# Classifying bipolynomial Hopf algebras over graded local rings 

Hongzhou (Hazel) Wu<br>Under the direction of<br>David Jongwon Lee<br>Massachusetts Institute of Technology<br>Department of Mathematics

Research Science Institute
August 1, 2023


#### Abstract

Hopf algebras have been a very important area of research for much of the past century, with people observing and studying such structures in a wide range of fields. Ravenel and Wilson proved that certain bipolynomial Hopf algebras are isomorphic to the Witt Hopf algebra $W_{R}$, but only when the underlying rings are $R=\mathbb{Z}_{(p)}$ and $R=\mathbb{F}_{p}$. We generalize this isomorphism over graded local rings, which creates new possibilities in algebraic topology and other areas of mathematics.


## Summary

A Hopf algebra is a complicated algebraic structure that occurs in many different areas of mathematics. We build on previous research to show how different types of Hopf algebras share the same structure for a wider range of conditions. This allows us to simplify and regularise our work by considering more well-studied Hopf algebras rather than less wellunderstood Hopf algebras, which has implications in different fields of current research.

## 1 Introduction

Hopf algebras are a type of algebraic structure with applications in different fields of mathematics, such as quantum groups, algebraic geometry and algebraic topology. A Hopf algebra is simultaneously an algebra and a coalgebra [1], which gives them many interesting relationship properties, such as when dualising.

A Hopf algebra $H$ is considered to be bipolynomial if both it and its dual are polynomial algebras. Ravenel and Wilson [2] proved that any bipolynomial Hopf algebra $H$ is isomorphic to the tensor product of Witt Hopf algebras $W_{R}$ (see Definition 2.5) over the rings $R=\mathbb{Z}_{(p)}$ and $R=\mathbb{F}_{p}$ for prime $p$, where $\mathbb{Z}_{(p)}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right.$ and $\left.\operatorname{gcd}(b, p)=1\right\}$ is the ring of integers localised at $p$.

Theorem 1.1 (Ravenel and Wilson [2]). For a graded bicommutative Hopf algebra $H$ over the ring $R=\mathbb{Z}_{(p)}$ or $R=\mathbb{F}_{p}$, if there are algebra isomorphisms $H \cong R\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ and $H^{*} \cong R\left[y_{0}, y_{1}, y_{2}, \ldots\right]$, where the polynomial algebras $R\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ and $R\left[y_{0}, y_{1}, y_{2}, \ldots\right]$ have generators $x_{i}, y_{i}$ with $\operatorname{deg} x_{i}=p^{i}$ and $\operatorname{deg} y_{i}=-p^{i}$, then $H \cong W_{R}$.

The above theorem is a special case of Ravenel and Wilson's theorem, but their proof does not immediately generalise if $R$ is a graded local ring (see Definition 2.1), because the dual $H^{*}$ does not behave well. Over the rings $R=\mathbb{Z}_{(p)}$ and $R=\mathbb{F}_{p}$, there is a Hopf algebra isomorphism (see Lemma 5.1) between the dual $R[x]^{*}$ of the Hopf algebra $R[x]$ and the divided power Hopf algebra $\Gamma_{R}\left[x^{*}\right]$ (see Example 2.1) generated by the dual $x^{*}$, but $R[x]^{*} \cong \Gamma_{R}\left[x^{*}\right]$ does not hold over graded local rings $R$ in general.

Theorem 1.2. For a graded bicommutative Hopf algebra $H$ over a graded local ring $R$, if $H \cong R\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ as algebras and $H \cong \Gamma_{R}\left[z_{0}, z_{1}, z_{2}, \ldots\right]$ as coalgebras, where generators $x_{i}, z_{i}$ have $\operatorname{deg} x_{i}=\operatorname{deg} z_{i}=p^{i}$, then $H \cong W_{R}$.

We generalise Theorem 1.1 to Theorem 1.2 over graded local rings $R$, such as $R=\mathbb{Z}_{(p)}[u]$ and $R=\mathbb{F}_{p}[u]$ where $\operatorname{deg} u=1$. Rather than consider the algebra isomorphism $H^{*} \cong$ $R\left[y_{0}, y_{1}, y_{2}, \ldots\right]$ as Ravenel and Wilson did, we instead consider the coalgebra isomorphism $H \cong \Gamma_{R}\left[z_{0}, z_{1}, z_{2}, \ldots\right]$ over graded local rings $R$. By using induction on different degrees, we show that generators of the same degree in $H$ and $W_{R}$ map to each other, leading to the Hopf algebra isomorphism $H \cong W_{R}$.

## 2 Preliminaries

We define some mathematical terminology involving structures such as algebras, coalgebras and dual spaces. Throughout this paper, we consider only graded structures, and the graded local ring $R$ is assumed to be connected.

Definition 2.1 (Graded local ring). A graded local ring $R$ can be decomposed into the direct sum $R=R_{0} \oplus R_{1} \oplus R_{2} \oplus \cdots$ where $R_{0}=\mathbb{Z}_{(p)}$ or $R_{0}=\mathbb{F}_{p}$ and $R_{i} R_{j} \subseteq R_{i+j}$.

Let $M^{*}$ be the dual space of the $R$-module $M$.

### 2.1 Hopf algebras

Definition 2.2 (Algebras [1]). We refer to unital associative algebras as algebras. An algebra $A$ is an $R$-module with multiplication $\mu: A \otimes A \rightarrow A$ and unit $\eta: R \rightarrow A$ that satisfy the commutative diagrams:


An augmented algebra $A$ has a morphism of algebras (the counit) $\varepsilon: A \rightarrow R$, and the augmentation ideal $I$ is the kernel of $\varepsilon$.

The indecomposables are the elements of the quotient space $I / I^{2}$.
Definition 2.3 (Coalgebras [1]). A coalgebra $C$ is an $R$-module with comultiplication $\phi$ : $C \rightarrow C \otimes C$ and counit $\varepsilon: C \rightarrow R$ that satisfy the commutative diagrams:

and


An augmented coalgebra $C$ has a morphism of coalgebras (the unit) $\eta: R \rightarrow C$.
The primitives are the elements of the set $\{h \in H \mid \phi(h)=h \otimes 1+1 \otimes h\}$.
Definition 2.4 (Hopf algebra [1]). A Hopf algebra $H$ is defined as a $R$-module that is both an algebra and a coalgebra.

Example 2.1 (Divided power Hopf algebra [3]). The divided power Hopf algebra $\Gamma_{R}[x]$ has a basis $\gamma_{k}(x)$ where $\gamma_{0}(x)=1, \gamma_{i}(x)=\frac{x^{i}}{i!}$ and $\gamma_{i}(x) \gamma_{j}(x)=\frac{(i+j)!}{i!j!} \gamma_{i+j}(x)$, with comultiplication $\phi\left(\gamma_{i}(x)\right)=\sum_{j=0}^{i} \gamma_{j}(x) \gamma_{i-j}(x)$.

In morphisms between Hopf algebras, primitives map to primitives linearly and indecomposables map to indecomposables linearly [3]. We can use such maps to determine morphisms between Hopf algebras, as shown in the following lemma.

Lemma 2.1. For a coalgebra $C$, an $R$-module map $g: C \rightarrow R\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ uniquely determines a coalgebra map $G: C \rightarrow \Gamma_{R}\left[x_{0}, x_{1}, x_{2}, \ldots\right]$.

Proof. Consider any element $c \in C$. The comultiplication $\phi$ is coassociative, so $\phi^{n-1}(c)=$ $\sum_{i=1}^{m} c_{1 i} \otimes c_{2 i} \otimes \cdots \otimes c_{n i}$ where $c_{1 i}, c_{2 i}, \ldots, c_{n i} \in C$ for positive indices $i$ up to non-negative integer $m$, and

$$
g\left(\phi^{n-1}(c)\right)=g\left(\sum_{i=1}^{m} \bigotimes_{j=1}^{n} c_{j i}\right)=\sum_{i=1}^{m} \bigotimes_{j=1}^{n} g\left(c_{j i}\right) .
$$

For a tensor product $c_{1 i} \otimes c_{2 i} \otimes \cdots \otimes c_{n i}$, if any $g\left(c_{j i}\right)$ is non-linear, then the tensor product is considered degenerate as it does not contribute towards $G(c)$.

Let $g_{n}(c)=\sum \prod g\left(c_{j i}\right)$ for non-degenerate tensor products $c_{1 i} \otimes c_{2 i} \otimes \cdots \otimes c_{n i}$ be the element(s) in the divided power coalgebra $\Gamma_{R}\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ induced by $g\left(\phi^{n-1}(c)\right)$. We write the comultiplication $\phi(c)$ as $\phi(c)=c \otimes 1+1 \otimes c+\sum c^{\prime} \otimes c^{\prime \prime}$. Since

$$
\begin{aligned}
G(\phi(c))= & G(c \otimes 1+1 \otimes c)+G\left(\sum c^{\prime} \otimes c^{\prime \prime}\right) \\
= & \left(g_{1}(c)+g_{2}(c)+\cdots\right) \otimes 1+1 \otimes\left(g_{1}(c)+g_{2}(c)+\cdots\right) \\
& +g_{1}\left(\sum c^{\prime} \otimes c^{\prime \prime}\right)+g_{2}\left(\sum c^{\prime} \otimes c^{\prime \prime}\right)+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
\phi(G(c)) & =\phi\left(g_{1}(c)+g_{2}(c)+\cdots g_{n}(c)\right)=\phi\left(g_{1}(c)\right)+\phi\left(g_{2}(c)\right)+\cdots \\
& =\phi\left(g_{1}(c) \otimes 1+1 \otimes g_{1}(c)\right)+\phi\left(g_{2}(c) \otimes 1+1 \otimes g_{2}(c)+\cdots\right)+\cdots
\end{aligned}
$$

we prove that $G(\phi(c))=\phi(G(c))$ by rearranging. Thus, $G$ is a coalgebra map.

### 2.2 Witt Hopf algebras

Definition 2.5 (Witt Hopf algebra). The Witt Hopf algebra $W_{Z_{(p)}}$ has generators $y_{i}$ of $\operatorname{deg} y_{i}=p^{i}$, with comultiplication $\phi\left(z_{i}\right)=z_{i} \otimes 1+1 \otimes z_{i}$ for primitives

$$
\begin{aligned}
z_{0} & =y_{0}, \\
z_{1} & =p y_{1}+y_{0}{ }^{p} \\
z_{2} & =p^{2} y_{2}+p y_{1}^{p}+y_{0}^{p^{2}}, \\
& \vdots \\
z_{i} & =\sum_{j=0}^{i} p^{j} y_{j}^{p^{p-j}},
\end{aligned}
$$

and $W_{R}=W_{Z_{(p)}} \otimes R$ for the ring $R$.
Let $W_{R}(n)$ be the sub-Hopf algebra with generators $y_{0}, y_{1}, y_{2}, \ldots, y_{n}$.
A basis of $W_{R}(n)$ is the set of monomials $y_{0}^{i_{0}} y_{1}^{i_{1}} \cdots y_{n}^{i_{n}}$ for non-negative exponents $i_{j}$, so that there are inclusion maps $W_{R}(0) \rightarrow W_{R}(1) \rightarrow W_{R}(2) \rightarrow \cdots$, and their dual maps $W_{R}(0)^{*} \rightarrow W_{R}(1)^{*} \rightarrow W_{R}(2)^{*} \rightarrow \cdots$ are all onto.

For the graded local ring $R$, its maximal ideal is $I_{m}=(p) \oplus R_{1} \oplus R_{2} \oplus R_{3} \oplus \cdots$ where $(p)$ represents the multiples of $p$. Thus, if $\operatorname{deg} r>0$ for some element $r \in R$, then $r \in I_{m}$. According to Nakayama's Lemma (see Lemma 5.2), we construct the quotient ring $R / I_{m}=\mathbb{F}_{p}$ to help prove the Hopf algebra isomorphism $H \cong W_{R}$ over the graded local ring $R$.

## 3 Proof of Theorem 1.2

### 3.1 Key Lemma

Ravenel and Wilson [2] proved the following lemma over the rings $R=\mathbb{Z}_{(p)}$ and $R=\mathbb{F}_{p}$ for the algebra $H=R\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ where generators $x_{i}$ have $\operatorname{deg} x_{i}=p^{i}$.

Lemma 3.1 (Ravenel and Wilson [2]). Given an surjective algebra map $F: H^{*} \rightarrow W_{R}(n-1)^{*}$ in degrees $\leq p^{n}$, there is an algebra map $\tilde{F}: H^{*} \rightarrow W_{R}(n)^{*}$ that is isomorphic in degrees $\leq p^{n}$, such that the following diagram commutes:


However, because the duals of Hopf algebras do not behave well over graded rings $R$, we avoid taking duals by using coalgebra maps to prove the following lemma for the coalgebra $H=\Gamma_{R}\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ where generators $x_{i}$ have $\operatorname{deg} x_{i}=p^{i}$.

Lemma 3.2. Given a coalgebra map $G_{\tilde{G}}: W_{R}(n-1) \rightarrow H$ that is injective in degrees $\leq p^{n}$ $\bmod I_{m}$, we can find a coalgebra map $\tilde{G}: W_{R}(n) \rightarrow H$ that is isomorphic in degrees $\leq p^{n}$ mod $I_{m}$, such that the following diagram commutes:


Proof. For $y \in W_{R}(n-1)$, we let $G(y)=\sum a_{i} x_{0}^{i_{0}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots$ where $a_{i} \in R$ and $i_{j}$ are nonnegative integers for each $j=0,1,2, \ldots$. We construct a linear map $g: W_{R}(n-1) \rightarrow$ $R\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ by taking the linear terms of $G(y)$ such that $i_{0}+i_{1}+i_{2}+\cdots=1$ and letting $g(y)=b_{0} x_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots$ for $b_{i} \in R$. As $W_{R}(n-1)$ is generated by $y_{0}, y_{1}, \ldots, y_{n-1}$ while $W_{R}(n)$ is generated by $y_{0}, y_{1}, \ldots, y_{n}$, we obtain a linear map $\tilde{g}: W_{R}(n) \rightarrow R\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ by letting

$$
\tilde{g}\left(y_{0}^{i_{0}} y_{1}^{i_{1}} \cdots y_{n}^{i_{n}}\right)= \begin{cases}g\left(y_{0}^{i_{0}} y_{1}^{i_{1}} \cdots y_{n}^{i_{n}}\right) & i_{n}=0 \\ 0 & i_{n}>0\end{cases}
$$

Thus,


Due to Lemma 2.1, we can define the coalgebra map $\tilde{G}: W_{R}(n) \rightarrow H$ from the linear $\operatorname{map} \tilde{g}: W_{R}(n) \rightarrow H$. As $G$ is injective, $\tilde{G}$ is isomorphic in degrees $<p^{n} \bmod I_{m}$. To prove the isomorphism in degree $p^{n} \bmod I_{m}$, we need to show that $y_{n}$ maps to $\gamma_{p^{n}}\left(x_{0}\right)$ while other $y_{i}$ do not map to it. However, rather than directly computing $\overbrace{x_{0} \otimes x_{0} \otimes \cdots \otimes x_{0}}^{p^{n}-1 \text { times }}$ from the comultiplication $\phi^{p^{n}-1}\left(y_{n}\right)$, we can use a Hopf algebra mapping from the divided power coalgebra $H$ to the symmetric polynomials to simplify our proof.

Definition 3.1 (Hopf algebra of symmetric polynomials [3]). The Hopf algebra $S$ of symmetric polynomials in $s_{1}, s_{2}, s_{3}, \ldots$ is $S=R\left[\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right]$ where generators $\sigma_{i}$ are the elementary symmetric polynomials

$$
\begin{aligned}
\sigma_{1} & =\sum s_{i}, \\
\sigma_{2} & =\sum_{1 \leq i<j} s_{i} s_{j}, \\
& \vdots \\
\sigma_{n} & =\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{n}} s_{k_{1}} s_{k_{2}} \cdots s_{k_{n}},
\end{aligned}
$$

with comultiplication $\phi\left(\sigma_{i}\right)=\sum_{j=0}^{i} \sigma_{j} \otimes \sigma_{i-j}$.
By Newton's identities, the $i$-th power sum symmetric polynomials $c_{i}=\sum_{j=1,2,3, \ldots} x_{j}^{i}$ have comultiplication $\phi\left(c_{i}\right)=c_{i} \otimes 1+1 \otimes c_{i}$, so $c_{i}$ are primitives.

According to Husemoller [3], the injective map $K: W_{R} \rightarrow S$ maps the primitives $z_{i} \in W_{R}$ to the primitives $c_{p^{i}} \in S$, so the degrees of elements in $W_{R}$ and the degrees of elements in $S$ agree with each other.

The primitives of $W_{R}$ are $z_{i}=y_{0}^{p^{i}}+p y_{1}^{p^{i-1}}+\cdots+p^{i} y_{i}$, and by Newton's identities, $K$ sends $y_{n}$ to $\sigma_{p^{n}}+h\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p^{n}-1}\right)$, where the polynomial $h$ is composed of monomials of degree $p^{n}$. Because comultiplication is preserved, we can apply $\phi^{p^{n}-1}$ for the elements $y_{n}$ and $\sigma_{1}, \ldots, \sigma_{p^{n}-1}, \sigma_{p^{n}}$ on both sides:

$$
\begin{aligned}
\phi^{p^{n}-1}\left(\sigma_{1}\right)= & \sigma_{1} \otimes 1 \otimes \cdots \otimes 1+1 \otimes \sigma_{1} \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes \sigma_{1}, \\
& \vdots \\
\phi^{p^{n}-1}\left(\sigma_{p^{n}-1}\right)= & 1 \otimes \sigma_{1} \otimes \cdots \otimes \sigma_{1}+\sigma_{1} \otimes 1 \otimes \cdots \otimes \sigma_{1}+\cdots+\sigma_{1} \otimes \cdots \otimes \sigma_{1} \otimes 1 \\
& +q_{p^{n}-1}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p^{n}-1}\right), \\
\phi^{p^{n}-1}\left(\sigma_{n}\right)= & \sigma_{1} \otimes \sigma_{1} \otimes \cdots \otimes \sigma_{1}+q_{p^{n}}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p^{n}}\right),
\end{aligned}
$$

where $q_{i}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{i}\right)$ are degenerate tensors of degree $i$.
For a monomial $\sigma_{1}^{q_{1}} \sigma_{2}^{q_{2}} \cdots \sigma_{p^{n}-1}^{q_{p}-1}$ in the polynomial $h$, consider its comultiplication

$$
\phi^{p^{n}-1}\left(\sigma_{1}^{q_{1}} \sigma_{2}^{q_{2}} \cdots \sigma_{p^{n}-1}^{q_{p}-1}\right)=\left(\phi^{p^{n}-1}\left(\sigma_{1}\right)\right)^{q_{1}}\left(\phi^{p^{n}-1}\left(\sigma_{2}\right)\right)^{q_{2}} \cdots\left(\phi^{p^{n}-1}\left(\sigma_{p^{n}-1}\right)\right)^{q_{p^{n}-1}}
$$

Note the cyclic structure of each comultiplication $\phi^{p^{n}-1}\left(\sigma_{i}\right)$, which is due to the sum of tensor products being invariant by permutation over $\sigma_{i}$. Only the comultiplication $\phi^{p^{n}-1}\left(\sigma_{p^{n}}\right)$ contains a single linear term $\overbrace{\sigma_{1} \otimes \sigma_{1} \otimes \cdots \otimes \sigma_{1}}^{p^{n}-1 \text { times }}$, while all other $\phi^{p^{n}-1}\left(\sigma_{i}\right)$ have permutations of tensor products that are multiples of $p$. Thus, in the comultiplication $\phi^{p^{n}-1}\left(\sigma_{1}^{q_{1}} \sigma_{2}^{q_{2}} \cdots \sigma_{p^{n}-1}^{q_{p} n}\right)$, the coefficient of the linear term $\overbrace{\sigma_{1} \otimes \sigma_{1} \otimes \cdots \otimes \sigma_{1}}^{p^{n}-1 \text { times }}$ is a multiple of $p$ because of the cyclic structure of the comultiplication for each $\sigma_{i}$.

The sum of the coefficients of $\overbrace{\sigma_{1} \otimes \sigma_{1} \otimes \cdots \otimes \sigma_{1}}^{p^{n}-1 \text { times }}$ in $\phi^{p^{n}-1}\left(K\left(x_{n}\right)\right)$ is indivisible by the prime $p$, so $y_{n}$ is the only term among all $y_{i}$ which maps to $\sigma_{n}$. Thus, $\tilde{G}\left(x_{n}\right)$ contains $\gamma_{p^{n}}\left(x_{0}\right)$ with an unit coefficient, so $\tilde{G}$ is a coalgebra isomorphism in degree $p^{n}$.

### 3.2 Induction on $W_{R}(n-1) \rightarrow W_{R}(n)$

Lemma 3.3. Given an Hopf algebra surjection $F: W_{R}(n-1) \rightarrow H$, there is a Hopf algebra surjection $\tilde{F}: W_{R}(n) \rightarrow H$, such that the following diagram commutes:


Proof. The Witt Hopf algebra $W_{R}(n-1)$ has generators $y_{0}, y_{1}, y_{2}, \ldots, y_{n-1}$, and we let $\tilde{F}\left(y_{i}\right)=F\left(y_{i}\right)$ for indices $0 \leq i<n$. Also, the generator $y_{n} \in W_{R}(n)$ maps to $\tilde{G}\left(y_{n}\right)$ as a coalgebra, and $\tilde{G}\left(y_{n}\right)=c e_{n}+f\left(e_{0}, e_{1}, e_{2}, \ldots, e_{n-1}\right)$ for some unit $c \in R$. Thus, $\tilde{F}\left(y_{n}\right)=\tilde{G}\left(y_{n}\right)$ is an algebra isomorphism in degrees $\leq p^{n}$, so $\tilde{F}$ is a Hopf algebra surjection.

## 4 Conclusion

We generalised the first part of Ravenel and Wilson's proof of a Hopf algebra isomorphism between bipolynomial Hopf algebras $H$ whose generators have degrees of prime powers and the Witt Hopf algebra $W_{R}$ over graded local rings $R$, which has applications in algebraic topology and other fields of mathematics. A potential path of future research would be to follow through on the second part of Ravenel and Wilson's proof to show that any bipolynomial Hopf algebra $H$ is isomorphic to the tensor product of Witt Hopf algebras $W_{R}$ over graded local rings $R$.

## 5 Acknowledgments

I would like to thank my mentor David Jongwon Lee for guiding and supporting me during my research, as well as head mentor Dr. Tanya Khovanova for her advice. I am also grateful to my teaching assistant Allen Lin, my tutor Peter Gaydarov, Max Bee-Lindgren, DJ Liveoak and my other friends for their help and emotional support. I would also like to thank RSI, CEE, MIT, sponsors and funding organisations for this great opportunity.

## References

[1] J. W. Milnor and J. C. Moore. On the Structure of Hopf Algebras. Annals of Mathematics, 81(2):pp. 211-264, 1965. http://www.jstor.org/stable/1970615.
[2] D. C. Ravenel and W. Wilson. Bipolynomial Hopf algebras. Journal of Pure and Applied Algebra, 4(1):pp. 41-45, 1974. doi:https://doi.org/10.1016/0022-4049(74)90028-0. https://www.sciencedirect.com/science/article/pii/0022404974900280.
[3] D. Husemoller. The Structure of the Hopf Algebra $H_{*}(B U)$ over a $\mathbb{Z}_{(p)}$-Algebra. American Journal of Mathematics, 93(2):pp. 329-349, 1971. http://www.jstor.org/stable/ 2373380 ,

## Appendix

Lemma 5.1. The dual of the bipolynomial Hopf algebra $R[x]$ is the divided power Hopf algebra $\Gamma_{R}\left[x^{*}\right]$ for rings $R=\mathbb{Z}_{(p)}$ and $\mathbb{F}_{p}$.

Proof. By definition of duals, $x^{*}(x)=1,\left(x^{2}\right)^{*}\left(x^{2}\right)=1,\left(x^{3}\right)^{*}\left(x^{3}\right)=1, \ldots,\left(x^{n}\right)^{*}\left(x^{n}\right)=1$.
To express the dual $\left(x^{n}\right)^{*}$, consider the comultiplication $\phi^{n-1}\left(x^{n}\right)=\sum x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}$. For a tensor product $x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n}$, if any $x_{i}$ is non-linear, then the tensor product is considered degenerate. Thus,

$$
\begin{aligned}
\phi\left(x^{2}\right) & =2 x \otimes x+\text { degenerate terms } x^{2} \otimes 1+1 \otimes x^{2}, \\
\phi^{2}\left(x^{3}\right) & =6 x \otimes x \otimes x+\text { degenerate terms }, \\
& \vdots \\
\phi^{n-1}\left(x^{n}\right) & =n!\overbrace{x \otimes x \otimes \cdots \otimes x}^{n-1}+\text { degenenerate terms },
\end{aligned}
$$

so $\left(x^{2}\right)^{*}=\frac{\left(x^{*}\right)^{2}}{2},\left(x^{3}\right)^{*}=\frac{\left(x^{*}\right)^{3}}{6}, \ldots,\left(x^{n}\right)^{*}=\frac{\left(x^{*}\right)^{n}}{n!}$.
However, this dualisation does not hold for graded local rings $R$ in general. Because of the following lemma, we mod by $I_{m}$ so that the quotient space $R / I_{m}=\mathbb{F}_{p}$ is concentrated in degree 0 , leading to better behavior than over $R$.

Lemma 5.2 (Nakayama's Lemma). If there is an isomorphism between finite free $R$-modules $X$ and $Y \bmod I_{m}$, then there is an isomorphism between $X$ and $Y$.

