernel of the augmentation map can be written as
m´1
ÿ

i“1

KpσiH ´ 1q. We choose the map onto the kernel

to be multiplication by pσH ´ 1q. This map is surjective and is clearly a map of R-modules.

The kernel of multiplication by pσH ´ 1q is K
m´1
ÿ

i“0

σiH – K. Now we must map from RG{epG{Hq –

à

xPG{H

RpG{eq onto the kernel in RpG{Hq. We choose this map to be the map 1 b r where r is the re-

striction rGe . The map 1 b r is induced by the map 1 ˆ πHe : G{H ˆ G{e Ñ G{H ˆ G{G. Note that
RG{epG{Hq – RpG{HˆG{eq, so we actually have a map from RpG{HˆG{eq Ñ RpG{Hq. Thus this map is
equivalent to R applied to a morphism of G-sets from G{H to G{H ˆG{e. The morphism can be drawn as

Here p is the projection map onto G{H. We can write G{HˆG{e as the disjoint union
ž

xPG{H

Gpx, 1q. Thus,

G{H ˆG{e –
ž

xPG{H

G{e, so the previous morphism can be rewritten as the sum
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This sum is equivalent to the sum of compositions
ÿ

xPG{H

ix ˝ γx,e ˝ π̂
H
e where ix is the inclusion map that

sends 1 ÞÑ px, 1q (conjugations are trivial in R). Applying R to this sum we get
ÿ

xPG{H

tHe ˝ px where px is

the projection map. Thus, in mapping from RG{epG{Hq Ñ RpG{Hq we are actually applying the transfer
map to each individual component and then adding the results. This gives us a map from RG{epG{Hq onto

K
m´1
ÿ

i“0

σiH , the kernel of the previous map.

The kernel of this map contains elements of RG{epG{Hq with coordinates that sum to 0, and we must map
from RG{epG{Hq onto this kernel. This can be accomplished by applying the map 1 b pτ1 ´ 1q. Using a
computation similar to the one given above, we see that when applied to a vector in RG{epG{Hq, this map
first cycles the coordinates and then subtracts the original vector. The resulting vector will have coordinates
that sum to 0, and any vector with coordinates that sum to zero is hit by this map. Thus, we have a
surjection onto the kernel of the previous map. Finally, the kernel of 1 b pτ1 ´ 1q contains elements with
the same entry in each coordinate, so it is isomorphic to K. We can map from R onto this kernel with the
map 1b t where tGe is the transfer map. A computation similar to the one given above for 1b r shows that
this map simply adds together the coefficients of elements in RpG{Cmq. The projective resolution can now
repeat, giving us a four periodic projective resolution of F .

4.2 Computation of ExtRpF, F q

We first apply HomRp´, F q to the resolution obtained in the previous section. We have

HomRpR,F q
pσ´1q
ÝÝÝÝÑ HomRpR,F q

Hompr,1q
ÝÝÝÝÝÑ HomRpRG{e, F q

Hompτ,1q´1
ÝÝÝÝÝÝÝÑ HomRpRG{e, F q

Hompt,1q
ÝÝÝÝÝÑ F Ñ ¨ ¨ ¨

We can simplify this using the identities HomRpR,F q – F and HomRpRG{e, F q – HomRpR b r´, G{es, F q –
Hompr´G{es, F q:

F
pσ´1q
ÝÝÝÝÑ F

Hompr,1q
ÝÝÝÝÝÑ Hompr´, G{es, F q

Hompτ,1q´1
ÝÝÝÝÝÝÝÑ Hompr´, G{es, F q

Hompt,1q
ÝÝÝÝÝÑ F

¨¨¨
ÝÑ

Now we apply this chain complex to G{Cm. From the definition of F , F pG{Cmq “ K. From the identities
for Homp´, F q, we see that HomRpR b r´, G{es, F q – F pG{Cm ˆ G{eq –

ą

xPG{Cm

K. Since the action of a

representation in RpG{Cmq on F is multiplication by the dimension of the representation, pσ´ 1q is the zero
map.

The map F pG{Cmq Ñ F pG{Cm ˆG{eq is F applied to a morphism of G-sets:
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The sum of morphisms equals
ÿ

xPG{H

πHe ˝ γx´1,e ˝ ix and when we apply F we get
ÿ

xPG{H

ix ˝ r
H
e . Since the

restrictions of the fixed point functor are all 1, this is equivalent to the diagonal map.

The map F pG{H ˆG{eq Ñ F pG{Hq is F applied to the morphism

which, as before, can be written as a sum

where ix is the inclusion map. This sum is equal to
ÿ

xPG{H

ix ˝ γx,e ˝ π̂
H
e . Applying F we get

ÿ

xPG{H

tHe ˝ px

where px is the projection map. However, the transfer map for the fixed point functor is multiplication by
the index which in this case is m. Thus given a vector in F pG{Cm ˆ G{eq, this map adds the components
and multiplies by m. We denote this operation by mpΣq. We obtain the chain

K
0
ÝÑ K

∆
ÝÑ

ą

xPG{Cm

K
τ´1
ÝÝÑ

ą

xPG{Cm

K
mpΣq
ÝÝÝÑ K

¨¨¨
ÝÑ (4.3)

We now compute the homology of this chain. We arrive at the following theorem:

Theorem 4.4. Ext0
RpF, F qpG{Cmq “ K and for j ą 0,

Ext jRpF, F qpG{Cmq “

$

’

’

’

&

’

’

’

%

0 j “ 1

0 j “ 2
KerpmpΣqq
Impτ´1q j “ 3

K{mK j “ 0

pmod 4q

For Ext3
RpF, F q, a Green functor, we have that rHK “ rH : Ks, tHK “ 1, and the conjugations are the identity.

For Ext4
RpF, F q we have that rHK “ 1, tHK “ rH : Ks, and the conjugations are the identity.

It is clear that the results depend on the characteristic of K:

Corollary 4.5. If K has characteristic 0 or p where p ffl m

Ext jRpF, F qpG{Cmq “

#

K j “ 0

0 j ą 0

If K has characteristic p and p divides m, then Ext0
RpF, F q “ K. Since m “ 0, Ext3

RpF, F q “
KerpmpΣqq
Impτ´1q “

¨

˝

ą

xPG{Cm

K

˛

‚{Impτ ´ 1q, a one dimensional quotient space of
ą

xPG{Cm

K. Since the vector r1, 0, .., 0s is not

contained in Impτ ´ 1q, we denote this subspace as Kr1, 0, ..., 0s. Also, Ext4
RpF, F q “ K{mK “ K. So we

have
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Corollary 4.6. If K has characteristic p and p divides m, then Ext0
RpF, F q “ K and for j ą 0

Ext jRpF, F qpG{Cmq “

$

’

’

’

&

’

’

’

%

0 j “ 1

0 j “ 2

K j “ 3

K j “ 0

pmod 4q

4.3 Ring Structure of Ext

We now wish to compute the ring structure of ExtRpF, F qpG{Cmq in the case with K a field of characteristic
p that divides m. In general, there exists a correspondence between elements of Ext iRpF, F qpG{Hq and
homotopy classes of chain maps f : P‚`i b r´, G{Hs Ñ P‚ where P‚ is a projective resolution for B and
P‚`i is P‚ shifted by i terms.There exists an associative collection of maps

Ext iRpB,Cq b Ext jRpA,Bq ÝÑ Ext i`jR pA,Cq

generalizing the composition product. In this case, A “ B “ C “ F so we have a map

Ext iRpF, F q b Ext jRpF, F q ÝÑ Ext i`jR pF, F q.

Thus ExtRpF, F q is a Green functor.

Now if we consider the categories of Mackey functors MackpGq and MackpHq where MackpGq is defined
on BG and likewise for MackpHq, there is an adjoint pair ResGH and IndGH where ResGH is a functor from
MackpGq to MackpHq and IndGH is a functor from MackpHq to MackpGq. In fact, one can prove that

Ab r´, G{Hs – IndGHpRes
G
HAq,

thus there is a one to one correspondence between maps P‚`ibr´, G{Hs Ñ P‚ and maps IndGHpRes
G
HP‚`iq Ñ

P‚, which, using the adjoint pair, are in a one to one correspondence with maps ResGHP‚`i Ñ ResGHP‚.
However, considering these maps is equivalent to considering the chain maps of projective resolutions for the
group H, that is, PH‚`i Ñ PH‚ where the functors in the projective resolution are functors on BH .

In our case, Ext iRpF, F qpG{Hq “ 0 when i “ 1`4k, 2`4k, so we focus on the cases i “ 3`4k and i “ 4`4k.
We must compute chain maps f : PCm‚`3 Ñ PCm‚ and g : PCm‚`4 Ñ PCm‚ . These chain maps are given in the
following proposition.

Proposition 4.7. The chain map f : PCm
‚`3`4k Ñ PCm‚ given by the vertical maps in the following commu-

tative diagram represent nonzero classes in Ext3`4k
R pF, F qpCn{Cmq.

The chain map g : PCm
‚`4k Ñ PCm‚ given by the vertical maps in the following commutative diagram represent

nonzero classes in Ext4k
R pF, F qpCn{Cmq.
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The actual vertical maps are labelled by elements of R evaluated at particular G-sets. For example, a map
from RG{e to R is an element of HompRG{e, Rq – RpG{eq, so the map is represented by an element of
RpG{eq. We define y3 and x4 to be the classes represented by these chain maps (for k “ 0 and k “ 1
respectively). Note that the chain maps given in the previous proposition are four periodic. This implies
that the compositions are also four periodic. Given the chain maps f and g we can now verify that the
products on Ext3`4k

R pF, F qbExt4l
RpF, F q and Ext4k

R pF, F qbExt4l
RpF, F q do not correspond to chain maps that

are homotopic to zero. This entails computing the compositions P3`4
g
ÝÑ P3

f
ÝÑ P0

aug
ÝÝÑ F , P4`3

f
ÝÑ P4

g
ÝÑ

P0
aug
ÝÝÑ F , and P4`4

g
ÝÑ P4

g
ÝÑ P0

aug
ÝÝÑ F . If these compositions represent nonzero Ext classes, then the

chain maps are nonzero and we are finished. Explicitly these maps are RCm{e
r1,0,¨¨¨ ,0s
ÝÝÝÝÝÝÑ RCm{e

1
ÝÑ R

aug.
ÝÝÝÑ F ,

RCm{e
1
ÝÑ R

1
ÝÑ R

aug.
ÝÝÝÑ F , and R 1

ÝÑ R
1
ÝÑ R

aug.
ÝÝÝÑ F . All of these maps compose to 1. We have arrived at

the following theorem:

Theorem 4.8. For a field K with characteristic p where p � m, ExtRpF, F q is given by

ExtRpF, F qpCn{Cmq “ Kry3, x4s{py
2
3 “ 0q.

where y3 has degree 3 and x4 has degree 4.

5 Computation for G “ S3

We compute ExtRpF, F qpG{Hq for G “ S3 where the field K is taken to be F2.

5.1 Projective Resolution for F

Proposition 5.1. There is a four periodic projective resolution for F of the following form:

0 ÐÝ F
aug
ÐÝÝ R

V
ÐÝ R

1br
ÐÝÝ RG{e

1bpτ1`τ2`τ3´1q
ÐÝÝÝÝÝÝÝÝÝÝÝ RG{e

1bt
ÐÝÝ RÐ ¨ ¨ ¨ (5.2)

Proof. The Burnside category for G “ S3 takes the form:

There are three choices for C2, we draw our diagrams with C2 “ xp12qy. Also, there are six conjugations on
G{C2, allowing us to obtain any permutation of the cosets, two conjugations of G{C3, allowing us to swap
the two cosets, and six conjugations of G{e.

If we apply R to the previous diagram, we have
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Here S is the sign representation of S3 and V is the two dimensional representation. The conjugations are
trivial since conjugation preserves the character of a representation, except for the orbit G{C3. The nontrivial
conjugation swaps σ3 and σ2

3 . We avoid using conjugations on this orbit. In this case the restriction and
transfer maps are as follows:

rGC2
“

#

S ÞÑ σ2

V ÞÑ 1` σ2

rGC3
“

#

S ÞÑ 1

V ÞÑ σ3 ` σ
2
3

rC2
e “ σ2 ÞÑ 1

rC3
e “ σ3 ÞÑ 1

tGC2
“

#

1 ÞÑ 1` V

σ2 ÞÑ S ` V

tGC3
“

$

’

&

’

%

1 ÞÑ 1` S

σ3 ÞÑ V

σ2
3 ÞÑ V

tC2
e “ 1 ÞÑ 1` σ2

tC3
e “ 1 ÞÑ 1` σ3 ` σ

2
3

If we apply F to the diagram for BG, every object maps to F2, the restrictions are identity maps and the
transfers are multiplication by the index. The diagram corresponding to F is

Finally, RG{epG{Hq – RpG{H ˆG{eq –
ą

xPG{H

RpG{eq. Thus we have a copy of F2 for each coset of H in G.

The diagram is as follows:

In this case the restriction maps are diagonal maps and the transfers add together groups of coordinates.
The conjugation maps for each orbit permute the indices of the coordinates. We denote by τ1, τ2, τ3 the
conjugations corresponding to p12q, p23q, p13q respectively.
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Now we must verify that the sequence given above is exact. As with the case G “ Cm, the map from R to
F is the augmentation map given in Example 3.15. The kernel of this map applied to each orbit takes the
form:

The transfer and restriction maps for this kernel are induced by the transfer and restriction maps for R. We
must show that multiplication by V maps surjectively onto this kernel. Using characters we can calculate the
following products of representations: s2 “ 1, V 2 “ 1`S`V , SV “ V . If we multiply F2`F2S`F2V by V
we get F2V `F2V `F2p1`S`V q – F2pS´1q`F2V . Multiplying any element of G{H by V means multiplying
that element by the rGHpV q. Thus V ¨pF2`F2σ3`F2σ

2
3q “ pσ3`σ

2
3qpF2`F2σ3`F2σ

2
3q. Any choice of coefficients

for this expression gives an element of the kernel. For G{C2, V ¨pF2`F2σ2q “ p1`σ2qpF2`F2σ2q “ F2p1`σ2q.
For G{e, rGe pV q “ 0, so RpG{eq maps onto 0. Thus, the map that multiplies by V surjects onto the kernel
of the previous map.

The kernel of multiplication by V is

We must map from RG{e onto this kernel. This map is 1b r, which, as before, adds together the entries in
each vector in RpG{Hq. The kernel of this map is, for any orbit G{H, the set of vectors VH so that the sum
of the entries in each vector is zero.

We must now map from RG{e onto the kernel shown above. This is accomplished by the map 1b pτ1 ` τ2 `
τ3 ´ 1q. If we apply this map to pa, b, cq P RG{epG{C2q, pτ1 ` τ2 ` τ3qpa, b, cq ´ pa, b, cq “ pa ` b ` c, a `
b ` c, a ` b ` cq ´ pa, b, cq “ pb ` c, a ` c, a ` bq. This is a map onto the kernel of the previous map in the
case of G{C2. In the case of G{C2, pτ1 ` τ2 ` τ3qpa, bq ´ pa, bq “ pa ` b, a ` bq, as desired. For RG{epG{eq,
1bpτ1` τ2` τ3´ 1q is a map of rank five. Thus it is a surjection onto the kernel of the previous map which
has dimension five. For RG{epG{Gq, this map is the zero map. For each of the above orbits, the kernel of
the map 1b pτ1 ` τ2 ` τ3 ´ 1q is one dimensional. Thus the next kernel looks like
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The map 1 b t maps from R into RG{e via the restriction rHe and surjects onto the kernel of the previous
map. This gives us a four periodic projective resolution.

5.2 Computation of ExtRpF, F q

Applying HomRp´, F q we have

HomRpR,F q
V
ÝÑ HomRpR,F q

Hompr,1q
ÝÝÝÝÝÑ HomRpRG{e, F q

Hompτ,1q´1
ÝÝÝÝÝÝÝÑ HomRpRG{e, F q

Hompt,1q
ÝÝÝÝÝÑ F Ñ ¨ ¨ ¨

Using the identities for HomRp´, F q and the fact that the action of V on F is multiplication by 2 which is
0, this simplifies to

F
0
ÝÑ F

Hompr,1q
ÝÝÝÝÝÑ Hompr´, G{es, F q

Hompτ1`τ2`τ3,1q´1
ÝÝÝÝÝÝÝÝÝÝÝÝÑ Hompr´, G{es, F q

Hompt,1q
ÝÝÝÝÝÑ F ÝÑ ¨ ¨ ¨

We shall apply this sequence to each orbit in BG and compute ExtRpF, F q.

For G{G we have

F2
0
ÝÑ F2

Id.
ÝÝÑ F2

0
ÝÑ F2

0
ÝÑ F2 ÝÑ ¨ ¨ ¨

For G{C2 we have

F2
0
ÝÑ F2

∆
ÝÑ F2 ` F2 ` F2

τ1`τ2`τ3´1
ÝÝÝÝÝÝÝÝÑ F2 ` F2 ` F2

0
ÝÑ F2 ÝÑ ¨ ¨ ¨

where ∆ denotes the diagonal map. For G{C3 we have

F2
0
ÝÑ F2

∆
ÝÑ F2 ` F2

τ1`τ2`τ3´1
ÝÝÝÝÝÝÝÝÑ F2 ` F2

`
ÝÑ F2 ÝÑ ¨ ¨ ¨

where ∆ denotes the diagonal map, and ` denotes the augmentation map that adds coordinates. For G{e
we have

F2
0
ÝÑ F2

∆
ÝÑ

5
à

i“0

F2
τ1`τ2`τ3´1
ÝÝÝÝÝÝÝÝÑ

5
à

i“0

F2
`
ÝÑ F2 ÝÑ ¨ ¨ ¨

where ∆ denotes the diagonal map, and ` denotes the augmentation map that adds coordinates.

We summarize the results of the ExtRpF, F q computations for G “ S3 in the following theorem:

Theorem 5.3. For the orbit G{G, Ext0
RpF, F qpG{Gq “ F2, and for j ą 0,

Ext jRpF, F qpG{Gq “

$

’

’

’

&

’

’

’

%

0 j “ 1

0 j “ 2

F2 j “ 3

F2 j “ 0

pmod 4q

For the orbit G{C2, Ext0
RpF, F qpG{Gq “ F2, and for j ą 0,
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Ext jRpF, F qpG{C2q “

$

’

’

’

&

’

’

’

%

0 j “ 1

0 j “ 2

F2 j “ 3

F2 j “ 0

pmod 4q

For the orbit G{C3,

Ext jRpF, F qpG{C3q “

#

F2 j “ 0

0 j ą 0

For the orbit G{e,

Ext jRpF, F qpG{C3q “

#

F2 j “ 0

0 j ą 0

For both Ext3
RpF, F q and Ext4

RpF, F q,Green functors, we have that rHK “ 1, tHK “ 1, and the conjugations are
the identity.

5.3 Ring Structure of Ext

We now wish to identify the ring structure of Ext iRpF, F qpG{C2q and Ext iRpF, F qpG{Gq. For the first case,
Ext iRpF, F qpG{C2q corresponds to chain maps PC2

‚`i Ñ PC2
‚ . However, we already computed the chain maps

and the products for G “ C2 in the previous section, and this gives us the ring structure:

Theorem 5.4. Over the field F2, ExtRpF, F qpS3{C2q is given by

ExtRpF, F qpG{C2q “ F2ry3, x4s{py
2
3 “ 0q.

where y3 has degree 3 and x4 has degree 4.

For G{G, elements of Ext3
RpF, F qpG{Gq correspond to the chain maps P‚`3 Ñ P‚. This follows since H “ G,

so ResGH “ ResGG is trivial. Similarly elements of Ext4
RpF, F qpG{Gq correspond to the chain maps P‚`4 Ñ P‚.

We compute these chain maps in the following proposition.

Proposition 5.5. The chain map f : PCm
‚`3`4k Ñ PCm‚ given by the vertical maps in the following commu-

tative diagram represent nonzero classes in Ext3`4k
R pF, F qpCn{Cmq.

The chain map g : PCm
‚`4k Ñ PCm‚ given by the vertical maps in the following commutative diagram represent

nonzero classes in Ext4k
R pF, F qpCn{Cmq.
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As before, these chain maps represent the classes x3 and x4. Now we must compute the compositions
P3`4

g
ÝÑ P3

f
ÝÑ P0

aug
ÝÝÑ F , P4`3

f
ÝÑ P4

g
ÝÑ P0

aug
ÝÝÑ F , and P4`4

g
ÝÑ P4

g
ÝÑ P0

aug
ÝÝÑ F . Explicitly these maps

are RG{e
r1,0,¨¨¨ ,0s
ÝÝÝÝÝÝÑ RG{e

1
ÝÑ R

aug
ÝÝÑ F , RG{e

1
ÝÑ R

1
ÝÑ R

aug
ÝÝÑ F , and R 1

ÝÑ R
1
ÝÑ R

aug
ÝÝÑ F . These maps all

compose to 1. We have arrived at the following theorem:

Theorem 5.6. Over the field F2, ExtRpF, F qpS3{S3q is given by

ExtRpF, F qpG{Gq “ F2ry3, x4s{py
2
3 “ 0q.

where y3 has degree 3 and x4 has degree 4.
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