
Sparse Symmetrizers of Diagonalizable Real-λ Matrices

Apoorva Panidapu

Under the direction of

Mo Chen
Graduate Student

Massachusetts Institute of Technology

Research Science Institute
August 2, 2022

Abstract

Every diagonalizable m×m matrix A with real eigenvalues can be symmetrized by some
change of basis S; that is, there exists an invertible S such that H = SAS−1 is symmetric.
In fact, there are infinitely many such S, but we want to specifically find sparse S, such as
a diagonal or tridiagonal matrix. To this end, we formulate and code a convex optimization
problem that enforces matrix sparsity by minimizing the L1 norm. We successfully recover
sparse outputs for diagonal and diagonally dominant matrices A, but fail to find sparse S
for tridiagonal and sparse random matrices.

Summary

In physics and engineering computational problems, we can encode models of the real
world as arrays that we call matrices. Then, through simple multiplications, we can sym-
metrize such matrices to better understand the objects they model. For example, in wave
equations, finding the right symmetrizer yields the law of conservation of energy. In this
paper, we write an algorithm that automatically finds symmetrizers that improve our un-
derstanding of physical problems and can potentially increase computational efficiency when
working with real-world models.

1 Introduction

Sparse matrices, arrays in which most of the elements are zero, have recently become a

subject of interest in fields where computational efficiency is greatly valued, such as com-

pressed sensing and signal processing. For large matrices that arise in these sorts of physics

and engineering computational problems, there is typically some sort of natural sparse sym-

metrizing change of basis that can reveal a right inner product or weighting to better under-

stand the problem. For example, finding the right inner product in wave equations yields the

law of conservation of energy [1]. However, when working with these large matrices, it can

be difficult to find the necessary matrix to reveal the inner product. To solve this issue, we

can instead frame this question as an optimization problem to automatically produce this

change of basis.

More specifically, for every diagonalizable m ×m matrix A with real eigenvalues, there

exists an invertible S such that H = SAS−1 is symmetric, meaning H = HT . In fact, there

are infinitely many such S, but we prefer sparser S, such as a diagonal or tridiagonal matrix.

In this paper, we will study if such a sparse S can be generated by solving some tractable

optimization problem. Moreover, we would like to phrase it in terms of a convex optimization

problem. This is because convexity allows us to find a global optimizer efficiently and lends

itself to several powerful theoretical tools, such as duality [2].

Through numerical experiments in the computing language Julia, we determine that our

convex optimization formulation is able to automatically output sparse matrices for diagonal

and diagonally dominant matrices A. However, the program fails to output a satisfactorily

sparse matrix for tridiagonal and sparse random matrices A. We speculate that this is due

to these matrices being less sparse.

The remainder of the paper is structured as follows: In Section 2, we introduce the nec-

essary background to understand the problem statement. We then proceed onto the convex

1

reformulation of the problem in Section 3 and provide some illustrative examples in Section

4. In Section 5, we briefly elaborate on the relevance of p-norms to the notion of sparsity

in optimization. Finally, in Section 6, we discuss the results of this research and potential

future work, and posit its practical applications in Section 7. To see the code implemented

for the convex optimization problem, refer to Appendix A.

2 Preliminary Information

To better understand the problem statement, we provide the following necessary defini-

tions which commonly arise in physical computation problems.

Definition 2.1. A square m×m matrix H is said to be symmetric if ai,j = aj,i for all i, j.

In other words, H is symmetric if and only if H = HT .

Definition 2.2. A square m ×m matrix A is said to be diagonal if all the entries outside

the main diagonal are zero, i.e, if ai,j = 0 for i 6= j.

For example, the identity matrix is a diagonal matrix.

Definition 2.3. A square m × m matrix A is said to be diagonalizable if there exists a

diagonal matrix D and an invertible matrix C that satisfies

C−1AC = D.

In other words, A = CDC−1 is similar to a diagonal matrix D.

Definition 2.4. Let A be a square m ×m matrix and p ≥ 1 be a real number. Then, the

Lp-norm of A, denoted ||A||p, is defined to be

||A||p =

(
m∑
i=1

m∑
j=1

|ai,j|p
)1/p

.

Definition 2.5. A square m×m real symmetric matrix W is said to be positive-definite if

zTWz > 0 for every non-zero vector z ∈ Rm.

2

There is no universal rigorous definition for sparsity, so to satisfy the intentions of our

problem, we define it as follows.

Definition 2.6. A matrix is sparse if over 70% of its elements are zero.

This condition of sparsity allows computation with large matrices to be significantly more

efficient because the number of operations performed decreases; the sparser a matrix is, the

faster the output time in corresponding computational problems.

Now that we have defined the relevant terms, we can proceed to the problem analysis

and reformulation.

3 Positive-Definite Reformulations

Recall that for diagonalizable m × m matrix A with real egenvalues, there exists an

invertible S such that H = SAS−1 is symmetric. Then, by definition,

H = SAS−1 = HT = (S−1)TATST .

After a simple manipulation involving cancellation by inverses, we obtain the equation

STSA = ATSTS.

Define the symmetric positive-definite matrix W = STS to write the equation

STSA = WA = ATSTS = ATW.

Then, we can instead ask the question of whether we can find a sparse positive-definite W

such that WA = ATW . If so, we can work backwards to find sparse S, if necessary, using

methods like the sparse Cholesky factorization [3].

This reformulation is beneficial because WA = ATW is a linear relationship in W, which

means it is easier to analyze with a wider variety of methods. Moreover, W defines a weighted

inner product 〈x, y〉 = xTWy which reveals the symmetric property of A without changing

the basis.

3

We now frame this question as a convex optimization problem as follows:

min
W∈Rm×m

||W ||1, (1)

subject to WA = ATW, (2)

W = W T , (3)

W � I. (4)

Note that, for simplicity, we restrict A and W to be real matrices. We minimize a regularizer

||W ||1 =
∑

i,j |Wi,j| to push the optimization towards sparse solutions W, as is well-known

from the field of compressed sensing. The last condition corresponds to W being positive-

definite, which ensures that we obtain nontrivial solutions.

However, to code this algorithm efficiently, we further manipulate the written formulation.

In Julia, we are able to declare a matrix to be positive-definite instead of having an additional

constraint. To this end, we let matrix V = W−I so the inequality constraint W � I becomes

V � 0 for V = W − I. Using the substitution W = V + I we can rewrite equality constraint

(2) as

(V + I)A = AT (V + I)

and constraint (3) as (V + I) = (V + I)T , which simplifies to V = V T . Now, we proceed

according to standard procedure in such optimization problems and declare a new general

variable T to rewrite (5) as follows:

min
T∈Rm×m

sum(T), (5)

subject to (V + I)A = AT (V + I),

V = V T ,

T . ≥ V + I,

T . ≥ −(V + I),

V � 0,

where . ≥ denotes an element-wise comparison, meaning all corresponding elements satisfy

4

the written inequality.

4 Computed Example for Antisymmetric Matrices

To illustrate the optimization algorithm, we discuss the following example taken from

Johnson [4].

Let there be two coupled masses on springs, as shown in Figure 1.

Figure 1: Two coupled masses on springs

Using Newton’s law for the positions x1(t) and x2(t) and by letting v = dx/dt, we can

translate this situation into the following system of first-order ordinary differential equations

which simplifies to:

dx1
dt

= v1
dx2
dt

= v2
dv1
dt

= −k3
m
x2 +

k2
m

(x1 − x2).

Here, the spring with spring constant k2 exerts a force with magnitude k2(x1 − x2) on the

two masses.

We now write this system in matrix form as

d

dt

x1

x2

v1

v2

=

0 0 1 0

0 0 0 1

− (k1+k2)
m

k2
m

0 0

k2
m

− (k3+k2)
m

0 0

.

5

For simplicity, we set m1 = m2 = m and k1/m = k2/m = k3/m = 0.01 to obtain matrix

A =

0 0 1 0

0 0 0 1

−0.02 0.01 0 0

0.01 −0.02 0 0

.

We slightly modify the convex optimization program provided in Appendix A to account for

the antisymmetric nature of A, and obtain the output matrix:

1 0 0 0

0 1 0 0

0 0 66.67 33.33

0 0 33.33 66.67

.

This matrix illustrates a basis under which the two modes of the springs in the problem

are orthogonal, which allows one to build complicated types of motion from these modes.

5 Lp-norms

We are optimizing for sparsity in this problem, which can be thought of as minimizing

the “L0”-norm of a matrix which counts the number of nonzero entries. In our formulation,

we have p = 1 as a convex condition. However, the formulation fails to recover sparse

symmetrizing matrices for tridiagonal and sparse random matrices. We speculate that this

is because the L1 norm doesn’t enforce sparsity enough. Instead, we consider two alternative

routes to output sparse matrices in these cases: minimizing the p-norm for 0 < p < 1 or

weighting the main diagonal of the matrix by some small value such that it makes nonzero

entries off the diagonal more costly, thereby pushing nonzero terms onto the diagonal in

order to satisfactorily minimize the objective function.

6

6 Results and Future Work

We use the numerical computing language Julia to solve our proposed convex optimization

problem with an SDP solver [5] for generated examples. Thus far, we have verified that we

can find sparse W for diagonal and diagonally dominant matrices. However, tridiagonal and

sparse random matrices didn’t produce a sparse enough W . As discussed in the previous

Section 5, an interesting direction to pursue is seeing whether minimizing the Lp-norm of

W for 0 < p < 1 (as opposed to the L1-norm) would produce sparser W . We speculate that

this approach would succeed based on previous literature in optimization, but it comes at

the cost of the convexity property, taking a toll on computational efficiency. We haven’t yet

verified this claim due to software limitations, as there is currently no existing solver in Julia

that can accommodate for the variety of constraint types in our formulation.

However, we can easily adapt the algorithm to succeed in producing sparse matrices for

antisymmetric matrices, as seen in Section 4. Moreover, we have only been concerned with

finding S such that SAS−1 = H for a real symmetric matrix H, but we can write similar

formulations to find S such that SAS−1 = G, where G is a complex-valued Hermitian matrix

where G = GT .

The potential real-world applications of this research are discussed in the next section.

7 Practical Takeaways

As mentioned in Section 1, sparse matrices have major implications in improving effi-

ciency and understanding in physics and engineering computational problems. Thus, this

research can be applied to uncover certain properties for physical problems that allow sci-

entists to better understand the intuition and structure of their problem. Moreover, this

research further adds to the literature of leveraging numerical algebra to speed up compu-

tation without losing a significant amount of information. Finally, tangential applications to

7

this research include higher accuracy with lower cost in compressed sensing and more com-

plex recommendation systems since sparsity would allow these systems to handle greater

amounts of information.

8 Acknowledgments

I’d like to thank Mo Chen for mentoring this research and Professor Steven Johnson for

supervising and offering valuable guidance. I’m furthermore grateful to Dr. John Rickert,

Dr. Tanya Khovanova, Dr. Jessie Oehrlein, Professor David Jerison, and Professor Ankur

Moitra for their helpful comments and suggestions. I’d also like to thank RSI, CEE, MIT,

and the generous sponsors, Mr. Alexander Clark, Mr. Alexander Wu, Dana Caulder, Ph.D.,

Mr. David Schairer, Eric Rains, Ph.D., Mr. and Mrs. Tony Eltringham, Mr. Sam and Mrs.

Cindy Leung, and Admiral William A. Owens (USN, Ret.) for the opportunity to work on

this problem. Finally, I want to thank my family and my friends at the Research Science

Institute for their unceasing support and company.

8

References

[1] S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices,
and Least Squares. Cambridge University Press, 2018.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[3] T. A. Davis. Direct Methods for Sparse Linear Systems, pages 37–68. Society for Indus-
trial and Applied Mathematics, 2006.

[4] S. Johnson, Lecture notes in 18.06: Linear algebra at mit. Available at , https://github.
com/mitmath/1806/blob/master/notes/ODEs.ipynb.

[5] I. Dunning, J. Huchette, and M. Lubin. Jump: A modeling language for mathematical
optimization. SIAM Review, 59(2):295–320, 2017.

[6] G. Calafiore and L. Ghaoui. Optimization Models. Cambridge University Press, 2014.

9

https://github.com/mitmath/1806/blob/master/notes/ODEs.ipynb
https://github.com/mitmath/1806/blob/master/notes/ODEs.ipynb

A Code in Julia

The following is our optimization code in the case of a random diagonal matrix S. The

program prints out the values of W , V , V + I, and W TA−ATW to verify that the problem

constraints are satisfied.

us ing JuMP, SCS , LinearAlgebra , HiGHS, D i s t r i bu t i o n s , BenchmarkTools

n = 10

H = Hermitian (rand (n , n))

d = rand (n)

S = diagm (d)

A = Sˆ(−1)∗H∗S

W = S ’∗ S

model = Model (SCS . Optimizer)

s e t s i l e n t (model)

@var iable (model , T [1 : n , 1 : n])

@var iable (model , V[1 : n , 1 : n] , PSD)

@object ive (model , Min , sum(T))

@constra int (model , c1 , V .== V’)

@constra int (model , c2 , T .>= (V + I))

@constra int (model , c3 , T .>= −(V + I))

@constra int (model , c4 , (V + I)∗A .== A’ ∗ (V + I))

JuMP. opt imize ! (model)

T so l = JuMP. value . (T)

i f t e r m i n a t i o n s t a t u s (model) == JuMP.MOI.OPTIMAL

@show t e r m i n a t i o n s t a t u s (model)

@show p r i m a l s t a t u s (model)

10

@show o b j e c t i v e v a l u e (model)

@btime value (V)

@show d i sp l ay (va lue (V) + I)

@show d i sp l ay (W)

@show d i sp l ay (W∗A − A’∗W)

end

11

	Introduction
	Preliminary Information
	Positive-Definite Reformulations
	Computed Example for Antisymmetric Matrices
	Lp-norms
	Results and Future Work
	Practical Takeaways
	Acknowledgments
	Code in Julia

