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Abstract

A (k,m)-Furstenberg set in Fnq is a set of points such that every k-dimensional subspace
of Fnq has a translation containing at least m points of the set. We explore the question of
estimating the size of the smallest (k,m)-Furstenberg set in Fnq , denoted by K(q, n, k,m). We
provide several general constructions for small Furstenberg sets which yield upper bounds on
K(q, n, k,m). In particular, we show that there is a universal constant C such that for large

m, K(q, n, 1,m) ≤ Cq
n−1
2 m

n+1
2 , which is not far from the known lower bounds. We show

another upper bound that K(pl, n, 1, pl−1) ≤ Cm2, constituting an optimal upper bound
up to constants. We also generalize existing lower bounds when k =

√
q, constituting an

improvement of the easy lower bound Cm2. Finally, we suggest other methods to potentially
obtain new lower bounds.

Summary

A Furstenberg set is a set of points which contains a large number of points on a line in
each direction. In this paper, we explore the question of how small a Furstenberg set can
be. We provide constructions for small Furstenberg sets, yielding upper bounds for the size
of the smallest Furstenberg set. We then generalize existing lower bounds in certain cases.
Finally, we suggest other methods to potentially obtain new lower bounds.



1 Introduction

In 1917, Japanese mathematician Soichi Kakeya [1] first introduced the concept of a

Kakeya set in Rn — a set of points containing a line segment of length 1 in every direction.

The study of these sets led to the famous Kakeya conjecture, which states that every Kakeya

set in Rn has Hausdorff dimension n.

The Kakeya conjecture is not only an intriguing and difficult question in its own right

but also has many important connections to areas such as harmonic analysis. In fact, the

restriction and local smoothing problems in the latter area are highly related to and would

both imply the Kakeya conjecture [2].

In 1999, Tom Wolff [2] proposed an analogue of Kakeya sets over finite fields. Informally,

a Kakeya set over a finite field is a set containing a line in each direction. Because we are

working over finite fields, the number of directions and the size of any Kakeya set are finite.

Wolff also posed the finite field analogue of the Kakeya conjecture in Rn, which asks for

the smallest possible size of a Kakeya set in Fnq . This was completely proven by Zeev Dvir

[3] via the polynomial method.

Theorem 1.1 (Dvir [3]). Let K be a Kakeya set over Fnq . Then |K| ≥ Cnq
n, where Cn is a

constant depending only on n.

Because the entire set Fnq , which has size qn, is a Kakeya set, Theorem 1.1 gives the

minimal value of |K| up to a constant. Dvir, Dhar, and Lund [4] have since shown that the

minimal value of |K| is in the interval [ q
n

2n
, qn

2n−1 ], which is accurate up to a factor of 2.

In this paper, we investigate a generalization of Kakeya sets in finite fields known as

Furstenberg sets. In Section 2, we give the definition of Furstenberg sets in Fnq and introduce

our main question of estimating the minimal size of Furstenberg sets. Section 3 reviews

the existing bounds on the smallest size of a Furstenberg set in a finite field. In Section 4,
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we provide several constructions giving new upper bounds on Furstenberg set sizes, and in

Section 5 we generalize existing lower bounds. These constitute our main results. In Section 6

we show relations between Furstenberg bounds which could yield lower and upper bounds.

Finally, in Section 7 we offer another potential approach towards progress in the Furstenberg

problem.

2 Furstenberg Sets

A natural generalization of Kakeya sets arises from considering when the set almost

contains a line in each direction, but misses some points. These are known as Furstenberg

sets.

Definition 2.1. A (1,m)-Furstenberg set in Fnq is a set F such that for any line l ⊂ Fnq ,

there exists some w ∈ Fnq such that |(w + l) ∩ F | ≥ m.

Because a line contains at most q points, in Definition 2.1, we must have m ≤ q. When

m = q, F is a Kakeya set.

The parameter 1 in Definition 2.1 is because a line is a 1-dimensional subspace of Fnq .

By replacing lines with higher dimensional subspaces we obtain a generalization of (1,m)-

Furstenberg sets.

Definition 2.2. A (k,m)-Furstenberg set in Fnq is a set F such that for any k-dimensional

subspace S ⊂ Fnq , there exists some w ∈ Fnq such that |(w + S) ∩ F | ≥ m.

We refer to shifts w + S of k-dimensional subspaces used in Definition 2.2 as k-flats.

For Furstenberg sets we ask the analogous question to the Kakeya problem: how small

can a (k,m)-Furstenberg set in Fnq be? We give a notation for the answer to this question.

Definition 2.3. Denote by K(q, n, k,m) the smallest possible size of a (k,m)-Furstenberg

set in Fnq .
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Our question is therefore to determine the value of K(q, n, k,m).

3 Existing Bounds on the Size of Furstenberg Sets

There has been progress on the question of evaluating K(q, n, k,m) in the form of asym-

potic upper and lower bounds. The following theorem is due to Ellenberg and Erman [5].

Theorem 3.1 (Ellenberg and Erman [5]). Let k,q, and m be positive integers with q a prime

power and m ≤ qk. Then there is a constant Ck,n depending only on k and n such that

K(q, n, k,m) ≥ Ck,nm
n
k .

For m = q and k = 1, this is equivalent to Theorem 1.1, up to a constant. In addition, note

that a (k,m)-Furstenberg set is automatically (l,m)-Furstenberg for l > k, hence we expect

weaker bounds for larger k. Theorem 3.1 is therefore a natural generalization of Theorem

1.1.

When q is prime and m =
√
q, Ruixiang Zhang [6] has improved Theorem 3.1 by a small

amount.

Theorem 3.2 (Zhang [6]). Let q be prime. Then there is a constant Cn depending only on

n such that

K(q, n, 1,
√
q) ≥ Cnq

n
2

+Ω( 1
n2 ).

Here, for X, Y > 0, where X and Y are quantities that depend on n, X = Ω(Y ) means

that there exists some positive constant C for which X ≥ CY for all n.

Interestingly, when q is not prime, Theorem 3.2 is false. In fact, Wolff [2] showed that

the Ellenberg-Erman bound is optimal up to a constant for q = p2.

Theorem 3.3 (Wolff [2]). Let q = p2 be the square of a prime. Then K(q, 2, 1, p) ≤ Cp2,

where C is an absolute constant.
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However, Wolff’s upper bound does not apply to prime fields or all values of m. One

upper bound for general m was given by Zhang [6].

Theorem 3.4 (Zhang [6]). Let T > 0 be a real number. For sufficiently large primes q

depending on T and any integer 0 < m < q
T

,

K(q, n, k, Tm) ≤ Cq
n−1
2 m

n+1
2 ,

where C depends only on K.

4 Constructions for small Furstenberg sets

In this section, we provide upper bounds for K(q, n, 1,m) by constructing small Fursten-

berg sets. Our construction method is through taking the union of several subsets of Fnq with

one fixed coordinate, similar to Wolff’s approach in [2].

One might expect Theorem 3.4 to generalize easily for all finite fields and yield the bound

K(q, n, k,m) ≤ Cq
1
2m

3
2 , (1)

but it turns out that non-prime fields result in complications which hinder a direct attempt

to generalize (1). Our first theorem proves (1) for all prime power fields Fq when n = 2 and

m is large.

Theorem 4.1. Let q be a prime power and q = pl, where p is prime. Let m be an integer

satisfying q
p
≤ m ≤ q. Then K(q, 2, 1,m) ≤ Cq

1
2m

3
2 +m, where C is a universal constant.

Proof. Let M be the smallest integer not less than mp
q

. Consider Fq = Fp(w) as a simple

field extension of Fp. By properties of field extensions, every element of Fq can be written as
l−1∑
i=0

aiw
i for ai ∈ Fp.

Set a > 0 to be the integer closest to
√

p
M

and a ∈ Z∩ [ p
a
, p
a

+ 1]. Set S = {0, 1, . . . a− 1}

and T = {0, a, 2a, . . . , aa}. Then let T ′ be the set of elements that can be written as
l−1∑
i=0

biw
i,

where b0 ∈ T and bi ∈ Fp for i ≥ 1.
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For every t ∈ Fq let

Et = {(t, j + (j + k)t) : j ∈ S, k ∈ T ′}.

Note j + (j + k)t = t[k + t+1
t
j]. Let T be the set of t satisfying t+1

t
=

l−1∑
i=0

aiw
i for a0 ∈

{0, a, 2a, . . . ,Ma} and ai ∈ Fp for i ≥ 1. Then |T | = (M + 1)pl−1 ≥ m, so we may let T ′ be

any subset of T with m elements. Also let V denote a set of any m points of the form (t, z)

for fixed t. The key claim is that F = V ∪
⋃
t∈T ′

Et is a (1,m)-Furstenberg set.

Indeed, it suffices to show that for any v ∈ Fq, there are some a, b such that the line

L : y = a + vx. Observe that we may set v = s + t, s ∈ S, t ∈ T ′ and a = s. Then for each

j ∈ T ′, the point (i, s+ (s+ t)i) ∈ Ej hence there are at least |T ′| ≥ m points in F ∩ L.

Finally we show |F | ≤ q
1
2m

3
2 +m. Note that any element of Ej can be written as a sum

l−1∑
i=0

ciw
i (2)

where by the definition of Ej and T , c0 is in the set {0, a, 2a, . . . , (Ma+a)a} and ci ∈ Fp for

i ≥ 1. Thus |Ej| ≤ [(Ma+ a+ 1)]pl−1 ≤ C
√
pMpl−1 where C is approximately equal to 1.

Therefore by Equation (2) and the definitions of |F | and M we conclude that

|F | ≤ m+
∑
i∈T

|Ei| ≤ Cpl−1
√
pMm+m = Cq

1
2m

3
2 +m (3)

where C is approximately 1.

Remark 4.1. The upper bound given by Equation 3 is off by a factor of at most
√
p from

an easy lower bound [6] of max(m2, q
1
2m). Therefore when l � 1 we obtain a fairly close to

optimal construction for most m.

Using a similar construction technique, we obtain the following bound in the cases not

covered by Theorem 4.1. When m and q satisfy certain conditions, this bound is actually

stronger than the one given by inequality (1).

Theorem 4.2. Let p be a prime, q = pl and t ∈ Z≥0. If q
p2t+3 ≤ m ≤ q

p2t+1 , then

K(q, 2, 1,m) ≤ pl−t−1m+m.
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Proof. Consider the field extension Fq = Fp(w). Every element of Fq can be written as
l−1∑
i=0

aiw
i for ai ∈ Fp.

Set S as the set of elements of Fq which can be written as
t∑
i=0

aiw
i for ai ∈ Fp and T as

the set of elements of Fq which can be written as
l−1∑
i=t+1

biw
i for bi ∈ Fp.

For every t ∈ Fq let

Et = {(t, j + (j + k)t) : j ∈ S, k ∈ T}.

Note j + (j + k)t = t[k + t+1
t
j]. Consider the set T of t satisfying t+1

t
=

l−t−1∑
i=t+1

aiw
i for some

ai ∈ Fp. Then |T ′| = pl−2t−1 ≥ m. Therefore we may let T ′ be a subset of T with at most m

elements, and let V denote a set of any m points of the form (t, z) for fixed t. The key claim

is that F = V ∪
⋃
t∈T ′

Et is a (1,m)-Furstenberg set.

Indeed, for any slope v ∈ Fq, set s ∈ S, t ∈ T, s+ t = v. Let L : y = s+ (s+ t)x. Then for

every j ∈ T ′, the point (j, s + (s + t)j) ∈ Ej. Therefore L ∩
⋃
j∈T ′

Ej ≥ m. Since the vertical

line x = t intersects V in m points, this implies that F is (1,m)-Furstenberg.

Next we bound the size of F . Because t ∈ T ′, for j ∈ S, k ∈ T , k + t+1
t
j can be written

as
l−1∑
i=t+1

ciw
i for ci ∈ Fp. Therefore |Ej| ≤ pl−t−1. It follows that

|F | ≤ m+ pl−t−1m,

completing the proof.

When q
p2t+2 ≤ m ≤ q

p2t+1 , it is easy to see that Theorem 4.2 is stronger than inequality (1).

When q
p2t+3 ≤ m ≤ q

p2t+2 , Theorem 4.2 is within a factor of
√
p of inequality (1). Theorems

4.1 and 4.2 therefore constitute strong upper bounds on K(q, n, k,m) for non-prime q.

We also obtain the following corollary, which implies that Theorem 4.2 is optimal up to

a constant for m = q
p
.

Corollary 1. Let p be a prime, q = pl, and m = q
p
. Then 1

2
m2 ≤ K(q, 2, 1,m) ≤ m2 +m.
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Proof. Let F be the Furstenberg set and take m lines which intersect F in at least m points

each. This yields at least m2 −
(
m
2

)
as any two lines intersect in at most 2 points. Therefore

K(q, 2, 1,m) ≥ 1
2
m2.

The upper bound is given by letting t = 0 in Theorem 4.2, as m = pl−1 hence we obtain

K(q, 2, 1,m) ≤ m2 +m.

The improvements made in Theorem 4.2 to the expected upper bound (1) suggest that

the value of K(q, 2, 1,m) is dependent on the existence of subfields of Fq. This is because the

proof heavily relies upon the field extension, and we are not aware of any known constructions

of (1,m)-Furstenberg sets in prime fields with size matching known lower bounds, except

when m = 0, m = 1, or m = Cq for some constant C.

Analogues of Theorems 4.1 and 4.2 also apply to Furstenberg sets in Fnq for n ≥ 3. It

suffices to take the idea of the proofs of Theorems 4.1 and 4.2 and extend the construction

Et = {(t, j + (j + k)t)} to more coordinates.

Furthermore it is easy to see that the restriction to prime p in Theorem 4.2 is not

necessary. These generalizations are summarized in the theorem below.

Theorem 4.3. Suppose q = pl, where p is a prime power and l ≥ 2 is a positive integer.

Then

(i) If q ≥ m ≥ q
p
, K(q, n, 1,m) ≤ Cnq

n−1
2 m

n+1
2 .

(ii) If t ∈ Z≥0 and q
p2t+3 ≤ m ≤ q

p2t+1 , then K(q, n, 1,m) ≤ Cnp
(n−1)(l−t−1)m.

In both parts, Cn is a constant depending only on n.

Proof. (i) We combine the coordinate extension idea with a simple induction on n. The case

of n = 2 is given by Theorem 4.1. Now suppose the statement holds for Furstenberg sets in

Fn−1
q ; we will prove that it holds for sets in Fnq .
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Let S, T, T ′, T , T ′ be the same as in the proof of 4.1. Let Fn−1 be the smallest (1,m)-

Furstenberg set in Fn−1
q . For every point (a1, . . . , an−1) ∈ Fn−1, append a 0 in the first

coordinate, yielding (0, a1, . . . , an−1). Let this new set be F ′n−1.

Then let

Et = {(t, j1 + (j1 + k1)t, j2 + (j2 + k2)t, . . . , jn−1 + (jn−1 + kn−1)t)},

where each ji ranges in the set S ′ and each ki ranges in the set T ′. We claim that the set

Fn = F ′n−1 ∪
⋃
t∈T ′

Et is (1,m)-Furstenberg.

Indeed, for any direction vector v with nonzero first coordinate, we may assume by scaling

that it has first coordinate 1. Then we may write it as (1, j1 + k1, . . . , jn−1 + kn−1) for some

ji ∈ S, ki ∈ T , and hence there are at least m points, one for each t ∈ T ′, on the line

{(t, j1 + (j1 + k1)t, . . . , jn−1 + (jn−1 + kn−1)t)}t.

Furthermore, for each direction u with first coordinate 0, by the definition of Fn−1 there

is some line L parallel to u with |L ∩ Fn−1| ≥ m =⇒ |L ∩ Fn| ≥ m.

Using the inductive hypothesis and the same analysis as the proof of 4.1, we obtain

|Fn| ≤ Cnq
n−1
2 m

n+1
2 where Cn depends only on n.

(ii) The proof is in the same vein as that of (i). We apply induction on n, with the base

case n = 2 being Theorem 4.2. Now suppose the statement holds for Furstenberg sets in

Fn−1
q . We will prove it for sets in Fnq .

Define S, T, T , T ′ in the same way as the proof of 4.2. Let Fn−1 be the smallest (1,m)-

Furstenberg set in F n−1
q . For every point (a1, . . . , an−1) ∈ Fn−1, append a 0 in the first

coordinate, yielding (0, a1, . . . , an−1). Let this new set be F ′n−1. Let

Et = {(t, j1 + (j1 + k1)t, j2 + (j2 + k2)t, . . . , jn−1 + (jn−1 + kn−1)t)},

where each ji ranges in the set S and each ki ranges in the set T . Then by the definitions

of S, T and the exact same argument as in the proof of (i), the set Fn = F ′n−1 ∪
⋃
t∈T ′

Et is

(1,m)-Furstenberg.

Furthermore, for the same reasons as the proof of Theorem 4.2, |Ej| ≤ p(l−t−1)(n−1).
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Applying the inductive hypothesis it follows that |Fn| ≤ Cnp
(l−t−1)(n−1)m.

We end this section by noting that the Ellenberg-Erman bound [5] implies that Theorem

4.3 is optimal up to a constant when m = q
p
. This therefore generalizes Corollary 1.

5 Lower Bounds for Furstenberg Set Sizes

In addition to constructive upper bounds, lower bounding Furstenberg set sizes is also

of great interest. As remarked in Section 1, Theorem 3.2 constitutes an improvement of the

Ellenberg-Erman bound Cm
n
2 .

At least in the case n = 2, the restriction to prime q is not completely necessary. Directly

following a remark of Zhang [6] and the methods of [7] we may obtain a similar result for

most finite fields.

Theorem 5.1. Let l be an odd positive integer and q = pl where p is a prime. Then there

exist constants δ, C > 0 depending only on l such that K(q, 2, 1,
√
q) > Cq1+δ.

Proof. The main ingredient is the following Szemeredi-Trotter bound in Fq noted by Bour-

gain, Katz, and Tao [7].

Lemma 5.2. Let p be a prime and q = pl for some odd integer l. Let N � 1 be an integer

and P ⊂ F2
q, L be a point set and line set, respectively, such that q

1
4 ≤ |P |, |L| ≤ N . Then

there is an absolute constant C and constants C
l
> ε > 2δ > 0 depending only on l such that

if q1−δ ≤ N ≤ q1+δ, then the number of point-line incidences satisfies

|{(p, l); p ∈ P, l ∈ L}| ≤ N
3
2
−ε.

The existence of this type of lemma for l = 1 was proved in [7] and they noted the way

to generalize it. We provide the details here.

Proof. Suppose otherwise. Following the proof of Theorem 6.2 by Bourgain, Katz, and Tao

in [7] until the use of their sum-product estimate, we obtain the existence of a subset A′′ of
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Fq such that |A′′| ≥ N
1
2
−ε′ , and both |A′′ +A′′| and |A′′ ·A′′| are at most N

1
2

+ε′ for ε′ ≤ Cε.

Here C is a universal constant. Here, A′′+A′′ is the set of all numbers which can be written

as the sum of two elements of A′′, and A′′ ·A′′ is the set of all numbers which can be written

as the product of two elements of A′′.

By Theorem 4.3 in [7] there exists some subfield G of Fq with 1
2
N

1
2
−ε′′ ≤ |G| ≤ N

1
2

+2ε′′ ,

where ε′′ ≤ C ′ε′ for a universal constant C ′, as long as ε is sufficiently small. Because G ⊂ Fq

is a field we know |G| = pj, j ∈ Z. But

pl[
1
2
−ε′′][1−δ] ≤ |G| ≤ pl[

1
2

+2ε′′][1+δ].

Therefore, by choosing ε and 2δ < ε < C
l

where C is a sufficiently small absolute constant,

|G| cannot be an integer power pj of a prime because l is odd. This contradiction completes

the proof.

Now let δ, ε, and C to be the same as in Lemma 5.2. If |P | ≤ q1+δ we are immediately

done. Otherwise |P | ≥ q so we may set N = |P |. By Lemma 5.2,

q
√
q = qm ≤ |{(p, l), p ∈ P, l ∈ L}| ≤ |P |

3
2
−ε

and therefore |P | ≥ q1+ 1
2
ε ≥ q1+δ.

Note that the proof only applies for odd l because Lemma 5.2 only holds in this case.

In fact, as remarked in Section 4, if l is even the Ellenberg-Erman bound is optimal up to a

constant and therefore cannot be improved in this way.

6 Relations Between Furstenberg Set Sizes

The constructions in 4.1 and 4.2 suggest that Furstenberg sets in Fknp and Fn
pk

ought to

be related due to the field extension idea. Dvir, Dhar, and Lund [4] prove the bound

K(q, kr, k,m) ≥
(m

2

)r
(4)
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via finding such a relation when k = 1. In it they give a way to formalize this relation.

Let q be a prime power and suppose n = rk for integers n, r, k. Consider the field extension

Fqk = Fq(w). We can write any element x ∈ Fqk as x0 + x1w+ . . .+ xk−1w
k−1. Then we may

define the following function taking points in Fnq to points in Fr
qk

.

Definition 6.1. For any point P = (x0, x1, · · · , xn−1) ∈ Fnq , define

σ(P ) = (x0 +x1w+ · · ·+xk−1w
k−1, xk+ · · ·+x2k−1w

k−1, · · · , x(r−1)k+ · · ·+xrk−1w
k−1) ∈ Frqk .

It is clear that σ is a bijection. Let τ be the inverse of σ. We can define σ and τ for point

sets as well.

Definition 6.2. Let L be a set of points in Fr
qk

. Then σ(L) = {σ(P )}, where P ranges all

elements of L.

Similarly, if L′ is a set of points in Fnq , then τ(L) = {τP}, where P ranges all elements

of L′.

The following lemma generalizes an observation in [4] for flats of higher dimensions.

Lemma 6.1. Let L be a t-flat in Fr
qk

. Then τ(L) is a tk-flat in Fnq . In addition, any translate

τ(L) + u, u ∈ Fnq , can be expressed as τ(L+ u′) for some u′ ∈ Fr
qk

.

Proof. We may write L as the set of points generated by some t linearly independent vector

u1, . . . , ut. Specifically,

L = {a+ a1u1 + a2u2 + · · ·+ atut}

for a, ai ∈ Fqk and ui ∈ Fr
qk

.

By properties of field extensions, for any N , wN can be written as a linear combination

of wj for j = 0, 1, . . . , k − 1. Therefore, given fixed ui, write each one coordinate of ui as a

linear combination of wj, j = 0, 1, 2, . . . , k − 1. Doing the same for each of the variables ai

yields tk variables y1, . . . , ytk, k for each ai, each in Fq.
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Through multiplying and again using the reduction from wN to a linear combination of

wj, j = 0, 1, 2, . . . , k − 1, we see that each element of L is of the form

a+ (x0 + x1w + · · ·+ xk−1w
k−1, xk + · · ·+ x2k−1w

k−1, . . . , x(r−1)k + · · ·+ xrk−1w
k−1),

where each of the xi is a fixed linear combination of the yi.

Because any element of τ(L) is of the form a′ + (x0, x1, . . . , xtk−1), we may rewrite it by

isolating each of the yi as a′+
tk−1∑
i=0

yivi for fixed vi ∈ Fnq . This implies that τ(L) is completely

generated by tk vectors, hence it is a subset of some tk-flat in Fnq .

However, observe that |τ(L)| = |L| = (qk)t = qtk, which is the size of any tk-flat in Fnq .

Therefore τ(L) must be exactly some tk-flat in Fnq . This proves the first half of the lemma.

To prove the second half of the lemma, it suffices to observe that the vectors generating

τ(L + u′) are the same as those generating τ(L). Because the shift variable a for L can

be chosen arbitrarily and corresponds to every possible shift of τ(L), we may replace L by

L′ = {a′ + a1u1 + · · · atut} to yield τ(L′) = τ(L) + u.

Lemma 6.1 shows connections between different dimensional flats in similar fields. This

connection implies the following theorem.

Theorem 6.2. Suppose that n = rk and t are positive integers. If t ≤ r, then K(q, n, kt,m) ≥

K(qk, r, t,m).

Proof. Let F be the smallest (kt,m)-Furstenberg set in Fnq . By definition, |F | = K(q, n, kt,m).

Let F ′ = σ(F ). Take a t-flat L of Fr
qk

. By Lemma 6.1, τ(L) is a kt-flat in Fnq . Because F is

Furstenberg, there is some u ∈ Fnq such that |(τ(L)+u)∩F | ≥ m. Applying Lemma 6.1 again,

there is u′ ∈ Fr
qk

such that |τ(L+u′)∩F ′| ≥ m. Because τ is a bijection, |(L+u′)∩F | ≥ m.

Because L can be any t-flat, this implies that F ′ is (t,m)-Furstenberg.

Therefore |F ′| ≥ K(qk, r, t,m). Because |F ′| = |F |, we conclude that K(q, n, kt,m) ≥

K(qk, r, t,m).

12



Like Lemma 6.1, Theorem 6.2 serves as comparison between Furstenberg sets in different

fields and confirms the importance of the structure of non-prime fields, in particular the

existence of subfields and the field extension idea. In addition, known Furstenberg bounds

can be used to generate other bounds, such as inequality (4).

7 Structure of Small Furstenberg Sets

In Zhang’s proof of Theorem 3.4, he utilizes a construction of a small Furstenberg set

which has the structure of being the union of several vertical arithmetic progressions. If such

a structure were present in all small Furstenberg sets over prime fields, we would be able to

work with these sets more concretely and likely reduce them to sumset estimates and related

problems.

However, if we apply any invertible linear transformation to a Furstenberg set, we obtain

another Furstenberg set which may not be a union of vertical arithmetic progressions. This

yields for each small Furstenberg set a new class of such sets of the same size. Considering

the invertible linear transformations of F2
q motivates us to define a notion of equivalence for

Furstenberg sets via the following group theory lens.

Consider the group G of invertible linear transformations and the set F of Furstenberg sets

of a fixed size. Because invertible linear transformations preserve incidences and therefore

send Furstenberg sets to other Furstenberg sets, we obtain a well-defined group action:

G× F −→ F

(g, F ) 7−→ g · F ≡ {g(p) : p ∈ F}.

With this setup, we may now define our equivalence notion.

Definition 7.1. Two Furstenberg sets F1 and F2 are equivalent and we write F1 ∼ F2 if

there is some g ∈ G such that g · F1 = F2.

13



It is easy to see that ∼ is an equivalence relation. Now we are ready to state our formal

conjecture about the structure of small Furstenberg sets.

Conjecture 7.1. There are positive real constants C1 and C2 such that for all large primes

q, any (1,m)-Furstenberg set F in F2
q of size at most C1q

1
2m

3
2 must be equivalent under ∼

to a (1,m)-Furstenberg set F ′ containing a subset of at least C2|F | points which form the

union of several vertical progressions.

Note that the equivalence classes under ∼ are precisely the orbits of the elements of F

under the action of G described above. Therefore, to make progress in Conjecture 7.1, it

suffices to show that there are few orbits, or even that the orbit of the Furstenberg set F

constructed by Zhang in his proof of Theorem 3.4 is large. If there is just one orbit under

the action, then all small Furstenberg sets are equivalent to F . In general, for any F ∈ F,

there is a |OF |
|F| probability that any Furstenberg set is equivalent to F , where OF is the orbit

containing F .

Using the orbit-stabilizer theorem, for any element F ∈ F, |OF | = |G|
|SF |

where SF is the

stabilizer subgroup of F . To make progress on 7.1, it would suffice to show that the particular

stabilizer |SF | is small. We now give an example of using this method in the simple case of

(1, 1)-Furstenberg sets over F2
2.

Example 7.1. Consider the set of (1, 1)-Furstenberg sets over F2
2 of size 1. It is easy to see

that the smallest such sets are just the four singleton sets, Fij = {(i, j)}, i, j = 0, 1.

By checking all possibilities, the group of invertible linear transformations on F2
2 consists

of 6 matrices. In addition, it is easy to verify that |SFij
| equals 2 when (i, j) = (1, 0), (0, 1), (1, 1)

and equals 6 when (i, j) = (0, 0).

Hence the orbit of Fij has size |OFij
| = 3 for (i, j) = (1, 0), (0, 1), (1, 1) and |OFij

| = 1

for (0, 0), implying that 3 of our Furstenberg sets have the same structure and the fourth is

different under linear transformations.
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In general, calculating the size of the stabilizer subgroups is much more difficult. One ad-

vantage, however, is that by recasting this aspect of the Furstenberg problem in the language

of group theory, we may be able to employ tools in the latter field to resolve it.
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