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Abstract

We study a problem proposed by Johnson, Leader, and Russell. Given positive integers n and

k, we aim to find the maximum number of maximal chains in a subset with size k of a square poset

P = {1, 2, ..., n}2. Kittipassorn made progress on this problem by solving a stronger case of which

the number of elements in each level is also given. With his work, we find the exact solution for

1 ≤ k ≤ 3n − 2. For general k, we find that the optimal configuration is given by a 1-Lipschitz

function, i.e. the difference between the number of elements in two consecutive levels is at most 1.

Summary

We study the following problem: given an n× n grid and an integer k, among all the configura-

tions of selecting k points in the grid, what is the maximum number of paths going from one end

to the other that can only pass through the selected points? We solve the problem for small values

of k. For general k, we find a constraint for a configuration to have a maximum number of paths:

the difference between the number of elements in adjacent levels is at most 1.
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1 Introduction

Given the proportion of size of a subset in the power set of {1, 2, ..., n}, Johnson, Leader, and

Russell [1] solved asymptotically the maximum number of maximal chains in such a subset. At the

end of the paper, they considered a variant of the problem of which the poset is P = {1, 2, ..., n}2.

They asked the following question, with P (T ) denoting the number of maximal chains in T .

Question 1.1 (Question 9 [1])

Given an integer k with 0 ≤ k ≤ n2. Let T be a subset of the poset P. What is

max
T :|T |=k

P (T )?

That is, we choose k elements in the poset P to form a subset such that aiming for the greatest

number of maximal chains. We can represent the poset P = {1, 2, ..., n}2 by an n× n square grid.

And thus a chain can be represented as a line connecting the elements in P.

For example, as in Figure 1, we select the blue elements. The red line shows one of the maximal

chains in T ⊆ P.

Figure 1: A maximal chain in T ⊂ P

Therefore, an simpler yet equivalent statement to the problem is as follows: given an n×n grid

and an integer k, among all configurations of selecting k points in the grid, what is the maximum

number of paths going from one end to the other that only passes through the selected points?

In this paper, we aim to answer Question 1.1 and give the optimal configuration of points. In

contrast to Johnson, Leader, and Russell’s paper of finding the asymptotic solution, we aim to find

the exact value of the maximization maxP (T ).
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In Section 2.2, we review on some progress made by Kittipassorn [3]. He considered a strong

variant of the problem: given the number of points in each level r1, r2, . . . , r2n−1 instead of the total

number of points in the grid k. He gave the unique optimal configuration. Therefore, we only need

to consider Kittipassorn’s configuration for any n and k.

Our paper gives the maximum number of maximal chains and the optimal configuration for the

case of k ≤ 3n−2. We also find an upper bound of P (T ) for general k. At last, we find a constraint

to partition k into levels: the difference between number of points in adjacent levels is at most 1,

i.e. it is given by a 1-Lipschitz function. We then summarize our results with a pseudo-code to

compute the maximum maxP (T ) over all configuration T such that |T | = k.

2 Background

2.1 Preliminaries

We first review on some terminology and definitions from poset theory. For reference, we refer

to Richard P Stanley’s Enumerative Combinatorics [2].

Let n be a positive integer. We write [n] to denote the set {1, 2, ..., n}. Consider the poset

(P,�) where

P := [n]2 = {(i, j) : i, j ∈ [n], }

and relation � is defined by (i, j) � (i′, j′) if i ≥ i′ and j ≥ j′.

Now we introduce some definitions that will be frequently used in this paper.

A chain in P is a subset of P in which any two elements are comparable. A maximal chain

in P is a chain in P with 2n− 1 elements.

We can partition the poset P into levels by

P =
2n−1⊔
d=1

Ld

where Ld = {(i, j) : i+ j = d+ 1}. Notice that in the standard convention, the elements in the d-th

level are exactly the elements with rank d − 1. A maximal chain is thus a chain with exactly one

element from each level Ld, where d = 1, 2, . . . , 2n− 1.
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2.2 Kittipassorn’s configuration

Teeradej Kittipassorn [3] considered a stronger case in which the number of elements in each level

of T is also given, namely r1, r2, ..., r2n−1. More precisely, we have the following variant of Johnson-

Leader-Russell question: given r1, r2, . . . , r2n−1, what is maxP (T ), where the maximization is over

all configurations T such that ri = |T ∩ Li|, for all 1 ≤ i ≤ 2n − 1? This has been solved by

Kittipassorn. In the following, we will describe his solution to the problem.

Given r1, r2, . . . , r2n−1, Kittipassorn considered the following configuration T ∗(r1, r2, . . . , r2n−1):

T ∗(r1, r2, . . . , r2n−1) :=
2n−1⋃
h=1

{(
h+ 1

2
+ t,

h+ 1

2
− t
)

: t = αr, αh+1, ..., βr

}
,

where for each h = 1, 2, ..., 2n− 1, the numbers αh and βh are unique real numbers such that

αh + βh ∈ {0, 1}, βh − αh + 1 = kh, and h+ 2αh is an odd integer.

Another way to describe the configuration T ∗(r1, r2, . . . , r2n−1) is that it is the unique configu-

ration satisfying the following conditions:

1. For each level, all the points are condensed in the middle.

2. If we have to break the left-right symmetry, all the extra points are put on the right.

In this paper, we call such a configuration Kittipassorn’s configuration. We will use a shorthand

notation P (r1, r2, . . . , r2n−1) = P (T ∗(r1, r2, . . . , r2n−1)). The following example demonstrates how

we form the Kittipassorn’s configuration.

Example 2.1

Figure 2 shows Kittipassorn’s configuration T ∗(1, 1, 2, 3, 1, 2, 1) when

given n = 4 and r1 = 1, r2 = 1, r3 = 2, r4 = 3, r5 = 1, r6 = 2, and

r7 = 1 with the extra points (colored red) are put on the right.

The number of maximal chains in this configuration is 6, i.e.

P (T ∗(1, 1, 2, 3, 1, 2)) = 6.
Figure 2:
T ∗(1, 1, 2, 3, 1, 2, 1)
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Kittipassorn [3] proves that such configuration has the greatest number of maximal chains with

given numbers of elements in each level r1, r2, ..., r2n−1. We phrase this as the following lemma,

which solves the variant question by providing the unique configuration with the maximum number

of maximal chains.

Lemma 2.2 (Kittipassorn’s lemma [3])

Suppose that non-negative r1, r2, . . . , r2n−1 are given. Then, we have

max
T : ∀i, |T∩Li|=ri

P (T ) = P (r1, r2, . . . , r2n−1).

With Kittipassorn’s lemma, in order to compute the maximum

max
T : |T |=k

P (T )

over all configurations T such that |T | = k, it suffices to consider only the configurations which are

Kittipassorn’s configurations.

Moreover, Kittipassorn [3] also proposed two conjectures about the original Johnson-Leader-

Russell problem of square posets. One of them is a strong conjecture which gives the solution to

the original problem, and the other one is a weaker version of it.

Before introducing the conjectures, let us first introduce some notation. Previously, we partition

P into 2n − 1 parts L1, L2, ..., L2n−1 by the vertical positions of elements. Now we partition P by

the horizontal positions. For each d = −(n− 1), ..., n− 1, we can partition the P into columns by

Cd := {(i, j) ∈ P : j − i = d}.

For convenience, let us call a configuration T ⊆ P optimal if

P (T ) = max
S : |S|=|T |

P (S).

Now we can start introducing Kittipassorn’s conjectures. The first conjecture suggests that we

should first fill the points in the middle columns.
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Conjecture 2.3 (Kittipassorn’s weak conjecture [3])

There exists a sequence of sets U2n−1 ⊆ U2n ⊆ · · · ⊆ Un2 = P such that for each i, the

difference Ui+1−Ui is a singleton, and the set Ui is an optimal configuration, such that for each

t = 1, 2, . . . n− 1,

Un+2(n−1)+2(n−2)+···+2t =
⋃

−(n−t)≤d≤n−t

Cd,

and

Un+2(n−1)+2(n−2)+···+2(t+1)+t =
⋃

−(n−t)≤d≤n−t

Cd.

Kittipassorn also proposed a stronger conjecture, which gives a conjectural answer to the original

Johnson-Leader-Russell problem, for all n and 1 ≤ k ≤ n2.

Conjecture 2.4 (Kittipassorn’s strong conjecture [3])

Let n be a positive integer. We define the sequence T1, T2, . . . , Tn2 of Kittipassorn’s configura-

tions by adding one point at a time so that each Ti has exactly i points. To add points from T1

to Tn2 , we fill the columns in the following order:

C0, C1, C−1, C2, C−2, . . . , Cn, C−n,

and in each column, we fill the points from bottom to top (see an example as in Figure 3).

Given 1 ≤ k ≤ n2, we have

max
T : |T |=k

P (T ) = P (Tk).

For example, Figure 3 shows the order of adding the points from T1 to T16 according to Conjecture

2.4 when n = 4. For example, the configuration T11 contains the 11 points labeled 1 to 11.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

Figure 3: The order of points added from T1 to T16 when n = 4
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Notice that Kittipassorn’s strong conjecture implies the following formula for 2n−1 ≤ k ≤ 3n−2:

max
T : |T |=k

P (T ) = 2k−2n+1.

It also implies the following formula for 3n− 1 ≤ k ≤ 4n− 4:

max
T :|T |=k

P (T ) = 24n−k−4F2k−6n+7

where Fi denotes the i-th Fibonacci number. Recall that the Fibonacci numbers are given by

F0 = 1, F1 = 1, and for i ≥ 2, we have Fi := Fi−1 + Fi−2.

It was observed by Tanya Khovanova that for the case k = 3n + c for a fixed integer c ≥ −1,

the maximization maxT :|T |=k P (T ) appears to double whenever n is increased by 1, for n ≥ c + 4.

This “doubling” phenomenon can be explained in view of Kittipassorn’s strong conjecture. Thus

we give the following remark.

Remark 2.5
Let c ≥ −1 be a fixed integer. The above observation implies the following conjectural formula.

For all integers n ≥ c+ 4,

max
T⊆[n]2
|T |=3n+c

P (T ) = 2n−c−4F2c+7.

Notice that when k = 3n+ c, we have a “doubling” phenomenon. If n ≥ c+ 4, then when n is

increased by 1, we have that maxP (T ) is doubled.

In this paper, we aim to to prove the two Kittipassorn’s conjectures. In Subsection 3.1, we verify

Conjecture 2.4 for 1 ≤ k ≤ 3n − 2. Moreover, in Subsection 4.2, we verify that Conjecture 2.4 is

indeed true for all 3n− 1 ≤ k ≤ n2 and n = 1, 2, ..., 6 with a computer program.
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3 Main Results

3.1 The case 2n− 1 ≤ k ≤ 3n− 2

To begin our investigation, we start off by some small values of k. With the notice that every

maximal chains contains exactly one element in each level, we have k ≥ 2n − 1; otherwise there

exist no maximal chains. And when k = 2n− 1, there is at most one maximal chain.

In Subsection 2.2, we find that Kittipassorn’s configuration implies the explicit form of the

greatest number of maximal chains when k ≤ 3n− 2:

Proposition 3.1

If 2n− 1 ≤ k ≤ 3n− 2, then

max
T :|T |=k

P (T ) = 2k−2n+1.

Proof. Consider any configuration C with k elements. Let ri = |C∩Li|, i.e. the number of elements

in the i-th level, we have r1 + r2 + · · ·+ r2n−1 = k.

Notice that P (C) ≤ r1r2 · · · r2n−1. First, if some ri = 0, then P (C) = 0. Therefore, assume

ri ≥ 1 for all i = 1, 2, . . . , 2n − 1, we have P (C) ≤ r1r2 · · · r2n−1. And as ri are non-negative

integers, r1r2 · · · r2n−1 attains its maximum when there are exactly k − 2n + 1 2’s and 4n − k − 2

1’s by AM-GM inequality. Thus,

P (C) ≤ 2k−2n+1 · 14n−k−2 = 2k−2n+1

as required.

For the construction, the optimal configuration has exactly one element in odd order of levels

and at most two elements in even order of levels. Also, the optimal configuration is a Kittipassorn’s

configuration. Notice that total number of elements in such a configuration is at least 2n − 1 and

at most 3n− 2.
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Example 3.2

When n = 5 and k = 11, Figure 4 gives a construction that attains

the upper bound P (T ) = 211−2×5+1 = 4.

Figure 4: A configuration T
such that P (T ) = 4

3.2 Investigation on general k

In this section, we try to generalize the previous results to other values of k. The first proposition

we give considers the upper bound of P (T ) for all 0 ≤ k ≤ n2.

Proposition 3.3

For 0 ≤ k ≤ n2, we have

P (T ) ≤ 2k−2n+1

where |T | = k.

Proof. First consider the case when 0 ≤ k ≤ 2n − 2. We cannot arrange the elements such that

every level has at least one element. Therefore, P (T ) = 0.

Now for the case when 2n− 1 ≤ k ≤ n2, notice that each element in the i-the level can form at

most two maximal chains with elements in the (i+ 1)-th level (either left or right). Thus the upper

bound of P (T ) is 2k−2n+1.

However, notice that the equality only holds when 2n − 1 ≤ k ≤ 3n − 2. Also, the bound is not

a sharp bound for large k because the ri elements in the i-th level can only form maximal chains

with at most ri + 1 elements in the next level.

This gives us the idea to consider the number of elements in consecutive levels. An intuitive idea

is that no points should be “wasted”. In other words, if there are more than ri + 1 elements in the

(i + 1)-th level, then some elements are not in any maximal chain in Kittipassorn’s configuration.

Similarly, elements are “wasted” if there are less than ri − 1 elements in the (i− 1)-th level.

8



On Ki Luo 3.2 Investigation on general k

Therefore, removing the “wasted” points will not affect the number of maximal chains in a

configuration. On the other hand, as k is fixed, the removed points should be put in other places to

improve the configuration. In the following lemma, we develop an algorithm to construct the new

position of the removed points such that the number of maximal chains is increased.

Lemma 3.4

Let T ( P be a configuration such that P (T ) > 0. Then there exists v ∈ P− T such that

P (T ) < P (T ∪ {v}).

Proof. As P (T ) > 0, there exists a maximal chain m ⊆ T . On the other hand, as T 6= P, there

exists v ∈ P− T . As v /∈ m, there are two cases: m is to the left of v or m is to the right of v.

First consider the case when m is to the left of v (as in Figure 5).

m

v

Figure 5: m to the left of v

m

v

Figure 6: m is to the right of v

Thus the set U := {maximal chains m ⊆ T : m is to the left of v} is non-empty.

Define a function Area : U → Z≥0 which maps a maximal chain to the number of points in P

on its left. Since L is a non-empty finite set, the image Area(U) is a finite non-empty subset of Z≥0.

Let B := max(Area(U)). Then there exists a maximal chain m∗ ∈ L such that Area(m∗) = B.

Notice that m∗ cannot be the right boundary of P because v is on its right. Hence, there exist

v1, v2, v3 ∈ m∗ as on Figure 7.

v1

v2

v3

v4

Figure 7: The existence of v1, v2, v3 ∈ m∗
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Now we want to show that v4 /∈ T . Suppose, for the sake of contradiction, that v4 ∈ T , then

v4 6= v because v /∈ T . This means that there exists a maximal chain m∗∗ = (m∗ − {v2}) ∩ {v4}

which is also to the left of v. Thus m∗∗ ∈ U . However, Area(m∗∗) = B + 1, which contradicts to

the maximality of Area(m∗). Therefore, we have v4 /∈ T and P (T ∪ {v4}) > P (T ).

The other case where m is to the right of v is proven similarly. And this completes the proof.

Here we introduce some shorthand notations. Recall that given r1, r2, . . . , r2n−1, we have de-

fined a unique Kittipassorn’s configuration, denoted by T ∗(r1, r2, . . . , r2n−1). Now for any f :

{1, 2, . . . , 2n− 1} → Z≥0 such that 0 ≤ f(i) ≤ |Li|, we define T ∗(f) to be

T ∗(f) := T ∗(f(1), f(2), ..., f(2n− 1).

We also define P (f) to be

P (f) := P (T ∗(f)).

Then we introduce the following theorem by considering ri in consecutive levels. But before

that, we give a definition of 1-Lipschitzness: a function f : Z→ R is said to be 1-Lipschitz if for all

n ∈ Z, we have

|f(n+ 1)− f(n)| ≤ 1.

Theorem 3.5

For given k such that 2n− 1 ≤ k ≤ n2,

max
T :|T |=k

P (T ) = max∑
f=k

P (f)

where the maximization of P (f) is over all 1-Lipschitz functions f : {1, 2, ..., 2n − 1} → Z≥0
such that

∑2n−1
i=1 f(i) = k.

Proof. First notice that maxP (T ) ≥ maxP (f) can be shown by the fact that the set of all T ∗(f)

is a subset of the set of all T with |T | = k.

Now for maxP (T ) ≤ maxP (f). Assume that P (T ) > 0, otherwise maxP (T ) = maxP (f) = 0.

In Kittipassorn’s configuration, we can see that if the function is not 1-Lipchitz. Then there exists

10
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v ∈ T that is not in any maximal chain. Hence we can remove it without changing P (T ), i.e.

P (T − {v}) = P (T ).

After removing v, we have T ( P . By Lemma 3.4, there exists u ∈ P−T such that P (T ∪{u}) >

P (T ). Also the algorithm of selecting such u in Lemma 3.4 ensures that the new configuration is

given by a 1-Lipschitz function.

The following example shows how we implement the algorithm in Lemma 3.4 to improve a

configuration T so that it is 1-Lipschitz.

Example 3.6

Given n = 4 and k = 12, consider a configuration as in Figure 8. Notice that the red point v is

not in any of the maximal chains. Hence we can remove it without affecting the value of P (T ).

Figure 9 shows the maximal chain m∗ with the greatest Area. By the algorithm in Lemma 3.4,

we pick u /∈ T . Notice that selecting u increases the number of maximal chains. Now we have

the configuration in Figure 10 is given by a 1-Lipschitz function and |T | is unchanged.

v

Figure 8: A configuration
with an “wasted” point v

m∗

Figure 9: The maximal chain
m∗ with the greatest Area

u

Figure 10: The improved con-
figuration
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4 Computational Results

4.1 Pseudo-code

Using the results obtained above, we can develop a much more efficient computer program to

compute maxP (T ) than exhausting the all the possibilities. By Lemma 2.2 and Theorem 3.5, we

reduce the runtime of the program by considering the following three constraints:

1. The sum of numbers of elements in the levels is k, i.e. r1 + r2 + · · ·+ r2n−1 = k.

2. For all 2 ≤ i ≤ 2n− 1, |ri − ri−1| ≤ 1.

3. The configuration has to be Kittipassorn’s configuration.

Before showing the pseudo-code, we will first explain the idea of the program. From line 1 to

33, a function chain is defined by inputting n and r1, r2, ..., r2n−1 and outputting P (r1, r2, ..., rn).

Recall that P (r1, r2, ..., rn) is defined in Section 2.2. From line 34 to 51, we partition the given k

into 2n − 1 parts: r1, r2, . . . , r2n−1 given by a 1-Lipschitz function (checked by a Boolean variable

bo), then try out all possible Kittipassorn’s configurations to find the optimal configuration.

Notice that each point is indexed by (i, j), where i is the order of level and j is the order counting

from the left. For example, a 4× 4 poset is indexed as:

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

5,1 5,2 5,3

6,1 6,2

7,1

Figure 11: The indexes of points in a 4× 4 poset
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1 FUNCTION chain ( p o s i t i v e i n t e g e r n , vec to r ( r [ 1 ] , r [ 2 ] , . . . , r [ 2 n−1]) )

2 a : 2D array [ 0 . . ( 2 n−1) , 0 . . n ] o f non−negat ive i n t e g e r s

3 b : 2D array [ 0 . . ( 2 n−1) , 0 . . n ] o f boolean

4 z : p o s i t i v e i n t e g e r

5

6 for i from 1 to 2n−1 do

7 i f r [ i ] != 0 then

8 i f i <= n then x := c e i l ( i /2)

9 else x := c e i l ( (2n−i ) /2

10 i f ( i mod 2 = 0) then x := x+1

11 i f ( r [ i ] mod 2 = 0) and ( i mod 2 = 0) then

12 z := c e i l ( r [ i ] / 2 )

13 else z := f l o o r ( r [ i ] / 2 )+1

14 y:=x−1

15

16 for j from 1 to z do

17 b [ i ] [ x ] := TRUE

18 x := x+1

19 for j from 1 to ( r [ i ]−z ) do

20 b [ i ] [ y ] := TRUE

21 y := y−1

22 else b [ i ] [ j ] := FALSE

23

24 a [ 1 ] [ 1 ] := 1

25 for i from 1 to 2n−1 do

26 for j from 1 to n do

27 i f b [ i ] [ j ] then

28 i f i<=n then

29 a [ i ] [ j ] := a [ i −1] [ j −1] + a [ i −1] [ j ]

30 else a [ i ] [ j ] := a [ i −1] [ j ] + a [ i −1] [ j +1]

31 else a [ i ] [ j ] := 0

32 RETURN a [2 n−1 ] [ 1 ]

33

34 MAIN

35 INPUT po s i t i v e i n t e g e r s n , k

36 max , count : non−negat ive i n t e g e r

37 bo : boolean

13
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38

39 bo := TRUE

40 r [ 1 ] := 1

41 r [ 2 n−1] := 1

42 Pa r t i t i on k−2 in to 2n−3 par t s : r [ 2 ] , r [ 3 ] , . . . , r [ 2 n−2]

43 for each p a r t i t i o n do

44 for each i from 2 to 2n−1,

45 i f abs ( r [ i ]− r [ i −1])>1 then

46 bo := FALSE

47 i f bo then

48 count := chain (n , r [ 1 ] , r [ 2 ] , . . . , r [ 2 n−1])

49 i f max < count then max := count

50

51 OUTPUT max

14
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4.2 Numerical results

The computational result of max|T |=k P (T ) when 3 ≤ n ≤ 6 and 3n − 1 ≤ k ≤ n2 is as shown

in the following tables. However, this program is not the same as the pseudo-code in Subection

4.1. It is a brute-force program that does not use any result in this paper. Notice that the results

supports the conjectural formulae in Conjecture 2.4 and Remark 2.5.

n k maxP (T )

3
8 5

9 6

4

11 10

12 13

13 15

14 18

15 19

16 20

5
14 20

15 26

n k maxP (T )

5

16 34

17 39

18 45

19 54

20 57

21 61

22 64

23 68

24 69

25 70

n k maxP (T )

6

17 40

18 52

19 68

20 89

21 102

22 117

23 135

24 162

25 171

26 183

n k maxP (T )

6

27 197

28 206

29 218

30 232

31 236

32 241

33 245

34 250

35 251

36 252

Table 1: max
|T |=k

P (T ) when 3 ≤ n ≤ 6 and 3n− 1 ≤ k ≤ n2

5 Conclusion & Future work

We gave the maximum number of maximal chains and the construction of optimal configuration

for 1 ≤ k ≤ 3n − 2. We also found an upper bound of P (T ) for general k. At last, we find the

difference between number of elements in consecutive levels in optimal configurations at most 1 for

all 1 ≤ k ≤ n2, i.e. it is given by a 1-Lipschitz function. We then summarize our results with a

pseudo-code to effectively compute maxP (T ) over all configurations T such that |T | = k.

One possible direction for future work is to prove the Kittipassorn’s Conjectures 2.3 and 2.4.

Another direction is to take a closer look at the numerical values of maxT :|T |=k P (T ) and propose

some conjectural formulae. One can also try to prove the conjecture in Remark 2.5.
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