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Abstract

Open quantum maps provide a simple finite-dimensional model for open
quantum systems. The quantum open baker’s map is an example of one such
map, and examining the behavior of its eigenvalues gives us an idea about how
the frequency and decay of waves in open quantum systems behave. We are
especially interested in bounds of the magnitudes of the eigenvalues and their
distribution in the complex plane. Bounds on the magnitude for the eigenvalue
tell us roughly how quickly waves decay. In this paper, we extend a previous
result on spectral gaps to a wider family of maps. We also numerically explore
the level spacing distributions of systems with the maximal spectral gap.

Summary

Waves in special environments have two main properties: frequency and de-
cay. By studying a special function that provides us a model for the behavior
of these waves, we are able to gain an idea about the behavior of the frequency
and decay of waves.



1 Introduction

Open quantum maps effectively model finite-dimensional open quantum chaos. They

quantize canonical relations on compact symplectic manifolds allows them to be used

effectively for numerical experimentation. The canonical relation we consider is the

baker’s map, a classical chaotic relation on the unit square. We analyze the quantized

version of this relation, which we call the quantum open baker’s map. Dyatlov and Jin

[1] proved some results regarding the existence of spectral gaps of the quantum open

baker’s map, but with a singular alphabet. We generalize their results to two alphabets

(Theorem 1). We also show the results of our numerical experiments concerning the

level spacing distribution of eigenvalues of the quantum open bakers map.

Formally, we define the quantum open baker’s map BN to be an operator on ℓ2N ,

which is defined by the tuple (M,A,B, ι, χ), with

M ∈ N, A,B ⊂ {0, . . . ,M − 1}, ι : A → B χ ∈ C∞
0 ((0, 1); [0, 1]) (1.1)

such that |A| = |B| and ι is a bijective function mapping every element in A to an

element in B. We call M the base, A the row-alphabet, B the column-alphabet, ι the

mapping, and χ the cutoff function.

Now let N = Mk for some k ∈ N. The quantum open baker’s map can then be

defined as

BN = F∗
N

χN/MFN/MχN/M

. . .

χN/MFN/MχN/M

 IA,B,N,M = F∗
NJA,B,N,M , (1.2)

where FN is the unitary discrete Fourier transform of size N , JA,B,N,M is an N by

N matrix, and IA,B,N,M is an N by N matrix whose entry in the j-th row and k-th

column equals 1 if
(⌊

j
N/M

⌋
,
⌊

k
N/M

⌋)
∈ ι, and 0 otherwise.

For example, for the quadruple (4, {0, 3}, {1, 3}, {(0, 1), (3, 3)}, χ) and k = 2,

BN = F∗
16


0 χ4F4χ4 0 0

0 0 0 0

0 0 0 0

0 0 0 χ4F4χ4

 .

The operator BN is a discrete analog of a Fourier integral operator of the classical
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baker’s map, which can be defined on the torus T2
x,ξ as

κM,A : (y, η) 7→ (x, ξ) =

(
My − a,

η + a

M

)
,

(y, η) ∈
(
a

M
,
a+ 1

M

)
× (0, 1), a ∈ A.

Papers by Espoti–Nonnenmacher–Winn [2] and Nonnenmacher–Zworski [3] provide

a more rigorous study of the analogy between κM,A and BN . For heuristics, one can

look to papers by Balázs–Voros [4] and Saraceno–Voros [5].

Because of this analogy, when we perform the quantum open baker’s map on such

a function f , we expect it to mimic the behavior of a Cantor set. We can define

Ck,A = Ck,A(M,A) =

{
k−1∑
j=0

ajM
j | a0, a1 . . . , ak−1 ∈ A

}
∈ ZN , (1.3)

Ck,B = Ck,B(M,B) =

{
k−1∑
j=0

bjM
j | b0, b1 . . . , bk−1 ∈ B

}
∈ ZN . (1.4)

When BN is applied to typical functions f ∈ ℓ2N , forward propagation of BN will

produce a graph resembling Ck,A, representing localization in frequency space. Back-

ward propagation of BN will produce a graph resembling Ck,B, representing localization
in position space. An example of this is shown in Figure 1.

Because f can be an eigenvector of BN , this tells us that all eigenvectors of BN

must already be localized in frequency space to Ck,A.
These eigenvectors and their corresponding eigenvalues are interesting because

there exists a correspondence between quantum maps and scattering resonances of

waves in certain chaotic systems. The operator BN is a toy model for the time

t = logM propagator of a quantum system with classical expansion rate 1 [1]. if

w is a scattering resonance of the open quantum system with Imw ≤ 0 and and λ is

an eigenvalue of BN we have that

λ = e−itω =M−iω → |λ| =M Imω ≤ 1.

In this paper, we analyze the eigenvalues of BN , Dyatlov and Jin [1] proved that

there exists a spectral gap of BN when A = B, and ι is the identity mapping. In

2



Figure 1: An example of the behavior of BN and B∗
N , for M = 4, k = 6, A = {0, 3},

B = {1, 3}. The j-th diagram in the top row shows what FNBNf looks like for a
random function f , and j-th diagram in the bottom row shows what B∗

Nf looks like
for a random function f . The top row shows forward propagation, with f becoming
localized in frequency space toward the 1st and 4rd Cantor fourths. The bottom row
shows backwards propagation, with f becoming localized in position space towards
the 2nd and 4th Cantor fourths.

Section 2, we extend this result to general A and B. Let

rk = ∥1Ck,AFN1Ck,B∥ (1.5)

The theorem can then be formally stated below.

Theorem 1. Define β to be

β := − lim
k→∞

sup
log(rk)

k log(M)
.
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If λ is an eigenvalue of BN , then

lim
N→∞

supmax {|λ| : λ ∈ Sp (BN)} ≤M−β. (1.6)

Dyatlov and Jin proved a nontrivial spectral gap by using the fractal uncertainty

principle [1]. In particular, they showed that

β > max

(
0,

1

2
− log |A|

logM

)
.

In Section 3, we describe our observations on the level spacing distribution of the

eigenvalues of BN , which we observe to be similar to the level spacing distribution of

eigenvalues of circular unitary ensembles and circular orthogonal ensembles. We pro-

vide some commentary on how we conducted our numerical experiments in Section 4.

In Section 5, we discuss the practical applications of the research conducted in our

paper.

2 Open Quantum Maps

We generalize the results concerning the spectral radius from Dyatlov and Jin [1]

to using 2 alphabets. Many of our definitions are similar, but we include them for

completeness.

2.1 Definitions

For N ∈ N, we define the abelian group ZN := Z/NZ = {0, 1, . . . , N − 1}, and have

the associated ℓ2N space of functions u : ZN → C, with the norm

||u||2ℓ2N =
N−1∑
j=0

|u(j)|2.

The unitary Fourier transform FN : ℓ2N → ℓ2N is defined as

FNu(j) =
1√
N

N−1∑
ℓ=0

exp

(
−2πijℓ

N

)
u(ℓ).

4



For a cutoff function χ : [0, 1] → C, we define its discretization χN ∈ ℓ2N to be

χN(j) = χ

(
j

N

)
, j ∈ {0, 1, . . . , N − 1}.

We fix (M,A,B, ι, χ) as in 1.1, and define the open quantum map BN as follows,

BNu(j) =
∑

(a,b)∈ι

N
M

−1∑
m,ℓ=0

Aab
jℓu

(
ℓ+ a

N

M

)
, (2.1)

Aab
jℓ =

√
M

N
exp

(
2πibj

M

)
χ

(
ℓM

N

)
exp

(
2πim(j − ℓM)

N

)
χ

(
mM

N

)
.

We also define the expanding maps ΦA and ΦB across the alphabets A and B,
respectively. More formally,

ΦA = ΦM,A :
⊔
a∈A

(
a

M
,
a+ 1

M

)
→ (0, 1),

ΦB = ΦM,B :
⊔
b∈B

(
b

M
,
b+ 1

M

)
→ (0, 1),

such that

ΦA(x) =Mx− a, x ∈
(
a

M
,
a+ 1

M

)
ΦB(x) =Mx− b, x ∈

(
b

M
,
b+ 1

M

)
.

(2.2)

The expanding map ΦA can be thought of as dividing a unit square into N 1 by 1
N

rectangles, labeling them from 0 to N − 1, discarding the j-th rectangle for all j /∈ A,

stretching each remaining rectangle into its own unit square, and stacking ech of these

unit squares on top of each other. The expanding map ΦB can be though of in a

similar fashion, but we instead discard the j-th rectangle for all j /∈ B.
We denote d to be the distance function on [0, 1], where 0 and 1 are identified with

each other. For x, y ∈ [0, 1],

d(x, y) = min
k=−1,0,1

|x− y − k| = min{|x− y|, 1− |x− y|}.

We also define the distance function over sets, in which it represents the smallest
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distance between two elements in those sets. For x ∈ [0, 1] and sets U, V ⊂ [0, 1],

d(x, V ) := inf
y∈V

d(x, y), d(V,W ) := inf
y∈V,z∈W

d(y, z).

We now introduce two useful lemmas. The first tells us about how ΦA and ΦB

interact with d. The second is a nonstationary phase estimate that demonstrates

the decay that comes from cancellation when integrating a smooth function against a

highly oscillatory function. The proof of both lemmas is well-known [1].

Lemma 2.1. Assume that x ∈ [0, 1] and that y is in the domain of Φ. Then

min{d(Φ(y), 0),M · d(y,Φ−1(x)) ≤ d(x,Φ(y))}.

Lemma 2.2. Assume that a ∈ ZN and d
(

a
N
, 0
)
≥ cN−ρ for some constants c > 0,

ρ ∈ [0, 1]). Then for all χ ∈ C∞
0 ((0, 1)), we have

N−1∑
m=0

exp

(
2πiam

N

)
χ
(m
N

)
= O(N−∞)

where the constants in O(N−∞) only depend on c, ρ, and χ.

2.2 Propagation of Singularities

For each indicator function φ : [0, 1] → R, we define

φN ∈ ℓ2N , φN(j) = φ

(
j

N

)
.

The function φN is a multiplication operator in ℓ2N . Because we are working in the

semiclassical limit, or when N → ∞, it is convenient to have this notation to allow us

to discretize cutoffs. We also define the corresponding Fourier operator

φF
N = F∗

NφNFN .

Dyatlov and Jin proved that the propagation of singularity exists in the one alphabet

case, or when forward and backward propagation of BN look the same [1]. We prove

that propagation of singularities exists in the two-alphabet case, or when forward and

backward propagation of BN differ.

Lemma 2.3. Let φ, ψ : [0, 1] → [0, 1] be functions. If we have that for some c > 0 and
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0 ≤ ρ < 1,

d(ΦA(suppψ ∩ Φ−1
A (suppχ)), suppφ) ≥ cN−ρ, (2.3)

then,

||φNBNψN ||ℓ2N→ℓ2N
= O(N−∞). (2.4)

Now say that for some c > 0, and 0 ≤ ρ < 1,

d(ΦB(suppψ ∩ Φ−1
B (suppχ)), suppφ) ≥ cN−ρ. (2.5)

Then

||ψF
NBNφ

F
N ||ℓ2N→ℓ2N

= O(N−∞), (2.6)

where the constants in O(N−∞) depend only on c, ρ, and χ.

Proof. We first prove 2.4. By 2.1, we know that for all u ∈ ℓ2N , j ∈ {0, 1, . . . , N − 1}

φNBNψNu(j) =
∑

(a,b)∈ι

N
M

−1∑
ℓ=0

Aab
jℓu

(
ℓ+ a

N

M

)

Aab
jℓ =

√
M

N
φ

(
j

N

)
exp

(
2πibj

M

)
χ

(
ℓM

N

)
ψ

(
ℓ

N
+

a

M

)
Ãjℓ,

Ãjℓ =

N/M−1∑
m=0

exp

(
2πim(j − ℓM)

N

)
χ

(
mM

N

)
.

Defining r = l − ℓM and χ1(x) = χ(Mx), and because χ(x) = 0 for x ≥ 1, we can

write

Ãjℓ =
N−1∑
m=0

exp

(
2πimr

N

)
χ1

(m
N

)
.

Now, Aab
jℓ = 0 unless j

N
∈ suppφ, ℓ

N
+ a

M
∈ suppψ, and ℓM

N
= ΦA

(
ℓ
N
+ a

M

)
∈ χ.

Roughly speaking, this restriction on j and ℓ trims away the large elements in BN , so

that we can show that the other entries decay. Along with 2.3, this tells us that

d
( r
N
, 0
)
= d

(
ℓM

N
,
j

N

)
≥ cN−ρ.

So now, by Lemma 2.2, we have

||Ãjℓ|| = O(N−∞) → ||Aab
jℓ || = O(N−∞)

from which we can see that ||φNBNψN ||ℓ2N→ℓ2N
= O(N−∞).
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We now prove 2.5. In 1.2, we defined BN = F ∗
NJA,B,M,N . Let B̃N = F ∗

NJB,A,N,M .

We can show ||φN B̃NψN || = O(N−∞) by using B̃N in place of BN and the expanding

map ΦB in place of ΦA in our proof above. From here, we have that

∥ψF
NBNφ

F
N∥ℓ2N→ℓ2N

= ∥F ∗
N (ψNFNF

∗
NJA,B,N,MF

∗
NφN)FN∥ℓ2N→ℓ2N

=
∥∥∥F ∗

N

(
φNF ∗

NJ
T
A,B,N,MψN

)∗
FN

∥∥∥
ℓ2N→ℓ2N

=
∥∥∥F ∗

N

(
φN B̃NψN

)∗
FN

∥∥∥
ℓ2N→ℓ2N

.

= O
(
N−∞)

,

which completes the proof.

We now generalize Lemma 2.3 to repeated applications of the quantum open baker’s

map.

Lemma 2.4. Let φ, ψ : [0, 1] → [0, 1] be indicator functions. Say that for some c > 0,

and 0 ≤ ρ < 1, and integer 1 ≤ k̃ ≤ k,

d(suppψ,Φ−k̃
A (suppφ)) ≥ cN−ρ. (2.7)

Then,

||φN(BN)
k̃ψN ||ℓ2N→ℓ2N

= O(N−∞). (2.8)

And if for some possibly different 0 ≤ ρ < 1, c > 0, and integer 1 ≤ k̃ ≤ k, we have

that

d(suppψ,Φ−k̃
B (suppφ)) ≥ cN−ρ. (2.9)

Then

||ψF
N(BN)

k̃φF
N ||ℓ2N→ℓ2N

= O(N−∞), (2.10)

where the constants in O(N−∞) depend only on c, ρ, and χ.

The proof of Lemma 2.4 is identical to that of the corresponding lemma by Dyatlov

and Jin [1].

2.3 Spectral Gap

To leave the gap necessary to apply Lemma 2.2, we fix ρ ∈ (0, 1) and define

k̃ = ⌈ρk⌉ ≤ k.
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We now define sets that represent the localization of (BN)
k̃ on both the frequency

and position side. We let

Xρ,A := {x ∈ [0, 1] : d(x,Φ−k̃
A ([0, 1]) ≤ N−ρ)},

Xρ,B := {x ∈ [0, 1] : d(x,Φ−k̃
B ([0, 1]) ≤ N−ρ)}.

We now define sets that discretize Xρ,A and Xρ,B. Using 1.3 and 1.4, we can also

define

Xρ,A :=
⋃

{Ck,A +m : m ∈ Z, |m| ≤ 2N1−ρ} ⊂ ZN ,

Xρ,B :=
⋃

{Ck,B +m : m ∈ Z, |m| ≤ 2N1−ρ} ⊂ ZN ,

With these definitions in place, we proceed with the proof of Theorem 1.

Proof of Theorem 1. We can see that φ ≡ 1 and ψ := 1 − XA,ρ satisfy 2.7, so by 2.8,

we have

(BN)
k̃ = (BN)

k̃
1Xρ,A

+O
(
N−∞)

ℓ2N→ℓ2N
, (2.11)

Similarly, φ ≡ 1 and ψ := 1−XB,ρ satisfy 2.9, so by 2.10, we have

(BN)
k̃ = F∗

N1Xρ,B
FN (BN)

k̃ +O
(
N−∞)

ℓ2N→ℓ2N
. (2.12)

where the constants in O (N−∞)ℓ2N→ℓ2N
only depend on ρ and χ.

Now consider some eigenvalue λ and ℓ2N normalized eigenvector u of BN . From 2.12

we have

∥u−F∗
N1Xρ,B

FNu∥ℓ2N = O
(
N−∞)

(2.13)

Combining 2.11 with 2.13 and using the triangle inequality gives us

∥(BN)
k̃
1Xk,Au− (BN)

k̃u∥ℓ2N = ∥(BN)
k̃
1Xk,Au− λk̃u∥ℓ2N = O

(
N−∞)

λk̃∥u∥ℓ2N ≤ ∥(BN)
k̃
1Xk,Au∥ℓ2N +O

(
N−∞)

∥(BN)
k̃
(
1Xk,AF∗

N1Xρ,B

)
FNu∥ℓ2N = |λ|k̃∥u∥ℓ2N +O

(
N−∞)

(2.14)

Recall the definition of rk from 1.5. Because both (BN)
k̃ and FN have norm less
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than or equal to 1, we look for a bound on the expression

1Xk,AF∗
N1Xρ,B

≤
∑

|m|,|m′|≤2N1−ρ

∥
(
1Ck,A+mF∗

N1Cρ,B+m′
)
∥ℓ2N

≤ rk(2 · 2N1−ρ + 1)2

≤ 25rkN
2(1−ρ).

Along with 2.14, this gives us

|λ|k̃ ≤ ∥(BN)
k̃
(
1Xk,AF∗

N1Xρ,B

)
FN∥ℓ2N

≤ ∥
(
1Xk,AF∗

N1Xρ,B

)
∥ℓ2N

≤ 25rkN
2(1−ρ).

as ρ approaches 1, we get an upper bound on |λ| equal to 25
1
k r

1
k
k . We know that the

sequence log(rk) is subadditive [1], so applying Fekete’s Lemma, we get that

lim
k→∞

log(rk)

k
= inf

k≥1

rk
k
.

Thus, if we take the limit as N = Mk approaches infinity, the upper bound on |λ|
approaches infk≥1

rk
k
, showing 1.6.

3 Numerical Experiments

In this section, we present numerical evidence showing that the level spacing dis-

tribution of the eigenvalues of BN resembles that spacing distribution of a random

orthogonal matrix. This resemblance gives us an idea about the behavior of the de-

cay of waves in open quantum systems. For this section, unless otherwise stated, we

assume that A = B.

3.1 Numerical Evidence for Two Alphabet Results

We present numerical experiments that show that for various special alphabets, the

outer spectral gap we proved in Theorem 1 still holds. See Figure 2.

By our work in Section 2, we can now use quantum open baker’s maps with 2

distinct alphabets in our numerical experiments, which greatly expands the scope of

experiments that we can conduct.
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Figure 2: The spectra for M = 6, k = 4, A = {2, 5}, B = {3, 4} is displayed on the
left, and the spectra for M = 8, k = 4, A = {4, 5}, B = {2, 6}. The eigenvalues in
both stay within the first spectral radius, as we proved in Section 2.

3.2 N=KM

In Sections 1 and 2, we have defined N = Mk. However, for this section, we rede-

fine N = KM , for some K ∈ N. This does not affect the structure of most of the

mathematical objects used in this paper.

We proved in Theorem 1 that when N is an integer power of M , there exists a

spectral radius M−β of BN . We claim that a similar result holds when N is an integer

multiple of M .

For special alphabets, there is evidence supporting the fact that there exists a

spectral radius of
√

|A|
M
. In all of the examples we generated, we identified that this

spectral radius holds for when N = KM as well. For example, see Figure 3.

We also noticed that sometimes, the number of eigenvalues along the edge of the

first spectral radius tended towards |A|⌈logM N⌉. This is quite a bit different from our

initial prediction of
⌈
|A|logM (N)

⌉
, which would have produced a more direct relationship

between the exact value of K and the number of eigenvalues near the first spectral

radius.

For some values of K, there is a clear second spectral radius. But for others, there

only appears to be one. We have not identified any relationship between which values

of N , M , K, A, and B produce eigenvalues that create a clear second spectral gap,

and which do not, as can be seen in Figure 4.

However, when K is an integer power of M , there always exists a second spectral

gap. Numerical evidence suggests that as K approaches an integer power of M , the
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Figure 3: Each plot uses M = 15 and A = {2, 7, 12}, but from left to right, the
values of K used are 420, 480, and 540. Surprisingly, each of these plots has exactly
|3|⌈log1 515K⌉ = 81 eigenvalues on the first spectral radius, despite having differing values
of K.

eigenvalues tend towards the first spectral radius. See Figure 5.

3.3 Level Spacing Distribution

The level spacing distribution of the eigenvalues of BN has not previously been stud-

ied. We suspect that the level spacing distribution of the quantum open baker’s map

resembles that of a random unitary matrix at times, and a random orthogonal ma-

trix at others. To provide evidence of a possible existing relation, we provide plots of

their level spacing distribution and compare the first four moments of each plot. See

Figures 6, 7, 8, and 9.

Whether the level spacing distribution of BN approaches that of a circular unitary

ensemble or a circular orthogonal ensemble is likely based off of underlying symmetries

that we do not fully understand.

BN CUE

1st Moment 1.23 · 10−2 1.23 · 10−2

2nd Moment 1.81 · 10−4 1.78 · 10−4

3rd Moment 3.11 · 10−6 2.92 · 10−6

4th Moment 6.06 · 10−8 5.29 · 10−8

BN COE

1st Moment 9.82 · 10−2 9.82 · 10−2

2nd Moment 1.27 · 10−2 1.24 · 10−2

3rd Moment 2.03 · 10−3 1.84 · 10−3

4th Moment 3.87 · 10−4 3.12 · 10−4

The moment tables for Figures 6 and 7.
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Figure 4: A plot of the eigenvalues for M = 12, A = {1, 4, 7, 10}, for varying values of
K (top left K = 360, top right K = 420, bottom left K = 576, bottom right K = 588).
It is difficult to tell when exactly there exists a clear second spectral radius.

BN COE

1st Moment 9.82 · 10−2 9.82 · 10−2

2nd Moment 1.47 · 10−2 1.24 · 10−2

3rd Moment 2.80 · 10−3 1.86 · 10−3

4th Moment 6.05 · 10−4 3.18 · 10−4

BN COE

1st Moment 9.97 · 10−2 9.97 · 10−2

2nd Moment 1.46 · 10−2 1.28 · 10−2

3rd Moment 2.74 · 10−3 1.94 · 10−3

4th Moment 6.09 · 10−4 3.34 · 10−4

The moment tables for Figures 8 and 9.

3.4 Shifting the Alphabet

We observed that when K equalsMk−M for some integer value of K, the eigenvalues

of shifted alphabets appears to be equal. We formalize our observation to the following

conjecture.

Conjecture 3.1. Two baker’s maps BN and B̃N will have the same spectra if N =(
Mk −M

)
M for some k ∈ Z+ and if Ã = A +m for some m ∈ Z, where A is the

alphabet of BN and Ã is the alphabet of B̃N .
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Figure 5: The spectra shown above is for M = 8, A = {1, 2, 5, 6}, and K ranging from
360 to 379. As K increases, the eigenvalues tend to move closer and closer towards
the outer spectral radius.

One can see the the spectra shown in Figures 10 and 11 are identical.

4 Remarks on Numerical Experiments

All numerical experiments were conducted in Python 3, using the numpy package

to calculate eigenvalues and the scipy package to generate random circular unitary

ensembles and circular orthogonal ensembles. All plots were created using matplot.lib.

The cutoff function χτ := [0, 1] → [0, 1] that we used in the numerical experiments

conducted in the paper is

χτ (x) = F
(x
τ

)
F

(
1− x

τ

)
, F (x) = c

∫ 1.02·x−0.01

−∞
1[0,1](t)e

− 1
t(1−t)dt,

where c is chosen so that F (x) = 1 for x >> 1, and τ is chosen such that χτ (x) = 1

for x ∈ [τ, 1− τ ]. This cutoff function is effective because it is differentiable, equals 1
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Figure 6: The left two plots are the spectrum and level spacing distribution of
eigenvalues for BN when M = 16, k = 3, A = {1, 2, 5, 6, 9, 10, 13, 14}, and B =
{1, 2, 3, 4, 9, 10, 11, 12}. The right plot is the level spacing distribution of a 4096 by
4096 circular unitary ensemble.

in the range [τ, 1− τ ] for some choice of small τ , and equals 0 everywhere else.

To determine the level spacing distribution of eigenvalues in random circular unitary

ensembles of size N , we first generated a thousand random N by N unitary matrices.

For each matrix, we computed its eigenvalues, sorted them by their argument, and

computed the difference in eigenvalue between each pair of consecutive eigenvalues.

We then combined the data from the calculated difference from all hundred matrices,

and calculated the moments of this combined data. A similar process was performed for

determining the level spacing distribution of eigenvalues in random circular orthogonal

ensembles.
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Figure 7: The left two plots are the spectrum and level spacing distribution of eigenval-
ues for BN when M = 20, k = 3, A = {1, 2, 11, 12}, and B = {1, 6, 11, 16}. The right
plot is the level spacing distribution of a 8000 by 8000 circular orthogonal ensemble.

Figure 8: The left two plots are the spectrum and level spacing distribution of eigen-
values for BN when M = 16, k = 3, A = {1, 2, 3, 4}, and B = {1, 5, 9, 13}. The right
plot is the level spacing distribution of a 4096 by 4096 circular orthogonal ensemble.

5 Practical Takeaways

The quantum open baker’s map is a toy model for Poincaré sections upon which come

from scattering Hamiltonians with hyperbolic trapped sets. For details on how specific

open quantum systems reduce to open quantum maps, see papers by Nonnenmacher-

Sjöstrand-Zworski [6] [7]. Our results on open quantum maps allows us to better

understand the behavior the frequency and decay of waves in open quantum systems.
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Figure 9: The left two plots are the spectrum and level spacing distribution of eigen-
values for BN when M = 12, k = 3, A = {1, 2, 7, 8}, and B = {1, 4, 7, 10}. The right
plot is the level spacing distribution of a 1728 by 1728 circular orthogonal ensemble.

Figure 10: One demonstration of Conjecture 3.1, with M = 8 and K = 83 − 8 = 504,
with alphabets A = {1, 3}, A = {2, 4}, and A = {3, 5}, from left to right.
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Figure 11: Another example of Conjecture 3.1, with M = 10 and K = 103− 10 = 990,
with alphabets A = {1, 6}, A = {2, 7}, and A = {3, 8}, from left to right.
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[2] Mirko Degli Esposti, Stéphane Nonnenmacher, and Brian Winn. Quantum variance

and ergodicity for the baker’s map. Communications in Mathematical Physics,

263(2):325–352, Feb 2006.
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