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Abstract

Let E(n) denote the exterior algebra on n + 1 generators. It is a subalgebra of the dual
Steenrod algebra. We are motivated to study modules over this algebra because they provide
the Fs page for the Adams spectral sequence, which is used to compute stable homotopy
groups. In 1976, Adams and Priddy introduced the stable Picard group of modules over
E(n), denoted StPic(E(n)). They conjectured that StPic(E(n)) = Z & Z for all n. We prove
that this conjecture can be reduced to checking only the case StPic(E(2)) = Z & Z.

Summary

A classic problem in algebraic topology is finding all possible ways to continuously deform
a shape X into another shape Y. This proves to be a very difficult task in general. One
approach is to compute algebraic approximations of these deformations, called modules. It
is conjectured that all modules of a particular type can be factored into the product between
two basis modules. We reduce the conjecture from an infinite number of cases to just one.



1 Introduction

A common theme in algebraic topology is to find all the possible continuous deformations
from a shape X to another shape Y. An example of continuous deformations from one circle
to another is shown in Figure [I]

olole

Figure 1: Three possible continuous deformations from a black circle to a blue circle, labeled
by the number of windings present [I]

However, computing possible deformations for higher dimensional spaces is extremely
difficult, seen through the existence of highly nontrivial examples such as the Hopf map, a
continuous map from a 3-sphere to a 2-sphere.

Figure 2: A stereographic projection of the Hopf map [2]

Modern approaches study these topological concepts by converting them to algebraic
structures. In 1958, J.F. Adams [3] found that homotopy groups (groups of continuous de-
formations up to homotopic equivalence) can be computed from modules M over certain
algebras, including the Steenrod algebra A,, the Hopf algebra A,(n), and the exterior al-
gebra E,(n). Intuitively, modules over algebras may be thought of as generalizations of
vector spaces where the scalar product is not necessarily invertible. Here, the parameter
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n specifies the number of generators of the algebra, similar to a measure of dimension.
The modules M form a group under multiplication called the stable Picard group, denoted
StPic(4,), StPic(A,(n)), or StPic(E,(n)) depending on the underlying algebra.

This connection between homotopy groups and StPic motivates research on the exact
structure of StPic. In 1976, Adams and Priddy [4] proved that StPic(F2(1)) is isomorphic to
Z ®7Z. In other words, the modules over the algebra Fy(1) behave like pairs of integers. The
same paper proved that StPic(Ay (1)) = ZSZ S 7Z/2, where the Z/2 component is generated
by an exotic module known as the Joker. However, in 2017 Bhattacharya and Ricka [5] proved
that StPic(Ay(2)) = Z & Z, with Pan and Yan [6] later proving that StPic(Ax(n)) = Z & Z
for all n > 2. This shows that no exotic element exists over larger Hopf algebras. A similar
isomorphism is expected to be true for modules over E,(n): Adams and Priddy conjectured
that StPic(E,(n)) = Z @ Z for all natural numbers n and any prime p. We show that the
conjectured isomorphism for any n depends only on the verification of the case n = 2, as in
Theorem [L1]

Theorem 1.1. Let p be a prime. If StPic(E,(2)) = Z & Z, then StPic(E,(n)) = Z & Z for
all integers n > 1.

The paper is structured as follows. In Section [2, we define a stable Picard group more
rigourously, recall results from literature that we use in the paper, and establish the map
¢ : Z® Z — StPic(E,(n))) which we show is an isomorphism. In Section [3| we prove that
the map ¢ is injective and introduce the base case necessary for induction. In Section [4]
we show that restrictions of M to a subalgebra of E,(n) do not affect its structure in StPic,
thereby strengthening our inductive hypothesis. In Section [f], we introduce the notion of the
annihilator of an element x € M and provide results characterising its behavior. Finally, in
Section [0, we prove the main Theorem [I.1] by analysing the annihilator of an element in M.

2 Preliminaries

In 1958, J.F. Adams [3] showed that the cohomology of the mod p Steenrod algebra
A, can be used to compute the p-components of the stable homotopy groups of spheres.
Furthermore, these cohomology groups can be considered as modules over A,. Later, Milnor
[7] showed that the dual of the Steenrod algebra can be expressed as a tensor product between
a polynomial algebra and the graded ezterior algebra E, over the field £ = I, generated by
the unit 1 and the symbols Q; of degree 2p' — 1, where i > 0.

Let N be a finite subset of {Qo, @1,...}. Then, let E(N) denote E, restricted to only
the generators 1 and @; € N. When N = {Qo,...,Q,} for an integer n, we also write

E(N) = E(n), as to agree with conventional notation in literature. We also drop the
subscript p, as we maintain the assumption that the base field is £ = I, throughout the
paper. Recall that Q7 = 0 and Q;Q; = —Q,Q; for any two generators @; and Q; by

definition of an exterior algebra, where concactenation denotes the wedge product. We
investigate the structure of the stable Picard group of modules over E(N) and E(n).



2.1 Stable Picard Group

Adams and Priddy showed that the usual topological concepts in stable homotopy theory
can be translated into algebraic definitions, which we now provide.

Definition 2.1 (Stable equivalence). Two E(N)-modules A and B are stably equivalent
(denoted A ~ B) if there exist free modules F; and F;, over F(N) such that A® F} = B® F».
In the sequel we write equivalence to stand for stable equivalence.

Definition 2.2 (Stable invertibility). An E(N)-module A is invertible if there exists another
E(N)-module B such that A ® B ~ k, where ® denotes the tensor product. Recall that k
denotes the base field of the underlying algebra E(N).

Under the operation of tensor products, the set of invertible £(/N)-modules forms a group
up to equivalence, called the stable Picard group of E(N) and denoted by StPic(E(N)). The
identity of this group is the base field k (considered as module over E(N)).

Adams and Priddy [4] showed that each module M in StPic(F£(1)) can be uniquely
factored into the product of two invertible basis modules I and k[1]. That is, M = I*®(k[1])°
for some integers a and b. We provide our definition and notation for the invertible modules
I and k[1]

Definition 2.3 (Desuspension I). Over the algebra E(N), the desuspension I is defined as
the module generated by all Q; € N.

Example 2.1. Over E(n), I = (Qo, Q1,...,Qn)-

Definition 2.4 (Grading shift k[1]). Let k[1] denote the module consisting of the base field
k in degree 1 and 0 elsewhere. For any integer a, k[1]* = k[a], which consists of k in degree
a and 0 elsewhere. We call this a grading shift of k by a.

Adams and Priddy [4] also showed that (I* ® k[b]) ® (I°k[d]) = I°t° ® k[b + d]. This
implies that the map ¢ : Z®Z — StPic(E(1)) given by (a,b) — I*®k[b] is a homomorphism
[4]. It is this map that we later extend to StPic(E(N)) and prove to be an isomorphism. In
the rest of the paper, we denote the tensor product with concactenation (1*® k[b] = I°k[b]).

2.2 Margolis homology groups

One crucial tool used in the investigation of stable Picard groups are Margolis homology
groups. We define them in the context of our problem and state results that we employ later.

Definition 2.5 (Margolis homology with respect to ;). For any module M over E(N), we
can consider each generator @); of F(N) as a differential on the chain complex

M Ei v 2 g

Because Q7 = 0 by definition of an exterior algebra, Im Q; C ker Q;. Therefore, we can
assign to M and (); the Margolis homology group

H(M;Q;) = ker Q;/Im Q.



One utility of Margolis homologies is their exact characterization of invertible modules.

Theorem 2.1 (Adams and Priddy [4]). An E(N) module M is invertible if and only if the
Margolis homologies H(M; Q;) are 1-dimensional over the base field k for all Q; € N.

Margolis homologies also give a necessary and sufficient condition for two modules to be
equivalent.

Theorem 2.2 (Adams and Margolis [§]). Let A and B be E(N) modules. Then A and B are
equivalent if and only if there exists a homomorphism f : A — B that induces isomorphisms
H(A;Q;) = H(B;Q;) for all Q; € N.

Because homologies are often easier to compute, we use Theorem in the proof of
Theorem [3.1] and Lemma (.11

2.3 Graded structure

Recall that both E(N) and its modules have grading structures. This invariant serves as
a crucial tool that we use extensively. Here we state key facts about their graded structure.
Recall that a graded algebra A is an algebra that can be decomposed into a direct sum

A:@Aizz‘lo@fh@---
i=0

where A; are additive groups such that a;,a; € A;;; for all elements a, € A; and a; € A;.
A nonzero element a € A; is said to be homogeneous of degree © and we denote its degree
by |a|] = i. For example, over the algebra C[z] of polynomials, this notion of degree is
exactly the conventional one. Additionally, unless otherwise specified, homomorphism refers
to a homomorphism that respects the grading of its domain and image. That is, if f is a
homomorphism, then for any elements m (in a graded algebra or module) we have |f(m)| =
|m|.

This grading structure on modules over F(n) is inherited by the Margolis homologies of
M (Definition . In fact, we can determine the exact grading of a Margolis homology for
modules generated by a desuspension I and a grading shift of k.

Lemma 2.3 (Adams and Priddy [4]). If M is equivalent to I°k[b] for some integers a and
b, then H(M;Q;) consists of the base field k in degree a|Q;| + b and 0 in all other degrees.

We have now provided all the necessary preliminaries, and we are ready to establish the
results necessary for induction on |N| in StPicE(N) = Z & Z.

3 Injectivity of ¢

To show that ¢ is an isomorphism, we must show that it is injective and surjective. We
prove that it is always injective by solving a system of equations.
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Theorem 3.1. The map ¢ : Z ® Z — StPic(E(N)) given by (a,b) — I°k[b] is injective for
any set of generators N with |[N| > 2.

Proof. Suppose ¢((a,b)) = ¢((c,d)) for some integers a,b,c, and d. Then I°k[b] ~ I°k[d].
Because |[N| > 2, we can pick two generators @Q; and Q; of E(N). From Theorem [2.2] we
see that

H(I°K[b]; Qi) = H(I°k[d]; Qi) and  H(I"E[D]; Q;) = H(I°K[d]; Q;)-
Then Lemma 2.3 implies that

alQi| +b = c|Qi| + d,
a|Qj| + b= c|lQ;| +d.

However, |Q;| # |Q;| when i # j. Thus, the only solution to this linear system is a = ¢ and
b = d, showing that ¢ is injective. O

To show that ¢ : Z @& Z — StPic(E(N)) is also surjective for all sets N with |N| > 2, we
induct on the cardinality of N. Adams and Priddy [4] proved the case where N = {Qy, @1},
but did not use the particular degrees of the generators in their argument (i.e. |Q;| = 2p'—1),
meaning that their proof easily generalizes to all sets N with |N| = 2. This establishes the
base case |N| = 2.

For the inductive step, suppose it has been shown that all invertible modules over F(S)
where |S| = n are of the form [°k[b] for some integers a and b. We aim to show that

all invertible modules over E(N) where |N| = n + 1 are expressible in this form as well
(Theorem |1.1]).

4 Stable structure under restrictions to subalgebras

For an F(N)-module M, we write M|g(g) as the E(S)-module formed by restricting M
to E(S). In particular, we define it as follows.

Definition 4.1. If M is a module over E(N), by definition it is an Abelian group G with
a binary operation E(N) x G — G. We denote M|gs) by the module formed by the same
Abelian group G with the binary operation restricted to the domain E(S) x G.

First, we show that the stable structure of any invertible M remains constant under
this restriction operation. This allows us to better leverage the inductive hypothesis by
considering M as a module over E(S) where |S| < n.

Lemma 4.1. Let N be a set of generators Q;, and let S be any subset of N. If M is an
invertible E(N) modules such that M ~ I°k[b] as E(N)-modules, then M|gsy ~ I°k[b]|g(s)
as E(S)-modules.



Proof. It M is stably equivalent to I°k([b], then (by definition) there exists free modules Fy
and F, over E(N) such that
M@ Fy = I°k[b] @ F.

Now we show that F|gg) and Fy|g(s) are still free, which implies
M|es) @ Filps) = 1k[b] [ pes) © Falps)

and thus M|gs) ~ I°k[b]|gs). By definition of a free module, F; has an E(N) basis
By = {b1,...,bs} for some d. We create a new E(S) basis Bg that spans F|g(s). Note that
we can start with By and then add all the elements of F; which are not spanned by this
basis under the restriction to E(S). More specifically, the set

provides an E(S) basis for F|g(s). For example, when N = {Qo,...Qs} and S = {Qo, . .. Q4},
this basis is {b1, ..., ba, Qs5b1, ..., Qsba}.

We can verify that Bg spans Fi|g(s) because any E(N)-linear combination on by, ..., bq
can be expressed as a E(S)-linear combination in this basis. Furthermore, the E(S)-spans
of the elements in Bg have trivial intersections, implying linear independence. Hence, we
have found a basis for Fi|g(s), showing that it is free. Replacing Fy with F; in this argument
shows that Fy| E(s) is also free and proves the desired statement. O

Lemma [4.1] shows that restrictions of a module do not affect its stable structure. Recall
that under the inductive hypothesis, we assume that all invertible modules over E(S) where
|S| = n are of the form I?k[b]. Let M be an invertible module over E(N) where |[N| = n+ 1.
In Theorem [.2] we prove the stronger result that all restrictions of M are equivalent to
I°k[b], even if we have no information about M itself.

Theorem 4.2. Let N be a set of generators @Q; such that |[N| > 4 and let S be any proper
subset of N. If M is an invertible E(N) module, then M|gsy ~ I°k[b]|gs) for some fized
pair of intgers a and b.

In the proof, we create subsets of N with large intersections, examine M restricted to
these intersections, and apply Lemma to recover information about M itself.

Proof. The restriction of M to M|g) does not change the kernel or image of @Q; as long
as Q; € S. Thus, H(M;Q;) = H(M|gs); Qi) for all such @Q;. Because M is invertible, it
follows from Theorem [2.1|that all Margolis homologies H(M; Q;) and thus all H (M |gs); @:)
are 1-dimensional over k. This shows that any M|gg) is invertible as well.

First, we show that the desired statement holds when S contains all of N except one
generator. Let A and B be two subsets of N with |A| = |B| = |N| — 1. Because A and B
are invertible, the inductive hypothesis implies that there exist integers a, b, ¢, d such that

M|E(A) ~ [ak‘[bHE(A) and M|E(B) ~ Ick[dHE(B).



We proceed to show that @ = ¢ and b = d. Consider the intersection C' of A and B. From
Theorem [3.1] the map ¢ : Z&HZ — StPic(E(C)) given by (z,y) — I"k[y] is injective because
|C| > |[N| =2 > 2. Thus, I°k[b]|g(c) =~ I°k[d]|g(c) implies @ = ¢ and b = d. The pair a, b is
precisely the fixed pair of integers in the statement of the lemma.

Now consider any proper subset S of N. Because S is proper, it is a subset of S" C N
where [S’| = |[N| — 1. We have just shown that M|s ~ I°k[b]|p(s). From Lemma [4.1} we
see that M|g ~ I*k[b]|g(s). This proves the lemma. O

Remark 4.1. Note that this theorem holds only when |N| > 4 because otherwise the inter-
section C' may not contain at least two generators, the minimum needed for injectivity as
guarenteed Theorem [3.1]to hold. In fact, the map ¢ : Z @& Z — StPic(E(N)) is not injective
when |N| = 1. This is because there are non-trivial solutions to each individual equation in
the proof of Theorem For example, suppose that N = {Qo}. Then

I7k[=alQol] = k

for any integer a. Due to this failure of injectivity, Theorem only holds under the
assumption that Z & Z = StPic(E(N)) where |[N| = 3. We provide partial results on this
case later in Section

5 Extremal cases of the Annihilator A,

Let M be a module over E(N). We define the annihilator A, of an element x € M as
Ay ={Qi € N | Qiz = 0}.

In the proof of Theorem [I.1], we show that for some element x € M, the annihilator A, is
either all of NV or empty. In this section, we provide lemmas that characterize the two cases.
We start by showing that in the case that A, is the entire set N, we can determine M.

Lemma 5.1. An invertible E(N)-module M is stably equivalent to k if and only if there
exists an element x € M such that Q;x =0 and x & Im Q; for alli € N (i.e. A, = N).

Proof. Suppose M ~ k; by Theorem there exists a homomorphism f : M — N that
induces the isomophisms H (M;Q;) = H(N;Q;) for all Q; € N. Note that setting = = f(1)
gives the desired properties because x is a generator of H(M;(Q);) that satisfies

Qif(1) = f(Qi) = f(0) = 0.

Now we prove the converse. Because M is invertible, its Margolis homologies H(M; Q);)
are 1-dimensional over k& by Theorem 2.1} If an element x € M satisfies Q;x = 0 for all
Q;, then x generates all H(M; Q;). Because isomorphisms between 1-dimensional spaces are
determined by mapping one generator to another, the map f : 1 — x induces isomorphisms

on the Margolis homologies of k and M, showing that M ~ k by Theorem [2.2] O



We have characterised the case when A, = N. Next, we consider the case when A, is
empty. That is, Q;x # 0 for all x € M.

Remark 5.1. This case presents difficulty because multiplying x by more than one generator
could still yield 0. For example, Ag,+q, = {@} but QoQ1(Qo + Q1) = 0. To analyse these
possibilities, we introduce the following notation.

Definition 5.1. Let S be a set of generators ;. We write min(S) for the index of the
generator in S with the lowest degree. Likewise, max(S) denotes the index of the generator
with the highest degree. For example, if S = {Qo, @1, @3}, then Quins) = Qo and Qumax(s) =
@s.

Definition 5.2. Let S be a set of generators ;. We define the product of S as

I1S = Qi Qi, - - - Qi

where i1 = min(5), ijg) = max(S), and i; < iy < --- < ig. For example, if S = {Qo, @1, @3},
the product ILS is QyQ1Qs.

In Lemma we consider the case where not only A, = {@} but also the stronger
condition of IINxz # 0. We see that x generates a free module that we can discard from M.

Lemma 5.2. Let N be a set of generators Q; and M a module over E(N). If [INz # 0
where x € M, then M contains a free module generated by x. That is M = M’ & E(N) for
some E(N) module M'.

Proof. Consider the short exact sequence
0— (x) % M2 M -0, (1)

where (x) denotes the free module generated by = under left E(NV)-action. Here, we consider
the differential a as the inclusion map that sends x to x. Then, because the sequence is
exact, the kernel of b is the image of a, which is the submodule (x) C M. Thus, M’ is equal
to the quotient M/kera = M/(x), the cokernel of a. We show that this M’ is exactly the
module satisfying the direct sum in the statement of the lemma.

Note that (z) is a free module because it has the E(N)-basis {z}. In Adams and Margolis
[8], Theorem 4.1 proves that free E(N)-modules are also injective. So (z) is also injective.
In consequence, the short exact sequence (1) splits (see, for example, [9]). That is, M =
M’ @ (z). Because (x) is isomorphic to E(N), we have M = M’ @ E(N). O

In this section we analysed the annihilator A,, which allows us to deduce the structure of
M by computing products. Together with the results on the restrictions of M in Section [4]
we are now equipped to complete the inductive step.



6 Inductive step

Let M be an invertible module over E(N). Recall that we aim to prove that ¢ : Z&Z —
StPic(E(N)) is surjective by showing that any M is of the form I”k[y] for some integers x
and y when |N| =n+ 1.

From Theorem [£.2] we know that any restriction of M to a proper subset S of N satisfies
M|gs) =~ I°k[b]|gs) for some fixed pair of integers a and b. If we prove that I~*k[—b]M
is of the form [*k[y|, then we can multiply this £(NN) module by I*k[b] to see that M =~
I k[y + b]. Therefore, without loss of generality, we can assume that

M|ps) = klp(s)

by replacing M with I~“k[—b]M. We proceed to show that M ~ k as E(NN) modules.
First, Lemma below shows that the Margolis homology groups agree with this ex-

pected equivalence of M. This result serves as a tool to compare different restrictions of
M.

Lemma 6.1. If M|gs) ~ k|g(s), each Margolis homology H(M;Q;) is k in degree O for all

Q; € N.
Proof. For any (@);, pick a subset S with at least two elements that contains @);. Then
M|ps) =~ k|pes), which implies that H(M; Qo) is k in degree 0 by Lemma O

Remark 6.1. Although the Margolis homologies of M are isomorphic to that of k as E(N)
modules, Theorem does not guarantee that M is stably equivalent to k because this
isomorphism is not necessarily induced by some map from M to k.

To show that M = k& F', the core idea is to analyse how (); acts on some element x € M.
Then, we can use Lemma[5.I]and Lemma [5.2] to show that « must generate either k or . To
ensure that this element x behaves like a generator, we take it to be the element of minimal
degree in M. The proceeding Lemma |6.2| shows that A, is either all of N or empty.

Lemma 6.2. Let M be an E(N) module such that M|gs) ~ k|g(s) for all proper subsets S
of N. If v € M is of minimal degree, then A, is either N or {@}.

Proof. Suppose Q;x = 0 for some Q); € N. We show that this leads to A, = N. Observe
that x cannot be in the image of )y, as that would imply the existence of y € M such that
Qoy = x, which would contradict the minimality of |z|. Because x is in the kernel but not
the image of Qo, it is a generator of H(M; Q). From Lemma (6.1, we see that H(M; Qo) is
k in degree 0, meaning that |z| = 0.

Suppose for the sake of contradiction that Q;z # 0 for some @); € N. Consider
M|E(qQo.0;1)- This module is stably equivalent to k by assumption, so there exists some
element 2’ € M|p{qo,q,}) such that Qpz’ = Q;2" = 0 by Lemma . Because x and 2’ are
both generators of the one-dimensional homology H(M; Qy), there exists a constant ¢ € k
such that z = cz’ 4+ Qym for some m € M. However, if m is nonzero, it has degree less than
x, meaning that m = 0 and x = cz’. Then

Qjr = cQ;z' =0,
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contradicting our assumption that Q);z # 0. Thus, Q;x = 0 implies A, = N. The only other
possibility is that Q;x # 0 for all Q; € N, which leads to A, = {@}. O]

If A, is all of N, Lemma [5.1] implies that M ~ k, proving the desired statement. So
we proceed with the assumption that A, = {@}. Now there are two possibilities for IINx:
it is either zero or non-zero. If it is non-zero, then Lemma |5.2| implies that there exists an
E(N) module M’ such that M = M’ & F where F is a free module. Because M ~ M’ by
definition, we can pick another minimal degree element ' of M’ and apply Lemma to
reach the same casework (ITNz’ is either zero or nonzero). Because M is finitely generated
by assumption, this process of taking out free modules cannot continue indefinitely, and
I[INz' = 0 at some point.

We have discussed the cases A, = N andA, = {@} with [INx # 0. The only possibility
left is A, = {@} with IINz = 0 where z is a minimal degree element in M. We show that
this is impossible, which would imply M ~ k and prove Theorem [I.1]

Let N' = N\ {Qmax(v)}- That is, N"is N without its largest generator. Then, we rewrite
I[INz =0 as

Qmax(N) (HN,) = 0.

Equivalently, IIN" € ker Qumax(ny- In H(M; Qmax(n)), the element IIN” is either a generator
or the zero-class (corresponding to IIN’ € Im QmaX(N)). We show that both cases lead to
contradictions. We do this by creating an inequality on degrees of the generators @);.

Theorem 6.3. Let S be any finite set of generators QQ;. Then

’HS‘ < ’Qmax(S)-{-l"

That is, the degree of the product of all generators in S is less than the degree of the next
highest generator outside S.

Proof. Recall from Section [2| that |Q;| = 2p" — 1 due to E(n) being subalgebras of the dual
Steenrod algebra.
Observe that

|HS| < |QOQl T Qmax(S)|

max(.S)
<> -1
=0

_ o, PP 1 (max(S) + 1) (max(S) +2)

- p—1 2
- (2pmax(5)+1 _ 1) 1
> 1

< |Qmax(5)+1 | .
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We apply Theorem to our casework and show that IIN’ cannot be the zero class in
H<M7 Qmax(N))-

Corollary 6.4. Let S be any finite set of generators Q;. If x € M has minimal degree, then
(ILS)z is not in the image of Q; where j > max(S).

Proof. Any element in the image of @); is in the form @,y for some y € M. However, by

Theorem [6.3]
|Qiyl = Q5[ + [yl > |(T1S)|

because |Q;| > |ILS] and |y| > |z|. O

Because max(/N) > max(N’) by definition of N’, Corollary demonstrates that IIN’
is not in the image of Qmaxn). This forces IIN" to generate H(M;Qmax(n)). However,
Theorem [6.5| shows that this is also impossible.

Theorem 6.5. If M|gsy ~ k|g(s) for all proper subsets S of N. If x € M ‘s of minimal
degree, then there is no generator of H(M; Qmax(ny) in the form Sz for any S.

Proof. From Lemma we see that the Margolis homology H(M; Qmax(n)) is k in degree
0. However,
|Sz| > 0 because |S| > 0 and |z| = 0.

Thus, Sz cannot be a generator if S is non-empty. m

We began by picking a minimal element © € M where M is an E(N) module. Then,
Lemmal6.2)shows that A, is either N or {@}. In the former case, M is equivalent to k. In the
latter case, Corollary [6.4|and Theorem [6.5|show that we must have (IIN) # 0. Therefore, we
can reduce M to M’ and pick another minimal element. Repeating this process a sufficient
number of times leads to A, = 0 and M ~ k. Thus, all invertible F(NN) modules are of the
form I°k[b].

Together with injectivity proved in Theorem [3.1], we conclude that the map ¢ : Z®Z —
StPic(E(N)) given by (a,b) — I%k[b] is an isomorphism for all sets N with |[N| > 2. This
proves Theorem [L.1]

7 Analysis of |N| = 3 and Future Work

As discussed in Remark (.1, Theorem relies on Theorem [£.2, which has only been
proven for |[N| > 4. In this section, we extend Theorem to several cases of modules M
over F(N) where |[N| = 3, and present possible approaches for future research.

Let N = {Qa, Qs, Q,} where a < f <+, and let M be a module over E(N). The base
case |N| = 2 proven by Adams and Priddy [4] implies that there exist integers a and b such
that

M 4a.sy) = 1Kl B((Q0.@s))-

Without loss of generality, we can replace M with I7°k[—b]M so that M|g(Q..Qs)) =
k|E({Qa,@s})- Note that Theorem does not imply M |gs) ~ k|gs) for any proper subset

11



S C N because |N| < 4. Nevertheless, by comparing Margolis homologies, we characterise
the stable structure of M|gs) in Lemma

Lemma 7.1. If M is a module over E({Qa, @3, @,}) such that M|E({Qa»QB}) ~ k|E({Qa,Qﬂ}),
then

M|E({Qa.0,p) = I"E[=n|Qulll B(Qa.@-});
M|gqs..1) = I"k[=m|Qsl]|E(@s0.));
n(|Qy] = |Qal) = m(|Q,] — |Q3]).

for some integers n and m.

In the proof of Lemma, we form equations characterising M|g(q,.q,}) and M|e0s.0,))
by calculating the degree of each Margolis homology of M in two different ways.

Proof. By the base case |[N| = 2, we have the equivalences

MIE({Qa, @y}) = I"k[n]|5((Qu.yy  and  MIE({Qs, Qy}) ~ I"k[m']|((qs.0,)

for some integers n,n’, m, m’. We proceed to express n’ and m’ in terms of n and m respec-
tively.

Applying Lemmato M|E(1Qa,0s)) = klE({Qa,@s)) shows that H(M; Q,) and H(M;Qp)
are both % in degree 0. Applying the same theorem to M|pg({q.,0,}) shows that

n|Qu| +n = |H(M;Q.)| =0 = n' = —n|Q,|.

Similarly,
m|Qpl +m' = [H(M;Qp)| =0 = m' = —m|Qp].

This shows that
M|p(Qa@-) = I"k[-n|QulllEqea.y and  Mlpqes,p = IMk[-m|QslllE(0s.0.))

Lastly, using the two modules above to compute H(M;(Q.,), we see that

n(|Qy| = 1Qal) = m(|Qy] — [Qpl).
This proves Lemma [7.1] O

Using Lemma [7.1], we described all restrictions of M using just one unknown, either n
or m. Now, we try the same approach as previously: casework on the annihilator A,. Let
x € M be an element with minimal degree. We cannot apply Lemma because M|g(s) is
not equivalent to & for all subsets S C N. Nevertheless, in the proceeding Lemma [7.2] we
characterize it using M‘E({QQ’QB}) ~ k‘E({Qa,QB})'

Lemma 7.2. If M is an E(N) module such that M|p(q..0s)) = Fle(Qa.qs) and x € M
has minimal degree, then A, either contains both @, and Qs or neither. That is, either

Qo = Qpx =0 or Q,Qpx # 0.

12



The proof for Lemma [7.2]is found in Appendix [A.T]

First we examine the case where Q),Qpr # 0. There are two further cases: either
A, ={@}or A, ={Q,}. If A, is empty, Lemma implies the existence of a free module
F over E(N) such that M = M’ @& F. We pick another minimal element from M’ and
calculate its annihilator again. If A, = {Q,}, Lemma shows that a contradiction arises
due to the degree conditions of the generators.

Lemma 7.3. If M is an E(N) module such that M|g(q..qsp) = klE(Qa.Qs}), T € M has
minimal degree, then A, cannot be {Q.}.

The proof for Lemma is found in Appendix [A.2] which uses an inequality on the
degrees of generators and lightning-flash modules introduced by Margolis to deduce the
desired result [I0]. Therefore, in the case that Q,Qsz # 0, we can always reduce M to a
submodule M’.

We are left with the case Q.x = Qgx = 0. If Qo = 0, then M ~ k by Lemma and
we are done. Otherwise, @), # 0. This is the only possibility left to analyse. If Theorem
is true for all |[N| > 3, then this possibility is impossible. However, it is unknown how
to create a contradiction arising from @),z # 0. There may even exist a counterexample
to Theorem when |N| = 3, similar to the Joker module mentioned in Section [l The
investigation of this case will be the subject of future work.
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A Appendix

A.1 Proof of Lemma [7.2

Proof. Suppose Q,xz = 0. If x is also in the image of ()., then there exists some element
y € M such that z = @Q,y. This element y has degree || — |Q4|, which contradicts the
minimality of . Thus, x is not in the image of @, and it generates H(M;Q),). Because
M|E(1Qa.0s}) = k|E({Qa,@s))> the Margolis homology H(M;Q,) is k in degree 0 by Lemma .
This implies that |z| = 0. Furthermore, Lemma [5.1| shows that there must exist a generator
x' of both H(M;Q,) and H(M;Qs) in degree 0. The Margolis homology H(M;Q,) is
I-dimensional by Theorem 2.1, Thus, * = cz’ + mQ,, for some constant ¢ and m € M.

However, if m is nonzero, it has degree less than x, meaning that m is zero and =z = cz’.
Then

Qpr = cQpr’ = 0.
This shows that A, either contains both @), and ()3 or neither. n

A.2 Proof of Lemma [7.3

Proof. Suppose M is an E(N) module such that M|gq..0s}) = k|lE(Qa.0s)) and € M has
minimal degree. Note that

Q’Y(QBQG)I = (Qﬁ@a)@’yx =0 = Qg@al’ € ker pr.

If QpQa is also in the image of ()., then there exists another element y such that QgQ.x =
Q,y. However, Theorem implies that y has a degree lower than x, which is impossible.
Thus, QsQ.z generates the Margolis homology H (M; @,). Using Lemma , we calculate
H(M;Q.,) to be k in degree n(|Q| —|Qa|) = m(|Q~| —|Qs|). Any generator of the homology

must also be in this degree. Therefore,
|QsQaz| = n(|Q| = Qal) = [a] = n(|Q4] = [Qal) — |@sQ0]
(1Qy]) = (n +1)|Qa| — [Qs]
(297 — 1) = (n + 1)(2p" — 1) — 2% + 1
(n(p” —p*) = p* —p° +1)
=2(p"(n(P"" — 1) = (¥ + 1)) + 1) (2)
Additionally, because v > 8 4 1, we have p?~® > p®~@+1 This implies that
n(p " = 1)~ (P 1)

is positive when n is positive, and negative when n is non-positive. Likewise, the expression
in (2) has the same sign.

In Spectra and the Steenrod Algebra by Margolis, it is proved that any module M over
E(S) where |S| = 2 has an expression, unique up to isomorphism, as the direct sum of a free
module and a lightning flash module. In particular,

M|E(Q..qy) = L(n,0,0) & F (3)

1
N33
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for some lightning-flash module L(n,0,0) and free module F' [10]. Here, the n in L(n,0,0) is
the same as the n in n(|Q,| — |Qa|). If n is positive, then the minimum element in L(n, 0, 0)
has degree 0 by Proposition 7, Chapter 8 in [10]. However, this contradicts |z| > 0, so
n < 0. In this case, the element of minimal degree in L(n,0,0) is n(|Q| —|Qa|) by the same
Proposition 7. Let the isomorphism in (3) be given by i : M|gg..q,p) — L(n,0,0) & F.
Note that

|z = n(|Q] — [Qal) = 1QsQ0a| < n(|Q-] = [Qal),

so i(x) must be entirely in F. However, because F' is free over E({Qq, Q~}), we must have

@Qy(i(2)) #0 = Qyx #0,

which proves the desired statement.

16



	Introduction
	Preliminaries
	Stable Picard Group
	Margolis homology groups
	Graded structure

	Injectivity of 
	Stable structure under restrictions to subalgebras
	Extremal cases of the Annihilator Ax
	Inductive step
	Analysis of |N| = 3 and Future Work
	Ackowledgements
	Appendix
	Proof of lem:Axwhenthewhenthe
	Proof of lem:idk


