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Abstract

Hopf algebras have been a very important area of research for much of the past century,
with people observing and studying such structures in a wide range of fields. Ravenel and
Wilson proved that certain bipolynomial Hopf algebras are isomorphic to the Witt Hopf
algebra WR, but only when the underlying rings are R = Z(p) and R = Fp. We generalize
this isomorphism over graded local rings, which creates new possibilities in algebraic topology
and other areas of mathematics.

Summary

A Hopf algebra is a complicated algebraic structure that occurs in many different areas
of mathematics. We build on previous research to show how different types of Hopf algebras
share the same structure for a wider range of conditions. This allows us to simplify and
regularise our work by considering more well-studied Hopf algebras rather than less well-
understood Hopf algebras, which has implications in different fields of current research.



1 Introduction

Hopf algebras are a type of algebraic structure with applications in different fields of
mathematics, such as quantum groups, algebraic geometry and algebraic topology. A Hopf
algebra is simultaneously an algebra and a coalgebra [1], which gives them many interesting
relationship properties, such as when dualising.

A Hopf algebra H is considered to be bipolynomial if both it and its dual are polynomial
algebras. Ravenel and Wilson [2] proved that any bipolynomial Hopf algebra H is isomorphic
to the tensor product of Witt Hopf algebras WR (see Definition 2.5) over the rings R = Z(p)

and R = Fp for prime p, where Z(p) = {a
b
| a, b ∈ Z and gcd(b, p) = 1} is the ring of integers

localised at p.

Theorem 1.1 (Ravenel and Wilson [2]). For a graded bicommutative Hopf algebra H over
the ring R = Z(p) or R = Fp, if there are algebra isomorphisms H ∼= R[x0, x1, x2, . . . ] and
H∗ ∼= R[y0, y1, y2, . . . ], where the polynomial algebras R[x0, x1, x2, . . . ] and R[y0, y1, y2, . . . ]
have generators xi, yi with deg xi = pi and deg yi = −pi, then H ∼= WR.

The above theorem is a special case of Ravenel and Wilson’s theorem, but their proof
does not immediately generalise if R is a graded local ring (see Definition 2.1), because
the dual H∗ does not behave well. Over the rings R = Z(p) and R = Fp, there is a Hopf
algebra isomorphism (see Lemma 5.1) between the dual R[x]∗ of the Hopf algebra R[x] and
the divided power Hopf algebra ΓR[x

∗] (see Example 2.1) generated by the dual x∗, but
R[x]∗ ∼= ΓR[x

∗] does not hold over graded local rings R in general.

Theorem 1.2. For a graded bicommutative Hopf algebra H over a graded local ring R, if
H ∼= R[x0, x1, x2, . . . ] as algebras and H ∼= ΓR[z0, z1, z2, . . . ] as coalgebras, where generators
xi, zi have deg xi = deg zi = pi, then H ∼= WR.

We generalise Theorem 1.1 to Theorem 1.2 over graded local rings R, such as R = Z(p)[u]
and R = Fp[u] where deg u = 1. Rather than consider the algebra isomorphism H∗ ∼=
R[y0, y1, y2, . . . ] as Ravenel and Wilson did, we instead consider the coalgebra isomorphism
H ∼= ΓR[z0, z1, z2, . . . ] over graded local rings R. By using induction on different degrees, we
show that generators of the same degree in H and WR map to each other, leading to the
Hopf algebra isomorphism H ∼= WR.

2 Preliminaries

We define some mathematical terminology involving structures such as algebras, coalge-
bras and dual spaces. Throughout this paper, we consider only graded structures, and the
graded local ring R is assumed to be connected.

Definition 2.1 (Graded local ring). A graded local ring R can be decomposed into the
direct sum R = R0 ⊕R1 ⊕R2 ⊕ · · · where R0 = Z(p) or R0 = Fp and RiRj ⊆ Ri+j.

Let M∗ be the dual space of the R-module M .
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2.1 Hopf algebras

Definition 2.2 (Algebras [1]). We refer to unital associative algebras as algebras. An algebra
A is an R-module with multiplication µ : A ⊗ A → A and unit η : R → A that satisfy the
commutative diagrams:

A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗ id

id⊗µ µ

µ

and

A⊗R A⊗ A R⊗ A

A

id⊗ η

∼=
µ

η⊗ id

∼=
.

An augmented algebra A has a morphism of algebras (the counit) ε : A → R, and the
augmentation ideal I is the kernel of ε.

The indecomposables are the elements of the quotient space I/I2.

Definition 2.3 (Coalgebras [1]). A coalgebra C is an R-module with comultiplication ϕ :
C → C ⊗ C and counit ε : C → R that satisfy the commutative diagrams:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

ϕ

ϕ id⊗ϕ

ϕ⊗ id

and

C

C ⊗R C ⊗ C R⊗ C

∼=
ϕ

∼=

id⊗ ε ε⊗ id

.

An augmented coalgebra C has a morphism of coalgebras (the unit) η : R → C.
The primitives are the elements of the set {h ∈ H | ϕ(h) = h⊗ 1 + 1⊗ h}.

Definition 2.4 (Hopf algebra [1]). A Hopf algebra H is defined as a R-module that is both
an algebra and a coalgebra.

Example 2.1 (Divided power Hopf algebra [3]). The divided power Hopf algebra ΓR[x] has a

basis γk(x) where γ0(x) = 1, γi(x) =
xi

i!
and γi(x)γj(x) =

(i+j)!
i!j!

γi+j(x), with comultiplication

ϕ
(
γi(x)

)
=
∑i

j=0 γj(x)γi−j(x).

In morphisms between Hopf algebras, primitives map to primitives linearly and indecom-
posables map to indecomposables linearly [3]. We can use such maps to determine morphisms
between Hopf algebras, as shown in the following lemma.

Lemma 2.1. For a coalgebra C, an R-module map g : C → R{x0, x1, x2, . . . } uniquely
determines a coalgebra map G : C → ΓR[x0, x1, x2, . . . ].

Proof. Consider any element c ∈ C. The comultiplication ϕ is coassociative, so ϕn−1(c) =∑m
i=1 c1i ⊗ c2i ⊗ · · · ⊗ cni where c1i, c2i, . . . , cni ∈ C for positive indices i up to non-negative

integer m, and

g
(
ϕn−1(c)

)
= g

(
m∑
i=1

n⊗
j=1

cji

)
=

m∑
i=1

n⊗
j=1

g(cji).

For a tensor product c1i⊗c2i⊗· · ·⊗cni, if any g(cji) is non-linear, then the tensor product
is considered degenerate as it does not contribute towards G(c).
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Let gn(c) =
∑∏

g(cji) for non-degenerate tensor products c1i ⊗ c2i ⊗ · · · ⊗ cni be the
element(s) in the divided power coalgebra ΓR[x0, x1, x2, . . . ] induced by g

(
ϕn−1(c)

)
. We write

the comultiplication ϕ(c) as ϕ(c) = c⊗ 1 + 1⊗ c+
∑

c′ ⊗ c′′. Since

G
(
ϕ(c)

)
= G(c⊗ 1 + 1⊗ c) +G

(∑
c′ ⊗ c′′

)
=
(
g1(c) + g2(c) + · · ·

)
⊗ 1 + 1⊗

(
g1(c) + g2(c) + · · ·

)
+ g1

(∑
c′ ⊗ c′′

)
+ g2

(∑
c′ ⊗ c′′

)
+ · · · ,

and

ϕ
(
G(c)

)
= ϕ

(
g1(c) + g2(c) + · · · gn(c)

)
= ϕ

(
g1(c)

)
+ ϕ
(
g2(c)

)
+ · · ·

= ϕ
(
g1(c)⊗ 1 + 1⊗ g1(c)

)
+ ϕ
(
g2(c)⊗ 1 + 1⊗ g2(c) + · · ·

)
+ · · · ,

we prove that G
(
ϕ(c)

)
= ϕ

(
G(c)

)
by rearranging. Thus, G is a coalgebra map.

2.2 Witt Hopf algebras

Definition 2.5 (Witt Hopf algebra). The Witt Hopf algebra WZ(p)
has generators yi of

deg yi = pi, with comultiplication ϕ(zi) = zi ⊗ 1 + 1⊗ zi for primitives

z0 = y0,

z1 = py1 + y0
p,

z2 = p2y2 + py1
p + y0

p2 ,

...

zi =
i∑

j=0

pjyj
pp−j

,

and WR = WZ(p)
⊗R for the ring R.

Let WR(n) be the sub-Hopf algebra with generators y0, y1, y2, . . . , yn.

A basis of WR(n) is the set of monomials yi00 y
i1
1 · · · yinn for non-negative exponents ij,

so that there are inclusion maps WR(0) → WR(1) → WR(2) → · · · , and their dual maps
WR(0)

∗ → WR(1)
∗ → WR(2)

∗ → · · · are all onto.

For the graded local ring R, its maximal ideal is Im = (p) ⊕ R1 ⊕ R2 ⊕ R3 ⊕ · · · where
(p) represents the multiples of p. Thus, if deg r > 0 for some element r ∈ R, then r ∈ Im.
According to Nakayama’s Lemma (see Lemma 5.2), we construct the quotient ringR/Im = Fp

to help prove the Hopf algebra isomorphism H ∼= WR over the graded local ring R.

3 Proof of Theorem 1.2

3.1 Key Lemma

Ravenel and Wilson [2] proved the following lemma over the rings R = Z(p) and R = Fp

for the algebra H = R[x0, x1, x2, . . . ] where generators xi have deg xi = pi.
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Lemma 3.1 (Ravenel andWilson [2]). Given an surjective algebra map F : H∗ → WR(n−1)∗

in degrees ≤ pn, there is an algebra map F̃ : H∗ → WR(n)
∗ that is isomorphic in degrees

≤ pn, such that the following diagram commutes:

H∗ WR(n− 1)∗

WR(n)
∗

F

F̃
.

However, because the duals of Hopf algebras do not behave well over graded rings R, we
avoid taking duals by using coalgebra maps to prove the following lemma for the coalgebra
H = ΓR[x0, x1, x2, . . . ] where generators xi have deg xi = pi.

Lemma 3.2. Given a coalgebra map G : WR(n − 1) → H that is injective in degrees ≤ pn

mod Im, we can find a coalgebra map G̃ : WR(n) → H that is isomorphic in degrees ≤ pn

mod Im, such that the following diagram commutes:

WR(n− 1) H

WR(n)

G

G̃
.

Proof. For y ∈ WR(n − 1), we let G(y) =
∑

aix
i0
0 x

i1
1 x

i2
2 · · · where ai ∈ R and ij are non-

negative integers for each j = 0, 1, 2, . . . . We construct a linear map g : WR(n − 1) →
R{x0, x1, x2, . . . } by taking the linear terms of G(y) such that i0+i1+i2+ · · · = 1 and letting
g(y) = b0x0+b1x1+b2x2+ · · · for bi ∈ R. As WR(n−1) is generated by y0, y1, . . . , yn−1 while
WR(n) is generated by y0, y1, . . . , yn, we obtain a linear map g̃ : WR(n) → R{x0, x1, x2, . . . }
by letting

g̃(yi00 y
i1
1 · · · yinn ) =

{
g(yi00 y

i1
1 · · · yinn ) in = 0,

0 in > 0.

Thus,

WR(n− 1) R{x0, x1, x2, . . . }

WR(n)

g

g̃
.

Due to Lemma 2.1, we can define the coalgebra map G̃ : WR(n) → H from the linear
map g̃ : WR(n) → H. As G is injective, G̃ is isomorphic in degrees < pn mod Im. To
prove the isomorphism in degree pn mod Im, we need to show that yn maps to γpn(x0) while

other yi do not map to it. However, rather than directly computing

pn−1 times︷ ︸︸ ︷
x0 ⊗ x0 ⊗ · · · ⊗ x0 from

the comultiplication ϕpn−1(yn), we can use a Hopf algebra mapping from the divided power
coalgebra H to the symmetric polynomials to simplify our proof.
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Definition 3.1 (Hopf algebra of symmetric polynomials [3]). The Hopf algebra S of sym-
metric polynomials in s1, s2, s3, . . . is S = R[σ1, σ2, σ3, . . . ] where generators σi are the
elementary symmetric polynomials

σ1 =
∑

si,

σ2 =
∑
1≤i<j

sisj,

...

σn =
∑

1≤k1<k2<···<kn

sk1sk2 · · · skn ,

with comultiplication ϕ(σi) =
∑i

j=0 σj ⊗ σi−j.

By Newton’s identities, the i-th power sum symmetric polynomials ci =
∑

j=1,2,3,... x
i
j

have comultiplication ϕ(ci) = ci ⊗ 1 + 1⊗ ci, so ci are primitives.

According to Husemoller [3], the injective map K : WR → S maps the primitives zi ∈ WR

to the primitives cpi ∈ S, so the degrees of elements in WR and the degrees of elements in S
agree with each other.

The primitives of WR are zi = yp
i

0 + pyp
i−1

1 + · · · + piyi, and by Newton’s identities, K
sends yn to σpn + h(σ1, σ2, . . . , σpn−1), where the polynomial h is composed of monomials of
degree pn. Because comultiplication is preserved, we can apply ϕpn−1 for the elements yn
and σ1, . . . , σpn−1, σpn on both sides:

ϕpn−1(σ1) = σ1 ⊗ 1⊗ · · · ⊗ 1 + 1⊗ σ1 ⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ σ1,

...

ϕpn−1(σpn−1) = 1⊗ σ1 ⊗ · · · ⊗ σ1 + σ1 ⊗ 1⊗ · · · ⊗ σ1 + · · ·+ σ1 ⊗ · · · ⊗ σ1 ⊗ 1

+ qpn−1(σ1, σ2, . . . , σpn−1),

ϕpn−1(σn) = σ1 ⊗ σ1 ⊗ · · · ⊗ σ1 + qpn(σ1, σ2, . . . , σpn),

where qi(σ1, σ2, . . . , σi) are degenerate tensors of degree i.
For a monomial σq1

1 σq2
2 · · ·σqpn−1

pn−1 in the polynomial h, consider its comultiplication

ϕpn−1(σq1
1 σq2

2 · · · σqpn−1

pn−1 ) =
(
ϕpn−1(σ1)

)q1 (
ϕpn−1(σ2)

)q2 · · · (ϕpn−1(σpn−1)
)qpn−1 .

Note the cyclic structure of each comultiplication ϕpn−1(σi), which is due to the sum of tensor
products being invariant by permutation over σi. Only the comultiplication ϕpn−1(σpn) con-

tains a single linear term

pn−1 times︷ ︸︸ ︷
σ1 ⊗ σ1 ⊗ · · · ⊗ σ1, while all other ϕpn−1(σi) have permutations of

tensor products that are multiples of p. Thus, in the comultiplication ϕpn−1
(
σq1
1 σq2

2 · · ·σqpn−1

pn−1

)
,

the coefficient of the linear term

pn−1 times︷ ︸︸ ︷
σ1 ⊗ σ1 ⊗ · · · ⊗ σ1 is a multiple of p because of the cyclic

structure of the comultiplication for each σi.
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The sum of the coefficients of

pn−1 times︷ ︸︸ ︷
σ1 ⊗ σ1 ⊗ · · · ⊗ σ1 in ϕpn−1

(
K(xn)

)
is indivisible by the

prime p, so yn is the only term among all yi which maps to σn. Thus, G̃(xn) contains γpn(x0)
with an unit coefficient, so G̃ is a coalgebra isomorphism in degree pn.

3.2 Induction on WR(n− 1) → WR(n)

Lemma 3.3. Given an Hopf algebra surjection F : WR(n− 1) → H, there is a Hopf algebra
surjection F̃ : WR(n) → H, such that the following diagram commutes:

WR(n− 1) H

WR(n)

F

F̃

Proof. The Witt Hopf algebra WR(n − 1) has generators y0, y1, y2, . . . , yn−1, and we let
F̃ (yi) = F (yi) for indices 0 ≤ i < n. Also, the generator yn ∈ WR(n) maps to G̃(yn) as a
coalgebra, and G̃(yn) = cen+f(e0, e1, e2, . . . , en−1) for some unit c ∈ R. Thus, F̃ (yn) = G̃(yn)
is an algebra isomorphism in degrees ≤ pn, so F̃ is a Hopf algebra surjection.

4 Conclusion

We generalised the first part of Ravenel and Wilson’s proof of a Hopf algebra isomorphism
between bipolynomial Hopf algebras H whose generators have degrees of prime powers and
the Witt Hopf algebra WR over graded local rings R, which has applications in algebraic
topology and other fields of mathematics. A potential path of future research would be to
follow through on the second part of Ravenel and Wilson’s proof to show that any bipoly-
nomial Hopf algebra H is isomorphic to the tensor product of Witt Hopf algebras WR over
graded local rings R.
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Appendix

Lemma 5.1. The dual of the bipolynomial Hopf algebra R[x] is the divided power Hopf
algebra ΓR[x

∗] for rings R = Z(p) and Fp.

Proof. By definition of duals, x∗(x) = 1, (x2)∗(x2) = 1, (x3)∗(x3) = 1, . . . , (xn)∗(xn) = 1.
To express the dual (xn)∗, consider the comultiplication ϕn−1(xn) =

∑
x1⊗x2⊗· · ·⊗xn.

For a tensor product x1 ⊗ x2 ⊗ · · · ⊗ xn, if any xi is non-linear, then the tensor product
is considered degenerate. Thus,

ϕ(x2) = 2x⊗ x+ degenerate terms x2 ⊗ 1 + 1⊗ x2,

ϕ2(x3) = 6x⊗ x⊗ x+ degenerate terms,
...

ϕn−1(xn) = n!

n−1 times︷ ︸︸ ︷
x⊗ x⊗ · · · ⊗ x+degenerate terms,

so (x2)∗ = (x∗)2

2
, (x3)∗ = (x∗)3

6
, . . . , (xn)∗ = (x∗)n

n!
.

However, this dualisation does not hold for graded local rings R in general. Because of
the following lemma, we mod by Im so that the quotient space R/Im = Fp is concentrated
in degree 0, leading to better behavior than over R.

Lemma 5.2 (Nakayama’s Lemma). If there is an isomorphism between finite free R-modules
X and Y mod Im, then there is an isomorphism between X and Y .
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