
Positive Traces on Deformations of Kleinian
Singularities of Type D

Joseph Vulakh

Under the direction of

Daniil Kliuev
Massachusetts Institute of Technology

Department of Mathematics

Research Science Institute
August 1, 2023



Abstract

Filtered deformations of Kleinian singularities have received much attention over the
last half a century, particularly for their importance to various areas of algebra such as
representation theory and Lie theory. Recently, traces on filtered deformations of Kleinian
singularities have been studied for their connection with star-products, associative products
with significance in algebra and theoretical physics, namely superconformal field theory. We
build on a line of work investigating positive traces on deformations of Kleinian singularities.
In a special case, we find analogues of classification theorems of traces on deformations of
Kleinian singularities of type A for Kleinian singularities of type D and prove that positive
traces of type D are restrictions of positive traces of type A.

Summary

Kleinian singularities are important algebraic structures with connections to several fields
in algebra and physics. Functions known as traces on algebras related to Kleinian singular-
ities are useful in theoretical physics, particularly superconformal field theory, in additional
to being of algebraic interest. We study positive traces, which are especially physically
meaningful and algebraically significant. We classify positive traces in a special case for an
important class of Kleinian singularities, particularly those of type D, building on previous
work in the type A case.



1 Introduction

A Kleinian singularity is a quotient C2/G, where G is a finite subgroup of the special
linear group SL2(C). The Kleinian singularity C2/G has as its coordinate ring the commu-
tative graded algebra A = C[u, v]G of G-invariant polynomials in two variables. Kleinian
singularities have been extensively studied and are significant in many areas of mathematics,
such as algebraic geometry and representation theory [2, 3, 4].

We consider filtered deformations A of A, that is, filtered associative algebras A with
associated graded algebra grA equal to A. Deformations of Kleinian singularities have been
the subject of a large body of research which has uncovered numerous connections between
such deformations and areas of algebra such as Lie theory; see [1] for a brief overview.
More recently, filtered deformations of algebras have been studied in connection with star-
products, which are associative products on the algebra with significance in algebra in su-
perconformal field theory, with a special focus on the relationship between nondegenerate
short star-products of an algebra A and nondegenerate twisted traces of the algebra’s filtered
deformation A [5, 6].

For a filtered algebra B and a filtration-preserving invertible linear map g, a g-twisted
trace on B is a linear map T : B → C such that T (ab) = T (bg(a)) for all a, b ∈ B. Etingof
and Stryker [5] proved that nondegenerate short star-products of an algebra A correspond
to nondegenerate twisted traces of the filtered deformation A of A. Twisted traces on
deformations of Kleinian singularities of type A, that is, Kleinian singularities with G a
cyclic group, were subsequently classified by Etingof, Klyuev, Rains, and Stryker [6].

Positive traces are of particular physical and algebraic interest. Given an algebra B and
an antilinear automorphism ρ : B → B such that ρ2 = id, a trace T on B is said to be positive
if T (aρ(a)) > 0 for all nonzero a in B. Positive traces are in correspondence with positive
definite Hermitian forms on B such that (ab, c) = (a, ρ(b)c) for all a, b, c in B, and positive
traces of filtered deformations correspond to unitary star-products, which are of particular
physical interest; see [6] for a summary of research on positive traces. Positive traces were
characterized by Etingof, Klyuev, Rains, and Stryker [6] for Kleinian singularities of type A.

In this paper, we study traces of filtered deformations of Kleinian singularities of type
D, that is, Kleinian singularities with G a dicyclic group. Filtered deformations of Kleinian
singularities depend on an element c of the center Z(C[G]) of the corresponding group
algebra. Under an assumption on this parameter c, described in Section 2, we characterize
traces, and under an additional assumption about the structure of the filtered deformation,
described in Section 5, we characterize positive traces. Our main result is that every positive
trace on a filtered deformation of a Kleinian singularity of type D satisfying this set of
assumptions is the restriction of a positive trace on a filtered deformation of a Kleinian
singularity of type A.

We begin by outlining the technical preliminaries for our work in Section 2. Then, in
Section 3, we introduce several algebra elements which are important for our results and
prove various identities and relations among them. We characterize traces of deformations
of Kleinian singularities of type D under an assumption on the element c in Section 4, and use
this characterization to obtain an analytic formula for traces in a special case in Section 5.
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Finally, in Section 6, we prove our main result regarding positive traces.

2 Preliminaries

Throughout the paper, we fix a positive even integer n with m = n
2
and denote ε =

exp
(
2πi
n

)
. For a finite subgroup G of the special linear group SL2(C), the Kleinian singularity

C2/G has as its coordinate ring the commutative graded algebra A = C[u, v]G of G-invariant
polynomials in two variables, with the action of G on A defined by[

a b
c d

]
· P (u, v) = P (au+ bv, cu+ dv).

We are interested in the case when G = Dn, the dicyclic group generated by elements

g =

[
ε 0
0 ε−1

]
, h =

[
0 1
−1 0

]
with gn = h4 = ghgh−1 all equal to the group identity and gm = h2. The group Dn acts
on C[u, v] by g · u = εu, g · v = ε−1v, h · u = v, h · v = −u, and the invariant polynomials
generating A are u2v2, un + vn, and uv(un − vn).

All elements of the algebra A are the sum of homogeneous polynomials, so A is graded by
the degree of homogeneous polynomials. We consider filtered deformations A of A, that is,
filtered associative algebras A with associated graded algebra grA equal to A. In particular,
we make use of the construction of filtered deformations presented by Crawley-Boevey and
Holland [1]. Let C[x, y]#G be the skew group algebra constructed from the vector space
C[x, y]⊗ C[G] with multiplication given by

(P ⊗ g)(G⊗ h) = Pg(Q)⊗ gh,

where P and Q are polynomials, g and h are group elements, and g(Q) denotes the action
of g on Q. For an element c of the center Z(C[G]) of the group algebra, let

Hc = (C[x, y]#G)/(xy − yx− c).

For the idempotent e = 1
|G|
∑

g∈G g, let Oc = eHce, which is an algebra with unit e. Losev

[7, Theorem 3.4] proved that for any finite subgroup G of SL2(C), any filtered deformation
of C[x, y]G is isomorphic to some algebra Oc with c ∈ Z(C[g]).

A trace on A is a linear function T : A → C satisfying T (ab) = T (ba) for all a, b ∈ A. We
only consider traces on noncommutative algebras, so by [1, Theorem 0.4(1)], we may assume
the coefficient of c on the group identity is nonzero. Also, Crawley-Boevey and Holland
[1, Theorem 0.4(2)] proved that for c outside a finite set of hyperplanes, any trace on Oc

is a restriction of a trace on Hc. We consider only such c, which we call generic. For a
classification of traces on Oc, it therefore suffices to characterize traces on Hc.

Letting Cn denote the cyclic group of n elements, we further assume that c is in C[Cn].
Then in the algebra Hc, the following hold:
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• gx = εxg;

• gy = ε−1yg;

• hx = yh;

• hy = −xh;

• xy − yx = c =
∑n−1

i=0 cig
i, with c0 ̸= 0;

• ci = c−i for all i.

Here the equality ci = c−i holds because c is in Z(C[Dn]) and the conjugacy classes of Dn

are of the form {gi, g−i}, {g2ih : i ∈ Z}, and {g2i+1h : i ∈ Z}.
We close this section with a definition of positive traces. For an algebra B and an

antilinear automorphism ρ : B → B such that ρ2 = id, a trace T on B is said to be positive
if T (aρ(a)) > 0 for all nonzero a in B. The antilinear automorphism we study is defined on
Hc by ρ(x) = y, ρ(y) = −x, ρ(g) = g, ρ(h) = h. We return to positive traces in Section 6.

3 Algebra Identities and Relations

In this section, we introduce several important algebra elements and describe relations
between them.

Recall that c =
∑n−1

i=0 cig
i, with g a generator of Dn such that gn is the group identity,

and ε = exp
(
2πi
n

)
. Let

k =
1

c0

(
xy +

n−1∑
i=1

cig
i

εi − 1

)
− 1

2
.

The following lemma describes commutativity relations involving k which are important for
our results.

Lemma 3.1. The following equalities hold in Hc:

• gk = kg;

• hk = −kh;

• [k, x] = −x;

• kx = x(k − 1);

• [k, y] = y;

• ky = y(k + 1).
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Proof. Because gxy = εxgy = xyg, it is clear that g and k commute. Also, we have

hk =
1

c0

(
hxy +

n−1∑
i=1

hcig
i

εi − 1

)
− h

2

=
1

c0

(
−yxh+

n−1∑
i=1

cig
−ih

εi − 1

)
− h

2

=
1

c0

(
c− xy +

n−1∑
i=1

cig
i

ε−i − 1

)
h− h

2

=
1

c0

(
−xy + c0 +

n−1∑
i=1

(
cig

i − εicig
i

εi − 1

))
h− h

2

=
1

c0

(
−xy + c0 −

n−1∑
i=1

cig
i

εi − 1

)
h− h

2

= − 1

c0

(
xy +

n−1∑
i=1

cig
i

εi − 1

)
h+

h

2

= −kh.

We now prove the commutation relations with x and y. We have xyx = x(xy−c) = x2y−xc,
so

[k, x] =
1

c0

(
xyx− x2y +

n−1∑
i=1

cig
ix− xcig

i

εi − 1

)

=
1

c0

(
−xc+

n−1∑
i=1

εixcig
i − xcig

i

εi − 1

)

=
1

c0

(
−xc+ x

n−1∑
i=1

cig
i

)
= −x.

It follows immediately that kx = x(k − 1), and the commutation relations with y follow by
conjugating the commutation relations with x by h.

Now let

eq =
1

n

n−1∑
i=0

εiqgi

for integers q. Note that eq = eq+n for all q. The elements eq form an important basis for
C[Cn], and it is often convenient to express elements of Hc using eq. The following lemma
describes relations involving eq.
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Lemma 3.2. The following equalities hold in Hc:

• eqg
i = gieq = ε−iqeq;

• heq = e−qh;

• eqx = xeq+1;

• eqy = yeq−1;

• eqk = keq;

• epeq = δp,qeq, where δ is the Kronecker delta.

Proof. Clearly gi and eq commute. We have

gieq =
1

n

n−1∑
j=0

εjqgi+j =
1

n

n−1∑
j=0

ε(j−i)qgj = ε−iqeq

and

heq =
1

n

n−1∑
i=0

εiqhgi =
1

n

n−1∑
i=0

εiqg−ih =
1

n

n−1∑
i=0

ε−iqgih = e−qh,

proving the commutation relations with group elements. Also,

eqx =
1

n

n−1∑
i=0

εiqgix =
1

n

n−1∑
i=0

εiq+ixgi =
1

n
x

n−1∑
i=0

εi(q+1)gi = xeq+1,

and conjugating by h, we obtain eqy = yeq−1. It follows from the established commutation
relations that eq commutes with xy and each gi, so eq commutes with k. Finally, we have

epeq =
1

n

n−1∑
i=0

εipgieq =
1

n

n−1∑
i=0

εi(p−q)eq.

If p = q, then all terms in the sum are equal to eq, so epeq = eq. If p ̸= q, then
∑n−1

i=0 ε
i(p−q) =

0, so epeq = 0.

Finally, we define

αq =
1

c0

n−1∑
i=1

ciε
−iq

εi − 1

for integers q, and once again observe that αq = αq+n for all q. The elements αq have an
important symmetry and allow for useful transitions from complicated expressions involving
eq to scalar multiples of eq, as shown by the following lemma.

Lemma 3.3. The following statements hold in Hc:
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• αq = −α−q−1;

• The elements αp and eq satisfy

αpeq =
1

c0

(
n−1∑
i=1

ciε
i(q−p)gi

εi − 1

)
eq.

Proof. We have

αq =
1

c0

n−1∑
i=1

ciε
−iq

εi − 1
=

1

c0

n−1∑
i=1

c−iε
−iq

εi − 1
=

1

c0

n−1∑
i=1

ciε
iq

ε−i − 1

=
1

c0

n−1∑
i=1

ciε
i(q+1)

1− εi
= −α−q−1.

We also have

αpeq =
1

c0

n−1∑
i=1

ciε
−ipeq

εi − 1

=
1

c0

n−1∑
i=1

ciε
i(q−p)ε−iqeq
εi − 1

=
1

c0

(
n−1∑
i=1

ciε
i(q−p)gi

εi − 1

)
eq,

proving the lemma.

The elements eq are a basis for C[g], so we may write

k =
1

c0

(
xy −

n−1∑
q=0

βqeq

)
, or xy = c0k +

n−1∑
q=0

βqeq,

for complex numbers βq and extend the βq modulo n, so that βq = βq+n for all integers q.
More generally, we have the following lemma.

Lemma 3.4. For all positive integers a, the elements xaya and yaxa are polynomials in k
and group elements given by

xaya =
a−1∏
i=0

(
c0(k + i) +

n−1∑
q=0

βq+ieq

)
,

yaxa = (−1)a
a−1∏
i=0

(
c0(−k + i) +

n−1∑
q=0

βq+ie−q

)
.
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Also, the elements xayaeq and y
axaeq can be written as polynomial expressions in k multiplied

by eq as follows:

xayaeq = eq

a−1∏
i=0

(c0(k + i) + βq+i),

yaxaeq = (−1)aeq

a−1∏
i=0

(c0(−k + i) + β−q+i).

Proof. We prove by induction the polynomial expression for xaya by induction, with the base
case of a = 1 true by definition. Assume that xayaeq = eq

∏a−1
i=0 (c0(k + i) +

∑n−1
q=0 βq+ieq).

Then

xa+1ya+1 = xa(xy)ya

= xa

(
c0k +

n−1∑
q=0

βqeq

)
ya

= xaya

(
c0(k + a) +

n−1∑
q=0

βqeq−a

)

= xaya

(
c0(k + a) +

n−1∑
q=0

βq+aeq

)

=

(
a−1∏
i=0

(
c0(k + i) +

n−1∑
q=0

βq+ieq

))(
c0(k + a) +

n−1∑
q=0

βq+aeq

)

=
a∏

i=0

(
c0(k + i) +

n−1∑
q=0

βq+ieq

)
,

as needed. The analogous claim for yaxa follows from conjugation by h. The expressions for
xayaeq and y

axaeq follow using the statement that epeq = δp,qeq from Lemma 3.2.

The numbers βq are related to the αq by the following lemma.

Lemma 3.5. For all q, we have βq =
c0
2
− c0αq.

Proof. By Lemma 3.3, we have

xyeq =

(
c0k +

c0
2
−

n−1∑
i=1

cig
i

εi − 1

)
eq

=
(
c0k +

c0
2
− c0αq

)
eq.
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Also, by definition, xyeq = (c0k + βq) eq. Thus

(c0k + βq) eq =
(
c0k +

c0
2
− c0αq

)
eq

βqeq =
(c0
2
− c0αq

)
eq,

whence it follows that βq =
c0
2
− c0αq.

4 Characterization of Traces

In this section, we study traces using basis elements of the form xiR(k)eq, y
iR(k)eq,

xiR(k)eqh, and yiR(k)eqh, with R(k) ∈ C[k]. We begin with a lemma about the values
T (eqh).

Lemma 4.1. If m ∤ q, then the value T (eqh) is equal to 0.

Proof. Because the value of T must be equal on all conjugacy classes of Dn, we have

T (eqh) =
1

n
T

(
n−1∑
i=0

εiqgih

)

=
1

n

(
m−1∑
i=0

ε2iq

)
T (h) +

1

n

(
m−1∑
i=0

ε(2i+1)q

)
T (gh)

=
1

n

(
m−1∑
i=0

ε2iq

)
T (h) +

1

n
εq

(
m−1∑
i=0

ε2iq

)
T (gh).

If m ∤ q, then n ∤ 2q, so the sums of roots of unity are equal to 0. Therefore, T (eqh) is
nonzero only if m | q.

The following theorem classifies traces on Hc. In particular, Conditions (1)–(6) express
trace values on Hc in terms of trace values on elements of the form R(k)eq, with R a
polynomial, and Conditions (7) and (8) restrict possible trace values on such terms.

Theorem 4.2. A linear map T : Hc → C is a trace on Hc if and only if all of the following
conditions hold:

(1) T is invariant under conjugation by elements of Dn;

(2) T (xiR(k)eq) = T (yiR(k)eq) = 0 when i ̸= 0;

(3) T (xiR(k)eqh) = T (yiR(k)eqh) = 0 when 2 ∤ i;

(4) T (x2iR(k)eqh) = T (S(k)R(k + i)eq−ih), where S is the polynomial satisfying that
xiyieq−i = S(k)eq−i;
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(5) T (y2iR(k)eqh) = (−1)iT (S(k)R(k− i)eq+ih), where S is the polynomial satisfying that
yixieq+i = S(k)eq+i;

(6) T (kieqh) = 0 for i > 0;

(7) T ((k+ 1
2
−αq)R(k+

1
2
)eq) = T ((k− 1

2
−αq)R(k− 1

2
)eq+1) for all q ∈ Z and R ∈ C[X];

(8) T (R(k)eq) = T (R(−k)e−q) for all q ∈ Z and R ∈ C[X].

Proof. Assume first that T is a trace; we will show that the listed conditions must hold.

(1) This is part of the definition of a trace.

(2) The trace condition gives 0 = T ([k, xiR(k)eq]) = −iT (xiR(k)eq), and similarly 0 =
T ([k, yiR(k)eq]) = iT (yiR(k)eq), from which the claim follows.

(3) Conjugation by h2 multiplies both x and y by−1 while fixing eq and h, so T (x
iR(k)eqh) =

(−1)iT (xiR(k)eqh) and T (y
iR(k)eqh) = (−1)iT (yiR(k)eqh), proving the claim.

(4) Using the trace condition to commute xi and xiR(k)eqh, we obtain

T (x2iR(k)eqh) = T (xiR(k)eqhx
i)

= T (xiR(k)eqy
ih)

= T (xiyiR(k + i)eq−ih)

= T (xiyieq−iR(k + i)h)

= T (S(k)eq−iR(k + i)h)

= T (S(k)R(k + i)eq−ih),

as desired.

(5) Similarly to the proof of Condition (4), we obtain

T (y2iR(k)eqh) = T (yiR(k)eqhy
i)

= (−1)iT (yiR(k)eqx
ih)

= (−1)iT (yixiR(k − i)eq+ih)

= (−1)iT (S(k)R(k − i)eq+ih),

as needed.

(6) The trace condition gives 0 = T ([k, ki−1eqh]) = T (2kieqh), from which the claim
follows.
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(7) Using Lemma 3.3 and the commutativity of eq and k, we obtain

T
((
k + 1

2
− αq

)
R
(
k + 1

2

)
eq
)
= T

((
k +

1

2
− 1

c0

n−1∑
i=1

cig
i

εi − 1

)
R
(
k + 1

2

)
eq

)
=

1

c0
T
(
xyR

(
k + 1

2

)
eq
)
.

Using the trace condition to commute x and yR(k + 1
2
)eq, we find

T
((
k + 1

2
− αq

)
R
(
k + 1

2

)
eq
)
=

1

c0
T
(
yR
(
k + 1

2

)
eqx
)

=
1

c0
T
(
yxR

(
k − 1

2

)
eq+1

)
= T

((
k − 1

2
− 1

c0

n−1∑
i=1

ciε
igi

εi − 1

)
R
(
k − 1

2

)
eq+1

)
,

and using Lemma 3.3 and the commutativity of eq and k once again, we obtain

T
((
k + 1

2
− αq

)
R
(
k + 1

2

)
eq
)
= T

((
k − 1

2
− αq

)
R
(
k − 1

2

)
eq+1

)
,

as desired.

(8) This follows from conjugation by h.

We now prove the converse. Suppose T is a linear map from Hc to C satisfying the listed
conditions. We wish to show that for all a in Hc, we have T ([x, a]) = T ([y, a]) = T ([g, a]) =
T ([h, a]) = 0. The equality T ([g, a]) = T ([h, a]) = 0 follows from Condition (1), so it remains
to verify the result for commutation by x and y. Also, the statements that T ([y, a]) = 0
for all a follows from the statement that T ([x, a]) = 0 for all a by conjugation by h and
Condition (1). It therefore suffices to show that T ([x, a]) = 0 when a is equal to a basis
element of the form xiR(k)eq, y

iR(k)eq, x
iR(k)eqh, or y

iR(k)eqh. We now check all possible
cases.

• Let a = xiR(k)eq with i nonnegative or a = yiR(k)eq with i > 1. Then T (xa) = 0 =
T (ax) by Condition (2).

• Let a = yR(k)eq. Then, using Lemma 3.3, we obtain

T (xa) = T (xyR(k)eq)

= c0T

((
k +

1

2
− 1

c0

n−1∑
i=1

cig
i

εi − 1

)
R(k)eq

)
= c0T

((
k + 1

2
− αq

)
R(k)eq

)
.
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Using Condition (7) and Lemma 3.3, we obtain

T (xa) = c0T
((
k − 1

2
− αq

)
R(k − 1)eq+1

)
= c0T

((
k − 1

2
− 1

c0

n−1∑
i=1

ciε
igi

εi − 1

)
R(k − 1)eq+1

)
= T (yxR(k − 1)eq+1)

= T (yR(k)eqx)

= T (ax),

as desired.

• Let a = xiR(k)eqh or a = yiR(k)eqh, with i even. Then by Condition (3), T (xa) =
0 = T (ax).

• Let a = x2i−1R(k)eqh, and let S(X) be the polynomial such that S(k)eq−1 = xyeq−1.
Then by Condition (4),

T (xa) = T
(
x2iR(k)eqh

)
= T

(
xiyiR(k + i)eq−ih

)
= T

(
xi−1(xy)yi−1R(k + i)eq−ih

)
= T

(
xi−1(xy)yi−1eq−iR(k + i)h

)
= T

(
xi−1(xy)eq−1y

i−1R(k + i)h
)

= T
(
xi−1S(k)eq−1y

i−1R(k + i)h
)

= T
(
xi−1yi−1S(k + i− 1)R(k + i)eq−ih

)
= T

(
x2i−2S(k)R(k + 1)eq−1h

)
= T

(
x2i−2(xy)R(k + 1)eq−1h

)
= T

(
x2i−1R(k)eqyh

)
= T (x2i−1R(k)eqhx)

= T (ax),

as needed.

• Let a = y2i+1R(k)eqh, and let S(X) be the polynomial such that S(k)eq+2i = xyeq+2i.
Then by Condition (5),

T (xa) = T
(
xy2i+1R(k)eqh

)
= T

(
xyeq+2iy

2iR(k)h
)

= T
(
S(k)eq+2iy

2iR(k)h
)

= T
(
y2iS(k + 2i)R(k)eqh

)
= (−1)iT

(
yixiS(k + i)R(k − i)eq+ih

)
.
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On the other hand,

T (ax) = T
(
y2i+1R(k)eqyh

)
= T

(
y2i+2R(k + 1)eq−1h

)
= (−1)i+1T

(
yi+1xi+1R(k − i)eq+ih

)
. (1)

So by Condition (6), both T (xa) and T (ax) are proportional to T (eq+ih), which, by
Lemma 4.1, is nonzero only if m | q + i. We may therefore assume that m | q + i,
because otherwise, T (xa) = 0 = T (ax). It follows that n | 2q + 2i, so βq+2i = β−q.
Therefore, by Lemma 3.4,

T (xa) = (−1)iT
(
yixiS(k + i)R(k − i)eq+ih

)
= T

((
i−1∏
j=0

c0(−k + j) + β−q−i+j

)
(c0(k + i) + βq+2i)R(k − i)eq+ih

)

= T

((
i−1∏
j=0

c0(−k + j) + β−q−i+j

)
(c0(k + i) + β−q)R(k − i)eq+ih

)
.

By Condition (6), this expression depends only on its value for k = 0. Therefore,
simplifying the expression for T (xa) and using Equation (1), we obtain

T (xa) = T

((
i−1∏
j=0

c0(−k + j) + β−q−i+j

)
(c0(−k + i) + β−q)R(k − i)eq+ih

)

= T

((
i∏

j=0

c0(−k + j) + β−q−i+j

)
R(k − i)eq+ih

)
= (−1)i+1T

(
yi+1xi+1R(k − i)eq+ih

)
= T (ax),

as needed.

This resolves all cases, completing the proof.

Theorem 4.2 reduces traces on Hc to traces on a subalgebra and two additional parame-
ters, as shown by the following corollary.

Corollary 4.3. A trace is uniquely determined by its values on elements of the form R(k)eq,
with R a polynomial, and on the conjugacy classes g2ih and g2i+1h of Dn. Also, any choice
of linear function T on the subalgebra of Hc spanned by elements of the form R(k)eq which
satisfies Conditions (7) and (8) of Theorem 4.2 and of values T (g2ih) and T (g2i+1h) defines
a unique trace on Hc through Conditions (1)–(6) of Theorem 4.2.

12



Proof. By Theorem 4.2, a trace is uniquely determined by its values on terms R(k)eq and
on the conjugacy classes g2ih and g2i+1h. We show that any choice of linear function on
terms R(k)eq which satisfies Conditions (7) and (8) of Theorem 4.2 and of values T (g2ih)
and T (g2i+1h) gives a valid trace. Indeed, values of T on basis elements are determined
by Conditions (2)–(6) of Theorem 4.2, so all that is left to check is that Condition (1)
of Theorem 4.2 does not lead to a contradiction. Using the fact that ghg−1 = g2h and
gieq = ε−iqeq, we see that conjugation by g preserves the relations among basis elements given
in Conditions (2)–(6) of Theorem 4.2 and preserves conjugacy classes of Dn. Conjugation by
h also preserves relationship among basis elements, so the trace is indeed well-defined.

We now compute the dimension of the space of traces on Hc.

Proposition 4.4. The dimension of the space of traces on Hc is
n
2
+ 2.

Proof. By Corollary 4.3, it suffices to show that the dimension of the space of linear maps
satisfying Conditions (7) and (8) of Theorem 4.2 is n

2
. Let V = C[X]⊕n, and define the linear

map φ : V → V by

φ(R0(X), . . . , Rn−1(X))

= (R0(X + 1
2
)−Rn−1(X − 1

2
), . . . , Rn−1(X + 1

2
)−Rn−2(X − 1

2
)),

where the ith component is equal to Ri(X + 1
2
)−Ri−1(X − 1

2
). Define the ideal I of V by

I = {((X − α0)R0(X), . . . , (X − αn−1)Rn−1(X)) : Ri(X) ∈ C[X]}

and the subspace W of V as the set of elements (R0(X), . . . , Rn−1(X)) for which Ri(X) =
−R−i(−X). The space of linear maps satisfying Conditions (7) and (8) of Theorem 4.2 is
isomorphic to the vector space (V/⟨φ(I),W ⟩)∗, where ⟨φ(I),W )⟩ denotes the linear span of
φ(I) and W . We therefore wish to show that the dimension of V/⟨φ(I),W ⟩ is n

2
.

First, note that the map φ is surjective. Indeed, to solve the equation φ((R0, . . . , Rn−1)) =
(P0, . . . , Pn−1), let Rn−1 be a solution to the equation

Rn−1(X + n− 1
2
)−Rn−1(X − 1

2
) =

n−1∑
i=0

Pi(X + i).

Then R0, . . . , Rn−2 are uniquely defined by the first n− 1 components of the equation, and
the resulting solution is valid because the sum

∑n−1
i=0 (Ri(X + i + 1

2
) − Ri−1(X + i − 1

2
)) is

equal to Rn−1(X + n− 1
2
)−Rn−1(X − 1

2
), which equals

∑n−1
i=0 Pi(X + i), as needed. We also

note that the kernel of φ is {(z, . . . , z) : z ∈ C}.
Letting

U = {(R0(X), . . . , Rn−1(X)) : Ri(X) = R−i−1(−X)},
we claim that the preimage of W under φ is U . Indeed, φ(U) ⊆ W because for any element
(R0(X), . . . , Rn−1(X)) ∈ U , the ith component of φ(R0(X), . . . , Rn−1(X)) is

Ri(X + 1
2
)−Ri−1(X − 1

2
) = R−i−1(−X − 1

2
)−R−i(−X + 1

2
),

13



which is equal to the negative of the (n − i)th component. Conversely, for any element
(R0(X), . . . , Rn−1(X)) mapped to W by φ, the element of V with ith component equal to
Ri(X)+R−i−1(−X)

2
belongs to U and is also mapped to W by φ. Therefore,

V/⟨φ(I),W ⟩ ∼= V/⟨I, U⟩.

Let ψ : V → V/I ∼= Cn be the quotient map given by mapping (R0(X), . . . , Rn−1(X)) to
(R0(α0), . . . , Rn−1(αn−1)). Because αi = −α−i−1, ψ(U) is the set S of vectors (v0, . . . , vn−1)
such that vi = v−i−1 for all i. Therefore,

V/⟨I, U⟩ ∼= Cn/S,

the dimension of which is n
2
, as desired.

5 Analytic Formula for Traces

Henceforth, we assume that |Re(αq)| < 1
2
for all q. Define the polynomial

P(X) =
n−1∏
q=0

(
X − exp

(
2πi
n

(
αq − q − 1

2

)))
,

so that P
(
exp
(
2πi
n
z
))

= 0 when z ≡ αq − q − 1
2
(mod n). We observe that the only root

of P
(
exp
(
2πi
n
(z − q − 1

2
)
))

with Re(z) < 1
2
is at z = αq. We also need the following lemma

about P(X).

Lemma 5.1. The polynomial P(X) satisfies P(X) = XnP(X−1).

Proof. For each root exp
(
2πi
n
(αq − q − 1

2
)
)
of P(X), the complex number

exp
(
−2πi

n

(
αq − q − 1

2

))
= exp

(
2πi
n

(
α−q−1 + q + 1

2

))
= exp

(
2πi
n

(
α−q−1 − (−q − 1)− 1

2

))
is also a root of P(X), so the reciprocal of each root of P(X) is also a root of P(X). The
claim follows.

We now give an analytic description of traces.

Theorem 5.2. Define

w0(z) = exp
(
2πi
n
z
)
·
G(exp

(
2πi
n
z
)
)

P(exp
(
2πi
n
z
)
)
,

wq(z) = w0(z − q),

where G is a polynomial of degree at most n− 2 such that G(X) = Xn−2G(X−1). All traces
T : Hc → C are given by

T (R(k)eq) =

∫
iR
R(z)wq(z)|dz|

on C[k]eq, and extended to Hc using Corollary 4.3 and the values of T on the conjugacy
classes g2ih and g2i+1h.
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Proof. The weight functions wq satisfy the following properties:

(1) wq(z) = wq−1(z − 1), and so wq(z) = wq(z − n);

(2) wq(z) decays exponentially when Im(z) approaches ±∞;

(3) (z − αq)wq(z − 1
2
) is holomorphic when |Re(z)| ≤ 1

2
.

Indeed, Property (2) holds because P(X) is not divisible by X and G has degree ≤ n − 2,
and Property (3) holds because the only root of P(exp

(
2πi
n
(z − 1

2
− q)

)
) for |Re(z)| ≤ 1

2
is

at z = αq, and the function z−αq

exp( 2πi
n

z)−exp( 2πi
n

αq)
is holomorphic at z = αq.

We now check Conditions (7) and (8) of Theorem 4.2. First,

T
((
k + 1

2
− αq

)
R
(
k + 1

2

)
eq
)
− T

((
k − 1

2
− αq

)
R
(
k − 1

2

)
eq+1

)
=

∫
iR

(
z + 1

2
− αq

)
R(z + 1

2
)wq(z)|dz| −

∫
iR

(
z − 1

2
− αq

)
R
(
z − 1

2

)
wq+1(z)|dz|

=

∫
1
2
+iR

(z − αq)R(z)wq

(
z − 1

2

)
|dz| −

∫
− 1

2
+iR

(z − αq)R(z)wq+1

(
z + 1

2

)
|dz|

=

∫
1
2
+iR

(z − αq)R(z)wq

(
z − 1

2

)
|dz| −

∫
− 1

2
+iR

(z − αq)R(z)wq

(
z − 1

2

)
|dz|

=
1

i

∫
∂([− 1

2
, 1
2 ]×R)

(z − αq)R(z)wq

(
z − 1

2

)
dz,

which is equal to 0 because (z − αq)R(z)wq(z − 1
2
) is holomorphic when |Re(z)| ≤ 1

2
by

Property (3) of wq listed at the beginning of the proof, and hence has no poles in [−1
2
, 1
2
]×R.

Thus Condition (7) of Theorem 4.2 holds.
To show that Condition (8) holds, we first show that w0 is even. Indeed,

w0(z) = exp
(
2πi
n
z
)
·
G
(
exp
(
2πi
n
z
))

P
(
exp
(
2πi
n
z
))

= exp
(
2πi
n
z
)
·
exp
(
(n− 2) · 2πi

n
z
)
G
(
exp
(
−2πi

n
z
))

exp
(
n · 2πi

n
z
)
P
(
exp
(
−2πi

n
z
))

= exp
(
−2πi

n
z
)
·
G
(
exp
(
−2πi

n
z
))

P
(
exp
(
−2πi

n
z
))

= w0(−z).
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It follows that

T (R(k)eq) =

∫
iR
R(z)wq(z)|dz|

=

∫
iR
R(z)w0(z − q)|dz|

=

∫
iR
R(−z)w0(−z − q)|dz|

=

∫
iR
R(−z)w0(z + q)|dz|

=

∫
iR
R(−z)w−q(z)|dz|

= T (R(−k)e−q) ,

so Condition (8) of Theorem 4.2 holds.
Finally, the dimension of the space of possible polynomialsG is n

2
and distinct polynomials

yield distinct traces, so, taking into account the value of the trace on the conjugacy classes
g2ih and g2i+1h, the dimension of the space of traces described by the theorem is n

2
+ 2,

which is equal to the dimension of the space of all traces by Proposition 4.4.

6 Positive Traces

In this section, we study positive traces on Oc and prove our main result. Recall that the
antilinear automorphism ρ : Hc → Hc is defined by ρ(x) = y, ρ(y) = −x, ρ(g) = g, ρ(h) = h.
It follows that ρ(k) = −k and ρ(eq) = e−q. We again assume that |Re(αq)| < 1

2
for all q.

We use the following lemma.

Lemma 6.1 ([6, Lemma 4.2]). Let w(z) be a measurable nonnegative function on R such that
w(z) < c exp(−b|z|) for some positive constants b, c and which is positive almost everywhere.

(1) If H(z) is a continuous complex-valued function on R with finitely many zeros and at
most polynomial growth at infinity, then the set {H(z)S(z) : S(z) ∈ C[z]} is dense in
the space Lp(R, w).

(2) The closure of the set {S(z)S̄(z) : S(z) ∈ C[z]} in Lp(R, w) is the subset of almost
everywhere nonnegative functions.

We prove a few preliminary results which restrict a positive trace T to be nonzero only
on the span of terms of the form R(k)eq, with R a polynomial.

Proposition 6.2. Any positive trace T on Oc satisfies T (e0h) = 0.
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Proof. Let a = R(k)(xn + yn)e for some even polynomial R. The element a = ea is in Oc,
so by hypothesis, we must have T (aρ(a)) > 0. Expanding and using the evenness of R gives

T (aρ(a)) = T
(
R(k)(xn + yn)eR̄(k)(xn + yn)e

)
= T

(
R(k)(xn + yn)R̄(k)(xn + yn)e

)
= T

(
R(k)(xn + yn)

(
xnR̄(k − n) + ynR̄(k + n)

)
e
)
,

and distributing and using the commutativity relations with k listed in Lemma 3.1, we obtain

T (aρ(a)) = T
(
R(k)

(
x2nR̄(k − n) + xnynR̄(k + n) + y2nR̄(k + n) + ynxnR̄(k − n)

)
e
)

= T
(
x2nR(k − 2n)R̄(k − n)e

)
+ T

(
xnynR(k)R̄(k + n)e

)
+ T

(
y2nR(k + 2n)R̄(k + n)e

)
+ T

(
ynxnR(k)R̄(k − n)e

)
.

Because e0 is the average of the elements in Cn and e is the average of the elements in Dn,
we have e = e0+e0h

2
. Expanding the expression for T (aρ(a)) and removing terms equal to 0,

we obtain

T (aρ(a)) = 1
2
T
(
x2nR(k − 2n)R̄(k − n)e0h

)
+ 1

2
T
(
xnynR(k)R̄(k + n)e0h

)
+ 1

2
T
(
y2nR(k + 2n)R̄(k + n)e0h

)
+ 1

2
T
(
ynxnR(k)R̄(k − n)e0h

)
+ 1

2
T
(
xnynR(k)R̄(k + n)e0

)
+ 1

2
T
(
ynxnR(k)R̄(k − n)e0

)
.

Using Conditions (4) and (5) of Theorem 4.2 and rearranging terms, we obtain

T (aρ(a)) = 1
2
T
(
xnynR(k − n)R̄(k)e0h

)
+ 1

2
T
(
xnynR(k)R̄(k + n)e0h

)
+ 1

2
T
(
ynxnR(k + n)R̄(k)e0h

)
+ 1

2
T
(
ynxnR(k)R̄(k − n)e0h

)
+ 1

2
T
(
xnynR(k)R̄(k + n)e0

)
+ 1

2
T
(
ynxnR(k)R̄(k − n)e0

)
.

Equating terms containing ynxn with terms containing xnyn using conjugation by h and
combining like terms gives

T (aρ(a)) = T (xnyne0h) (R(n)R̄(0) +R(0)R̄(n)) + T
(
xnynR(k)R̄(k + n)e0

)
= T (e0h)(R(n)R̄(0) +R(0)R̄(n))

n−1∏
q=0

(c0q + βq)

+

∫
iR
R(z)R̄(z + n)

(
n−1∏
q=0

(c0(z + q) + βq)

)
w0(z)|dz|. (2)

The product
∏n−1

q=0 (c0q+βq) in the first term is nonzero by assumption; indeed, by Lemma 3.5,

c0q+βq = c0(q+
1
2
−αq), which is equal to zero only if αq− 1

2
is an integer, which is impossible.
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Now assume, for the sake of contradiction, that T (e0h) is nonzero. Letting S(z) be the
polynomial such that R(z) = S(z − n

2
) and using the evenness of R, we obtain

T (aρ(a)) = T (e0h)(R(n)R̄(0) +R(0)R̄(n))
n−1∏
q=0

(c0q + βq)

+

∫
iR
R(−z)R̄(z + n)

(
n−1∏
q=0

(c0(z + q) + βq)

)
w0(z)|dz|

= T (e0h)(S(
n
2
)S̄(−n

2
) + S(−n

2
)S̄(n

2
))

n−1∏
q=0

(c0q + βq)

+

∫
iR
S(−z − n

2
)S̄(z + n

2
)

(
n−1∏
q=0

(c0(z + q) + βq)

)
w0(z)|dz|

= T (e0h)(S(
n
2
)S̄(−n

2
) + S(−n

2
)S̄(n

2
))

n−1∏
q=0

(c0q + βq)

+

∫
iR+n

2

S(−z)S̄(z)w(z)|dz|,

where w is a function with |w(z)| satisfying the conditions of Lemma 6.1(1). Because βq =
c0
2
− c0αq by Lemma 3.5, the weight function w(z) is holomorphic between iR and iR + n.

Moving the contour of integration, we obtain

T (aρ(a)) = ψ(S) +

∫
iR
S(−z)S̄(z)w(z)|dz|,

where ψ(S) is proportional to S(n
2
)S̄(−n

2
) + S(−n

2
)S̄(n

2
). By suitable choice of S, we can

force ψ(S) to be negative; let S0 be a polynomial with this property and satisfying that
S0(z) = S0(n− z), and let U(z) = (z− n

2
)2, so that ψ(S0 −UL) = ψ(S0) for any polynomial

L and U(z) = U(n − z). By Lemma 6.1(1), there exists a sequence of polynomials Si such
that USi tends to S0 in the space L2(iR, |w(z)|+ |w(n− z)|). It follows from the symmetry

of S0 and U that U(z) · Si(z)+Si(n−z)
2

tends to S0 in the space L2(iR, |w(z)|). Therefore, the
integral∫

iR

(
S0(−z)− U(−z) · Si(−z) + Si(n+ z)

2

)(
S̄0(z)− Ū(z) · S̄i(z) + S̄i(n− z)

2

)
w(z)|dz|

approaches 0. On the other hand, ψ(S0(z)−U(z) · Si(z)+Si(n−z)
2

) = ψ(S0) is negative. There-

fore, choosing S(z) = S0(z) − U(z) · Si(z)+Si(n−z)
2

for large enough i and noting that the
resulting polynomial R is even, we obtain T (aρ(a)) < 0, a contradiction.

We now obtain a similar result for emh.

Proposition 6.3. Any positive trace T on Oc satisfies T (emh) = 0.
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Proof. Let a = (xn+yn+S(k))e for some even polynomial S. As in Proposition 6.2, ea = a,
so a is in Oc, and we must have T (aρ(a)) = 0. Expanding and using the evenness of S gives

T (aρ(a)) = T
(
(xn + yn + S(k))e(xn + yn + S̄(k))e

)
= T

(
(xn + yn + S(k))(xn + yn + S̄(k))e

)
= T

(
(x2n + xnyn + ynxn + y2n)e

)
+ T

(
S(k)S̄(k)e

)
+ T

(
xn(S(k − n) + S̄(k))e

)
+ T

(
yn(S(k + n) + S̄(k))e

)
.

We evaluate these terms separately. By Proposition 6.2 and Equation (2) with R = 1, we
have

T
(
(x2n + xnyn + ynxn + y2n)e

)
=

∫
iR

n−1∏
q=0

(c0(z + q) + βq)w0(z)|dz|.

Splitting into e0 and e0h components and using Proposition 6.2, we find that the second
term is simply

T
(
S(k)S̄(k)e

)
= 1

2
T
(
S(k)S̄(k)e0

)
+ 1

2
T
(
S(k)S̄(k)e0h

)
=

∫
iR
S(z)S̄(z)w0(z)|dz|.

Again using Proposition 6.2 and applying Conditions (4) and (5) of Theorem 4.2, we find
that the sum of the last two terms is equal to

1
2
T
(
xn(S(k − n) + S̄(k))e0h

)
+ 1

2
T
(
yn(S(k + n) + S̄(k))e0h

)
= 1

2
T
(
xmym(S(k −m) + S̄(k +m))emh

)
+ (−1)m 1

2
T
(
ymxm(S(k +m) + S̄(k −m))emh

)
,

which, by conjugation by h, is equal to

T (xmym(S(k −m) + S̄(k +m))emh) = T (emh)(S(−m) + S̄(m))
m−1∏
q=0

(c0q + βm+q).

Thus

T (aρ(a)) = T (emh)(S(−m) + S̄(m))
m−1∏
q=0

(c0q + βm+q)

+

∫
iR

n−1∏
q=0

(c0(z + q) + βq)w0(z)|dz|

+

∫
iR
S(−z)S̄(z)w0(z)|dz|.
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Assume, for the sake of contradiction, that T (emh) is nonzero. As in the proof of Proposi-
tion 6.2, the product

∏m−1
q=0 (c0q + βm+q) is nonzero by Lemma 3.5 and the condition on the

αq, so for a suitable choice S0 of even S, the expression

T (emh)(S(−m) + S̄(m))
m−1∏
q=0

(c0q + βm+q) +

∫
iR

n−1∏
q=0

(c0(z + q) + βq)w0(z)|dz|

can be made negative. Taking U(z) = (z−m)(z +m), there exists a sequence Si of polyno-

mials such that USi approaches S0 in L2(iR, |w0(z)|) by Lemma 6.1(1), so U(z) · Si(z)+Si(−z)
2

approaches S0 in L
2(iR, |w0(z)|) because w0 is even. Setting S(z) = S0(z)−U(z) · Si(z)+Si(−z)

2

for large enough i, it follows that T (aρ(a)) < 0, a contradiction.

We now obtain our main result.

Theorem 6.4. Let c be generic and contained in C[Cn], and assume that |Re(αq)| < 1
2
for

all q. Any positive trace of a filtered deformation ODn
c of a Kleinian singularity of type D is

the restriction of a positive trace on the corresponding filtered deformation OCn
c of a Kleinian

singularity of type A.

Proof. We first describe the correspondence betweenODn
c andOCn

c . Just as the algebraODn
c is

defined as e(C[x, y]#Dn)e, a subalgebra ofHc, the algebraOCn
c is defined as e0(C[x, y]#Cn)e0,

also a subalgebra of Hc. The elements of ODn
c are of the form R(x, y)e, with R(x, y) a

polynomial expression in x and y invariant under the action of Dn, and the elements of OCn
c

are of the form S(x, y)e0, with S(x, y) a polynomial expression invariant under the action of
Cn. The map R(x, y)e 7→ R(x, y)e0 for invariant polynomials R(x, y) is an injective algebra
homomorphism from ODn

c to OCn
c , so we may identify ODn

c with a subalgebra of OCn
c . In

particular, ODn
c is mapped to the set of elements of OCn

c invariant under the involution given
by ke0 7→ −ke0, xne0 7→ yne0, y

neq 7→ xne0.
By this inclusion, any trace on OCn

c can be restricted to a trace on ODn
c . Observing that

the formula in Theorem 5.2 is identical to the analytic formula for type A traces obtained
by Etingof, Klyuev, Rains, and Stryker [6, Proposition 3.1] with z = k

n
e0 and u and v scalar

multiples of xn

c0n
e0 and

yn

c0n
e0, respectively, such that the polynomial P satisfying uv = P (z+ 1

2
)

obtained from Lemma 3.4 is monic, we see that the resulting restricted trace T can be any
trace satisfying Theorem 5.2 and the additional condition that T (eqh) = 0 for all q. This
condition follows from Lemma 4.1 and Propositions 6.2 and 6.3, so any positive trace on
ODn

c is the restriction of some trace on OCn
c .

Let T be a positive trace on ODn
c , and consider its unique even extension to OCn

c given by
the even weight function w0 and the analytic formula of Etingof, Klyuev, Rains, and Stryker
[6, Proposition 3.1]. We wish to show that T is positive on OCn

c . Because T is positive on
ODn

c , we must have T (e0R(k)e0ρ(e0R(k)e0)) > 0 for any even polynomial R, or equivalently∫
iR
R(z)R̄(−z)w0(z)|dz| > 0. (3)
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Also, letting P be the polynomial such that xnyne0 = P (k + n
2
)e0, we have∫

iR
R(z)R̄(−z − n)P (z + n

2
)w0(z)|dz| > 0 (4)

for all even polynomials R by Equation (2). By Lemma 6.1(2), Equation (3) is equivalent
to w0(z) being nonnegative on iR because for a sequence of polynomials Si tending to
some almost everywhere nonnegative even function U in L1(R, |w0(z)|), the sequence of

polynomials Si(z)+Si(−z)
2

tends to U in L1(R, |w0(z)|) because w0 is even.
Also, letting S be the polynomial such that R(z) = S(z+n

2
) and noting that P (z+n

2
)w0(z)

is holomorphic between iR and n
2
+ iR, Equation (4) is equivalent to the statement that∫

n
2
+iR

S(z)S̄(−z)P (z)w0(z − n
2
)|dz| > 0

for all polynomials S such that S(z) = S(n− z). Again using Lemma 6.1(2), it follows that
P (z)w0(z − n

2
) is nonnegative on iR.

The positivity conditions obtained on P and w0 are equivalent to those obtained in [6,
Proposition 4.4] for type A, so the trace T is positive on ODn

c if and only if it is positive on
OCn

c . Thus T is the restriction of a positive trace on OCn
c , as desired.

7 Conclusion

In this paper, we study positive traces on filtered deformations of Kleinian singularities
of type D, which are significant in algebra and theoretical physics. Under the assumption
that the structure of the filtered deformation of type D is, in some sense, compatible with the
structure of deformations of type A Kleinian singularities, we obtain classification results for
traces on deformations of Kleinian singularities of type D analogous to those obtained in [6]
for type A. Most importantly, we show that, under certain assumptions, all positive traces
of filtered deformations of Kleinian singularities of type D are restrictions of positive traces
of filtered deformations of Kleinian singularities of type A. Future research should aim to
obtain classification results for positive traces of type D in the general case. One possibility
for such research is investigating deformations of Kleinian singularities with n = 4, when the
group defining the Kleinian singularity is isomorphic to the group of quaternion units and
has a high level of symmetry.
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