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Abstract

In this paper, we explore the sharpness of the qualitative robust uncertainty principle by
inspecting the examples of different functions that could possibly extremize the uncertainty
principle. We look at the examples of one Gaussian, sum of Gaussians arranged in a finite
arithmetic progression and the blurred and truncated Dirac comb. For each example, we ap-
proximate the product of measures of two smallest sets, where the function and its Fourier
transform are 1

10
-concentrated. In the course of this research, we get that in all listed exam-

ples, the value of the explored product is approximately the same as in case of a Gaussian
function.

Summary

In Fourier analysis, uncertainty principles are inequalities that show that both the func-
tion and its Fourier transform cannot both be concentrated near some points. In this paper,
we study the sharpness of one of such uncertainty principle which is related to concentra-
tions of the function and its Fourier transform on a measurable set. We inspect several
examples where the inequality could be sharp to form conjectures concerning the nature of
this uncertainty principle.



1 Introduction

The uncertainty principle is an inequality that shows that a function and its Fourier

transform cannot both be localized. The most well-known example of this is Heisenberg’s

uncertainty principle. It states that for an L2-normalized function f : R → C the following

inequality is true

(

∫ ∞
−∞

x2|f(x)|2dx)(

∫ ∞
−∞

ξ2|f(ξ)|2dξ) ≥ 1

16π2
.

This shows that the function and its Fourier transform cannot both have its L2-masses too

concentrated near the point x = 0. In this paper, we only focus on the qualitative robust

uncertainty principle, which is the robust version of the qualitative uncertainty principle

from Folland and Sitaram’s survey [1]. The definition of robustness is taken from the study

by Candes and Tao [2], and the uncertainty principle is considered robust if it still holds

under small perturbations of the function. Robustness of the uncertainty principle ensures

that the uncertainty principle can be applied to physical phenomena, since it will still hold

after small measurement errors.

Theorem 1.1 (Robust qualitative uncertainty principle [3]). Let f : R → C be an L2-

normalized function, such that f is ε-concentrated on a measurable set T and f̂ is δ-concentrated

on a measurable set W , then

|T ||W | ≥ (1− δ − ε)2,

where | · | denotes Lebesgue measure.

This means that f and f̂ cannot both be concentrated on small measurable sets.

Definition 1.1. For a function f : R → C normalized in L2-space, E(f) is a set such

that
∫
E(f)
|f(x)2|dx ≥ 99/100 and |E(f)| is minimal. Analogously, Σ(f) is a set such that∫

Σ(f)
|f̂(ξ)|2dξ ≥ 99/100 and |Σ(f)| is minimal.

The constant 99
100

was chosen to be big enough so that the uncertainty principle holds,

but also so that
√

1− 99
100

was rational and we could write this statement equivalently as
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“f 1
10

-concentrated on the set E”. It follows from Theorem 1.1 that since f and f̂ are 1
10

-

concentrated on E(f) and Σ(f) respectively, |E(f)||Σ(f)| ≥ (1 − ( 1
10

+ 1
10

))2 = 16
25

. The

goal of this project is to try to compute this product for different functions f using different

approximations and make conclusions about the relation between the function’s structure and

the value of |E(f)||Σ(f)|. This would build up our intuition of how to construct a function

that extremizes the uncertainty principle. Finding such functions is important because it is

not yet known what the greatest lower bound for the left-hand side product in Theorem

1.1 is. We are particularly interested in calculating the value of this product for sums of

Gaussian functions and for functions concentrated near the points of delta functions in

Fourier quasicrystals, since we can construct such functions using convolutions of functions

and these quasicrystals. Studying the uncertainty principle is important because it is closely

related to signal recovery, which has various applications [2].

2 Preliminaries

Definition 2.1. The Fourier Transform of a function f : R → C is denoted by f̂(ξ) and is

defined by the formula

f̂(ξ) =

∫ ∞
−∞

e−2πixξf(x)dx

for all real numbers ξ.

Definition 2.2. We define the convolution f ∗ g of two functions f and g by

(f ∗ g)(x) =

∫ ∞
−∞

f(x− y)g(y) dy.

Definition 2.3. A Dirac delta function at point x0 is a measure δx0 that is defined for the

subsets of the set of real numbers as

δx0(A) =


δx0 = 1 x0 ∈ A

δx0 = 0 x0 /∈ A
.
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Corollary 1. It can be seen from the definition of a Dirac delta function that for any

continuous function f : R→ C, the following relation holds∫ ∞
−∞

f(x)dδx0 = f(x0).

Definition 2.4. A Fourier quasicrystal µ is a measure of a form
∑∞

i=0 aiδbi with a Fourier

transform of a form
∑∞

i=0 ciδdi , where {ai} and {ci} are sets of complex numbers, {bi} and

{di} are discrete sets of real numbers.

Theorem 2.1 (Parseval’s identity). For two functions f : R→ C and g : R→ C such that

there exist some constants c and α for which the inequalities |f(x)| < c
1+xα

and |g(x)| < c
1+xα

holds for every x, the following relation is true:∫ ∞
−∞

f(x)g(x)dx =

∫ ∞
−∞

f̂(ξ)ĝ(ξ)dξ.

Definition 2.5. The Fourier transform of a measure µ is the distribution µ̂(ξ) such that the

relation ∫ ∞
−∞

f(x)dµ =

∫ ∞
−∞

f̂(ξ)dµ̂(ξ)

holds for all test functions f , similar to Parseval’s identity for functions.

Theorem 2.2 (Poisson summation formula). For a function f : R→ C such that there exist

some constants c and α for which the inequality |f(x)| < c
1+xα

holds for every x. Then∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Corollary 2. The Dirac comb with the formula
∑

n∈Z δn is the most well-known example of

a Fourier quasicrystal that arises from Poisson summation formula.

Definition 2.6. The L2-norm of a complex-valued function f is defined as the value of

(
∫∞
−∞ |f(x)|2dx)1/2. The collection of all functions with finite L2-norm is the L2-space. We

call the function L2-normalized if its norm in L2-space is 1.

Definition 2.7. The function f is ε-concentrated on a measurable set T if ||f − 1Tf || ≤ ε.
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Definition 2.8. For each ε > 0 we define

Kε(x) =
21/4

ε1/2
e−πx

2/ε2 .

The normalization of Kε is chosen so that it is L2-normalized. It also satisfies the relation

K̂ε = K1/ε.

3 General Observations

In this section, we write the general observations about the product |E(f)||Σ(f)| for a

general function f .

Lemma 3.1. Let f : R→ C be such continuous function that there exists such k that |f(x)|

takes every value less than k times and is bounded. Define Sc := {x ∈ R : |f(x)| > c}. Then

E(f) exists and can be chosen to be Sc for some c.

Proof. Note that since |f | is continuous and takes each value less than k times, |Sc| is a

decreasing continuous function of c that is defined for all positive numbers c. Take c such

that
∫
Sc
|f(x)|2dx = 99

100
. Such c exists because the value of

∫
Sc
|f(x)|2dx changes continuously

with c (this follows from the fact that |Sc| changes continuously with c) and approaches 0 for

big c. Assume that there is a measurable set E such that |E| < |Sc| and
∫
E
|f(x)|2dx ≥ 99

100
.

Let c′ be such real number that |Sc′ | = |E|. Then
∫
Sc′
|f(x)|2dx =

∫
R 1Sc′ |f(x)|2dx =

∫∞
0
|{x ∈

Sc′ : |f(x)|2 > t}|dt. Similarly,
∫
E
|f(x)|2dx =

∫∞
0
|{x ∈ E : |f(x)|2 > t}|dt. For t >

√
c′,

|{x ∈ Sc′ : |f(x)|2 > t}| = |{x : |f(x)|2 > t}| ≥ |{x ∈ E : |f(x)|2 > t}|

and for t ≤
√
c′,

|{x ∈ Sc′ : |f(x)|2 > t}| = |Sc′ | = |E| ≤ |{x ∈ E : |f(x)|2 > t}|.

It follows that the first integral is greater than or equal to the second integral. Thus,∫
Sc′
|f(x)|2dx ≥

∫
E
|f(x)|2dx ≥

∫
Sc
|f(x)|2dx, therefore c′ ≥ c. But |Sc′ | = |E| < |Sc|,

therefore c′ < c. Contradiction, therefore the statement of the lemma is true.
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Corollary 3. This lemma can be applied to f̂ and Σ(f) too. This lemma makes it easier to

determine |E(f)| and |Σ(f)| for many functions.

Remark. It is also easy to see that modulation and translation of f do not change the value

of |E(f)||Σ(f)|, same for the L2-normalized time scaled f .

4 One Gaussian

In this section, we evaluate |E(f)||Σ(f)| in the case when f(x) = Kε(x). The function

Kε is interesting for us because it and its Fourier transform are quite concentrated near the

point x = 0 and it extremizes the Heisenberg’s uncertainty principle, therefore it would be

interesting to see if that is the case for the robust qualitative uncertainty principle.

Example 4.1. Firstly, we can compute the value of |E(f)||Σ(f)| when f is a Gaussian

function. It is sufficient to compute it only for K1 because we can get any Gaussian from time

scaling and translating K1 and then L2-normalizing the function we got, therefore the value of

|E(f)||Σ(f)| for all Gaussians is the same. We can understand that E(K1) = Σ(K1) because

K̂1 = K1. We can deduce from Lemma 3.1 that E(K1) = (−t, t) for some positive number t.

Then
∫ t
−t 21/2e−2πx2dx = 99/100, therefore we can get that

∫ t√2π

−t
√

2π
e−x

2
dx = 99

100

√
π and t =

erf−1(99/100)√
2π

≈ 0.7266, where erf−1 denotes the inverse error function. Then |E(f)||Σ(f)| =

4t2 ≈ 2.1119.

It can be seen that the difference between the value of the product |E(Kε)||Σ(Kε)| and

its lower bound from Theorem 1.1, which is equal to 16
25

, is quite large. This gives us a reason

to look for other functions where this product might be smaller.
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5 Sum of Gaussians

Sums of Gaussians is an interesting family of functions that can be used to approximate

quite many functions. They are also convenient to work with because they vanish outside a

certain interval and it is easy to compute the Fourier transform of a Gaussian. Below, we

try to estimate the value of |E(f)||Σ(f)| in the case when f is a finite sum of Gaussian

functions.

Example 5.1. Let f be an L2-normalized multiple of
∑n

j=1 Aje
−π

(x−cj)
2

v2
j . Let’s also assume

that numbers cj are sufficiently spread apart so that we can approximate the function at each

point by the value of only one Gaussian from the sum that has the largest absolute value

at that point. From Lemma 3.1 we can understand that E(f) is the set of such numbers x

that |f(x)| ≥ c for some constant c. It follows that E(f) can be approximated as a union

of n disjoint intervals with centers at points cj, even though some of these intervals may

have length zero. From solving the equation Aje
−π

(x−cj)
2

vj
2

= c we get that an interval with the

center at point cj has length 2

√
−
vj2 ln c

Aj

π
for Aj ≥ c and length 0 for Aj < c. The Fourier

transform has the formula f̂(ξ) =
∑n

j=1Ajvje
−2πicjξe−πx

2vj
2
. It is difficult to say anything

about Σ(f) in this case.

Gaussians Centered at the Points of an Arithmetic Progression

In this subsection, we look at the case when Gaussians in the sum are an equal distance

apart. This case is important because the L2-mass of the function is concentrated near the

integer points, similar to the case of the Dirac comb. This suggests that the Fourier transform

of the function may be concentrated near the integer points too, since the Dirac comb is its

own Fourier transform. In this case, it is reasonable to assume that the product |E(f)||Σ(f)|

is quite small.

Example 5.2. Let g(x) =
∑k−1

j=0 Kε(x−j). Then ĝ(ξ) =
∑k−1

j=0 e
−2πijξK1/ε(ξ) = e−2πikξ−1

e−2πiξ−1
K1/ε(ξ).
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In this case, for small enough ε, |E(g)| is approximately the same as k|E(Kε)| because

if we approximate the function on k intervals as the value of only one Gaussian that is

biggest on the interval, then E(g) contains the portion of |E(Kε)| of every Gaussian in the

sum. For sufficiently large k, we can approximate |ĝ(ξ)| = | e−2πikξ−1
e−2πiξ−1

K1/ε(ξ)| as k|K1/ε(ξ)|

near integer points and 0 far from integer points. Let’s assume that |ĝ(ξ)| = k|K1/ε(ξ)| for

x ∈ (n − 1
2k
, n + 1

2k
) for all integer n. Then Σ(g) is approximately

⋃m
j=−m(j − 1

2k
, j + 1

2k
)

for the smallest m such that
∑m

j=−mK1/ε(j)
2 ≥ 99

100
(
∑∞

j=−∞K1/ε(j)
2), where both sides

of the inequality can be approximated by integrals and the condition can be replaced by∫ m
−mK1/ε(x)2dx ≥ 99

100
(
∫∞
−∞K1/ε(x)2dx), then we can see that |Σ(g)| ≈ |Σ(K1/ε)|

k
, therefore

|E(g)||Σ(g)| ≈ |E(K1)||Σ(K1)|.

6 Blurred and Truncated Dirac Comb

In this section, we construct a function that approaches the Dirac comb but vanishes

outside some interval. It also has the property that it is very similar to its own Fourier trans-

form and can be approximated very closely as the sum of Gaussians, making the evaluation

of |E(f)||Σ(f)| a lot easier.

Example 6.1. Let µ(x) be
∑

n∈Z δ0(x − n), a Dirac comb. In this example, we construct

a function that approaches the structure of a Dirac comb that nearly vanishes outside of

some interval. Let f = K1/ε ∗ (µ · Kε) so that f(x) =
∑

n∈ZK1/ε(x − n)Kε(n). Then

f̂ = K̂1/ε∗(µ̂·K̂ε) = Kε ·(µ∗K1/ε) and f̂(ξ) =
∑

n∈ZKε(ξ)K1/ε(ξ−n). Let’s notice that in this

case, for small ε, both f and f̂ at each point x can be approximated very closely by the value of

K1/ε(x−n)Kε(n) where n is the closest integer to x. If we approximate the value of K1/ε(x−n)

as ε1/2 in the interval (n− ε
2
, n+ ε

2
) we can see that

∫∞
−∞ |f(x)|2dx ≈

∑∞
j=−∞

∫ j+ ε
2

j− ε
2
εKε(j)

2dx =∑∞
j=−∞ ε

2Kε(j)
2 ≈ ε2

∫∞
−∞Kε(x)2dx. Then if we L2-normalize f , E(f) will become approxi-

mately
⋃t
j=−t(j−

ε
2
, j+ ε

2
) such that ε2

∫ t
−tKε(x)2dx = 99

100
ε2
∫∞
−∞Kε(x)2dx. Then 2t ≈ |E(Kε)|
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and |E(f)| ≈ 2tε ≈ ε|E(Kε)| = |E(K1)|. Analogous argument can be made for the f̂ and

Σ(f), therefore we get that |E(f)||Σ(f)| ≈ |E(K1)||Σ(K1)|.

7 Discussion and Future Work

In this project, we have investigated the value of |E(f)||Σ(f)| for the functions that could

potentially extremize the robust qualitative uncertainty principle. By our approximations, we

have discovered that the product is approximately the same for the functions that we chose,

but we cannot make any rigorous conclusions from this because the approximations are very

rough. The investigation of these examples did not give any definite results concerning for

which functions f the value of |E(f)||Σ(f)| is small or big, or what this value would be

for a random function, but it suggests that probably the value of |E(f)||Σ(f)| for the case

when f is concentrated near the points of delta functions of a Fourier quasicrystal is not too

big. This could sign that these “quasicrystal-like” functions could extremize the uncertainty

principle in some cases, but more evidence is needed.

In the future, we plan to research the topic further. A good option would be to find or

make computer software that would compute the value of the product |E(f)||Σ(f)| for a given

function f . This would give us some valuable insight into the behaviour of the inequality for

different functions. With this addition, it would be possible to make some conjectures about

the structure of the functions that are close to extremizing the uncertainty principle.

Another good option for our future work would be to come up with a way to approximate

more precisely these functions from the paper. This would make it easier to make solid

conclusions and form conjectures about the nature of the investigated product |E(f)||Σ(f)|.

The question of what functions extremize the uncertainty principle is closely related

to our research, and we would want to take it into our focus in the future research. As

all of the functions that extremize the discrete-time analogue of our uncertainty principle
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have been proven to be the Dirac comb and sequences that can be reduced to it by scalar

multiplication and cyclic permutation in the time domain and in the frequency domain [3],

it may be possible to classify all functions that extremize the uncertainty principle in our

case too. Even though this problem sounds very difficult, the examples that we looked at

could be useful in analyzing it to form conjectures and proving them. It would also be very

interesting to look at the generalization of the problem for functions on higher-dimensional

spaces.

In this project, we have mostly focused on functions that are sums of Gaussian functions,

and for the future research a viable option would be to try changing the model functions.

This may shed light on the problem from a different angle and make the computations and

approximations of the value of |E(f)||Σ(f)| easier.
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