
Stochastic Processes in Quantum Error Correction

Reagan Choi

Under the direction of

Andrey Boris Khesin
MIT Mathematics Department

Research Science Institute
August 2, 2021

Abstract

We analyze surface codes in quantum error correcting. In these codes, qubits are encoded
with a grid of cells, which may be affected by error. These errors cannot be detected directly;
rather, we check the stabilizers of the encoding, which correspond to edges on the grid. This
allows us to find the loops that surround the errors. We analyze the behavior of various
processes that correct the errors on these loops. The absolute zero process is the most
stable, and we run simulations to determine that it can correct a square loop of error in
an average time of O(n3). We prove an upper bound for the absolute zero process and
prove that the average time complexity of an altered process is Θ(n3). Then, we analyze
probabilistic algorithms. The behavior shown by the simulation of the probabilistic model
indicates that there is a critical probability, approximately 0.175, at which error cannot
reliably be corrected. We also analyze the heat bath algorithm, which can introduce errors
to the grid but stochastically corrects large errors as long as the temperature is sufficiently
small.

Summary

When messages are sent in quantum computing, random errors may occur, making the
messages hard to read. To correct these issues, we encode each quantum bit (qubit) as a
grid of qubits, some of which may have errors. We analyze a process that randomly adds
and removes errors to this grid, with the ultimate goal of removing all of the error. As the
process selects a random cell every turn, it does not need to know information about the
entire grid, but rather the immediate surroundings. We analyze the time taken for these
random processes to correct all of the error on a grid, which is useful in determining how
quickly errors in quantum messages can be corrected using a grid encoding.

1 Introduction

Quantum computation is the use of quantum mechanics to store information. The basic

unit of data in quantum computing is the quantum bit (qubit). In the computational basis,

the two qubits are |0〉 and |1〉. Linear combinations, also known as superpositions, of these

qubits are of the form α|0〉+ β|1〉, where |α|2 + |β|2 = 1 for complex numbers α and β.

Quantum computation can store more information than classical computation. For ex-

ample, in quantum computation, when there are N bits, there are 2N combinations of qubits,

ranging from |00 . . . 0〉 to |11 . . . 1〉, which means there are 2N possible coefficients, each stor-

ing information. The complications of quantum computation arise from trying to extract the

coefficient α; when a qubit is measured, it collapses into one possible qubit with a probability

of |α|2, making it difficult to find α.

In addition, matrices can operate on qubits, transforming them linearly. Four important

matrices are known as the Pauli matrices, which are X, Y , and Z. The Pauli matrices

satisfy the property that X2 = Y 2 = Z2 = I and Y = iXZ [1]. These matrices are central

to quantum error correction as any continuous error can be represented in terms of these

matrices. The operations are also simple: the operator X transforms the qubit α|0〉 + β|1〉

into β|0〉+ α|1〉, and the operator Z transforms the qubit α|0〉+ β|1〉 into α|0〉 − β|1〉.

When a quantum message is sent through a noisy channel, there is some probability that

an error is inflicted on each qubit. These errors can be corrected through error-correcting

codes, which encode each qubit as multiple different qubits; this redundancy helps correct

any single error that may occur [2].

Imagine that Alice and Bob are communicating using qubits; i.e. Alice wants to send a

stream of qubits to Bob. However, there is noise in the channel, which has a probability p of

performing a random Pauli matrix operation on each qubit. This is known as the quantum

noisy coding problem, to which the optimal encoding system is not known yet [3].

1

We analyze surface codes, which encode each qubit as multiple qubits on a grid, as in

Figure 1.

Figure 1: Qubits with uncorrected errors on a grid

We define a cell as a unit square on a unit lattice. For example, in Figure 1, square

ABCD is a cell. An edge is any unit segment along the lattice between integer points; each

edge borders two cells. This includes the edges AB, BC, CD, and DA. Finally, any vertex

is a lattice point, which joins four cells and four edges; these include A, B, C, and D.

Some of the cells may have error that need to be corrected. In Figure 1, errors are shaded

in light gray. We define a boundary line as an edge between two cells of which exactly one has

error; these are bolded in the figure. As boundary lines separate cells with error from cells

without error, the boundary lines must form loops on the grid, each surrounding a droplet

of cells with error, as evident in Figure 1.

A stochastic process that toggles a cell based on the number of boundary lines can be

used to correct errors on these cells. Each step, this process either corrects or introduces an

error to a cell. Since X2 = Z2 = I, each step applies an X or Z operation to the qubit on

a cell, which can correct or introduce an error. Although both X and Z errors are possible,

we only consider one at a time, as the correction processes are equivalent and independent.

2

Dennis, Kitaev, Landahl, and Preskill demonstrate one algorithm, called the heat bath al-

gorithm, which stochastically modifies the loop [4]. In this algorithm, a set of non-overlapping

cells on a grid are randomly chosen. Then, for some inverse temperature β, this algorithm

flips the cell depending on how many boundary lines it has. A cell with k boundary lines is

flipped with the probability

pk =
1

1 + e(4−2k)β
.

As a consequence, p0 + p4 = p1 + p3 = 2p2 = 1.

Each step, the heat bath algorithm can flip several cells — that is, either a cell with error

turns into a cell without error, or vice versa. For our purposes, we simplify the heat bath

algorithm to select one cell at a time. The only difference this creates is that our algorithm

has a cell selected each step independently, as non-overlapping cells do not influence each

other.

In our paper, we study the heat bath algorithm and several simplified algorithms. We

simulate the behavior of these algorithms and their ability to correct error cells on a grid.

We also prove the time complexity of the expected number of steps for the absolute zero

process, as defined in 2.1, to correct error.

2 Simulation of the Absolute Zero Process

We first analyze a special case of the heat bath algorithm for simplicity. We first consider

the case where β →∞, which means p0 = p1 = 0 while p3 = p4 = 1. Because the temperature

is 0 in this case, we name this the absolute zero process. The process ends when the set of

cells is empty.

Definition 2.1. In the absolute zero process, we begin with a finite number of cells with

error on an infinite grid. Each step, the following occurs:

1. If there exists a cell with four boundary lines, flip one such cell at random.

3

2. Otherwise, if there exists a cell with three boundary lines, flip one such cell at random.

3. Otherwise, randomly select a cell with two consecutive boundary lines and flip it.

This process is repeated until there are no more boundary lines, at which point no cells have

error. As long as there is at least one error, it is always possible to flip a cell; we show this

in Lemma 3.1.

The motivation behind the absolute zero process is simple. The goal of this process is to

correct all of the error on the grid. However, it is impossible to directly determine if a given

cell has error; instead, stabilizers compare two adjacent cells to determine if exactly one of

them have error. The absolute zero process uses a probabilistic method to correct the errors,

based solely on the number of boundary lines that cells have.

For the sake of simplicity, we also forgo the probabilistic element of selecting a random

cell. This means we actively seek cells with three or four boundary lines to flip. This simpli-

fied process is not feasible in quantum computing, but the results we obtain can be extended

to the heat bath algorithm, which is a real process in quantum computing. Another simpli-

fication we make is disallowing the flipping of any cells with two opposite boundary lines,

which means they are two parallel sides of the cell. We will consider these flips in Section 3.

We perform a Monte Carlo simulation of the expected number of steps for the absolute

zero process to correct an n×n grid of cells with error for several values of n. Figure 2 shows

a graph plotting the number of steps for a square loop to vanish for assorted values of n.

4

Figure 2: A log-log plot of the simulated number of steps taken for an n × n grid of cells

with error vanish with the absolute zero process

Figure 2 is a log-log plot of the average number of steps taken. The linear regression line

for this plot is

lnT ≈ 3.02 lnn− 1.60.

The equation has an r2 value of 0.9998 and a standard error of 0.084. As a result, the slope

of the line does not differ significantly from 3. Because the equation lnT = 3 lnn − c is

equivalent to T = ecn3, the number of steps the absolute zero process takes to correct an

n× n grid of error has a cubic time complexity.

We also observe the shape of the loop during the absolute zero process. As seen in

Figure 3, the loop maintains a roughly circular shape.

5

Figure 3: A sample simulation of the absolute zero process. The loop begins as a 15 × 15

grid and vanishes in 903 steps; the loop after every 250 steps is shown.

3 Analysis of the Absolute Zero Process

Standard Absolute Zero Process

We first make several claims about the loop in the absolute zero process, motivated by

the computational analysis in Section 2. We begin by proving a claim made in Definition 2.1.

Lemma 3.1. If the loop is finite and there is at least one cell with error, there is at least

one cell with two or more boundary lines.

6

Proof. Because there are a finite number of cells with error, by the extremal principle, we

consider the cell (x, y) with the largest x-coordinate. If there are multiple such cells, consider

the one with the largest y-coordinate.

Because (x, y) is extremal, neither of the cells (x + 1, y) nor (x, y + 1) can have error.

This means there is a boundary line between (x, y) and (x + 1, y), and also between (x, y)

and (x, y + 1), so (x, y) has at least two boundary lines. This proves our lemma.

Next, we analyze how the absolute zero process tends to remove error from the grid.

Definition 3.1. We define the bounding box of a finite region S on a square lattice as the

smallest rectangle, whose sides are parallel to the grid lines, that contains S.

The bounding box of a region S is simple to find. If the bounding box has opposite

vertices (x1, y1) and (x2, y2) with x1 ≤ x2 and y1 ≤ y2, it is clear that x1 must be less than

or equal to the x-coordinate of all points in S. This means

x1 = min
P∈S

x(P),

where P covers all points in S.

Similarly, we have

y1 = min
P∈S

y(P),

x2 = max
P∈S

x(P), and

y2 = max
P∈S

y(P),

where x(P) is the x-coordinate of point P and y(P) is the y-coordinate of point P .

Lemma 3.2. In the absolute zero process, the bounding box of the cells with error cannot

grow. Specifically, if a cell is outside of the bounding box at some point, it cannot have error

at any later time.

Proof. Assume for the sake of contradiction that the bounding box does grow. This means

that after T steps the bounding box has opposite vertices (x1, y1) and (x2, y2) with x1 ≤ y1

7

and x2 ≤ y2. For the T +1th step to increase the bounding box, it must add a cell with error

outside of the bounding box.

Without loss of generality, let this be the cell have center (x, y) with x > x2. However,

this means the cells at (x, y − 1), (x, y + 1), and (x + 1, y) are all outside of the original

bounding box, so the edges separating these cells with (x, y) cannot be boundary lines. This

means the cell (x, y) has at most one boundary line, so an error cannot be introduced here

in the absolute zero process.

We also quantify another important monovariant in this system.

Lemma 3.3. The total number of boundary lines, which is also the total perimeter of the

loops, never increases under the absolute zero process.

Proof. It suffices to show that each of the three steps in the absolute zero process do not

increase the perimeter. When a cell is flipped, its four sides (and only these four edges) are

flipped. When a cell has four, three, or two boundary lines initially, it will have zero, one,

or two boundary lines after the step, respectively. This means the number of boundary lines

does not increase.

We introduce another property that loops satisfy in the absolute zero process.

Definition 3.2. We define a region to be orthogonally convex if, given two points within the

region with coordinates (x, y1) and (x, y2) for y2 > y1, the points (x, i) for y1 ≤ i ≤ y2 are

within the region as well. Similarly, for any two points within the region with coordinates

(x1, y) and (x2, y) for x2 > x1, the points (j, y) for x1 ≤ j ≤ x2 are within the region as well.

Lemma 3.4. If the region within the loop is orthogonally convex after step T , it must still

be orthogonally convex after step T + 1.

Proof. For the sake of contradiction, assume the loop is not orthogonally convex after step

T + 1; in particular, the red line in the figure below enters the loop in region B, then leaves

8

in region C, then enters in region D. This red line is horizontal without loss of generality;

the case for a vertical red line is symmetric.

Figure 4: An example of a region that is not orthogonally convex, as the red line enters the

region at B, leaves at C, then enteres again at D.

We consider each possibility for how this could have formed, even though the loop was

orthogonally convex the previous step. The flip in step T + 1 must have been a cell within

region B, C, or D; otherwise, the loop was not orthogonally convex the previous step.

Case 1: A cell within region B was flipped. Region D is equivalent.

Let the flipped cell be X. If there is another cell with error to the left or right of X, this

contradicts the assumption that the loop was orthogonally convex the previous step. As a

result, neither of the edges to the left or right of X were boundary lines in the previous step.

This means X cannot have two or more adjacent boundary lines, so it could not have been

flipped by the rules of the absolute zero process.

Case 2: A cell within region C was flipped.

This case is similar to Case 1. There cannot be two cells within C that are beside each

other horizontally. As a result, if we let the flipped cell be X, both the cells to the left and

right of X must have had error. This is again a contradiction, as X has no way of being

flipped.

As a result, we have a contradiction, so the loop must stay orthogonally convex.

Corollary 1. If the initial loop is square, then the loop will stay orthogonally convex for the

9

remainder of the process.

We have shown that the loop is bounded and cannot grow infinitely in the absolute zero

process. Now, we show that the loop tends to shrink by considering the expected number of

error cells.

Lemma 3.5. Assume that the boundary lines form a single loop. If there are no cells with

three or more boundary lines, there must be exactly four more error cells that have two

boundary lines than non-error cells that have two boundary lines.

Proof. The loop has only edges parallel to the x and y axes, which means every angle formed

must be either 90◦ or 270◦. Let there be a 90◦ angles and b 270◦ angles.

There must be a + b sides, which means the total sum of angles of the loop must be

180◦(a+ b− 2) = 180◦(a+ b)− 360◦. Equating this to the sum of angles computed directly,

we get

180◦(a+ b)− 360◦ = 90◦ · a+ 270◦ · b.

Simplifying, we get that

90◦ · a− 360◦ = 90◦ · b,

so

a− b = 4,

as desired.

Finally, we can use an expected value argument to prove the upper bound for the time

complexity of the absolute zero process.

Theorem 3.6. The time complexity for the absolute zero process to correct all errors in an

n× n grid is at most O(n3).

Proof. We consider the expected value of the number of cells with error. We claim that the

expected change in area is O(n−1) at worst.

10

First, any cell with three or more boundary lines is removed automatically by the absolute

zero process, so the expected change in area in this case is −1.

Otherwise, a cell with two boundary lines is selected at random. Every such cell borders

two boundary lines. By Lemma 3.3, there are at most 4n boundary lines, so there are at

most 8n cells that are adjacent to a boundary line, which means there are O(n) flippable

cells. If there are p flippable cells with error and q flippable cells without error, the expected

change in area is

E(Area) =
q − p
p+ q

.

By Lemma 3.5, q − p = −4, and since there are O(n) flippable cells, p+ q is in O(n). Thus,

the expected decrease in area is

−E(Area) =
4

O(n)
= Ω(n−1).

Because the initial area is n2, the expected number of steps for the loop to shrink to zero

is n2

Ω(n−1)
= O(n3).

The simulation suggests that the process has a time complexity of O(n3), which we have

matched in the upper bound. As for the lower bound, a weak lower bound of the time

complexity is n2, as there are n2 error cells to correct. As the process imitates a random

walk, however, the time complexity is likely well above this lower bound. We show both the

upper and lower bounds of O(n3) for an altered process.

An Altered Process

We analyze an altered process which models the original heat bath algorithm more closely.

Definition 3.3. In this altered process, we again begin with a finite number of cells with

error on an infinite grid. Each step, the following occurs:

1. A random cell with at least one boundary line is selected.

11

2. If this cell has three or four boundary lines, flip it.

3. If this cell has two boundary lines, flip it with a probability of 1
2
. These two boundary

lines do not need to be adjacent.

4. If this cell has one boundary line, do not flip it.

As in the absolute zero process, this process is repeated until no cells have error. Significantly,

a step does not always result in a cell being flipped.

Several of the lemmas that we proved for the standard absolute zero process still apply

here. In particular, Lemma 3.1, Lemma 3.2, and Lemma 3.3 remain true because we still do

not allow cells with one boundary line to be flipped.

Lemma 3.4, however, does not remain true; any step that flips a cell with two opposite

boundary lines breaks the orthogonally convex condition. Still, a similar result stays true:

each individual loop remains orthogonally convex. A complete proof of this claim is located

in Appendix A.

We use this result to prove that both the upper and lower bound of the time complexity

is O(n3).

Theorem 3.7. The time complexity for the altered absolute zero process to correct an n×n

array of error cells is O(n3).

Proof. Similar to Lemma 3.5, we claim that the probability of flipping a cell with error is

1
2

+ O
(

1
n

)
. There are O(n) flippable cells, as there are O(n) boundary lines in total. As a

result, we wish to show that it is more likely to flip a cell with error than without.

The probability of flipping a cell with three or four boundary lines is 1, while the prob-

ability of flipping a cell with two boundary lines is 1
2
. This means cells with three or four

boundary lines have double the weight of cells with two boundary lines. In addition, every

12

cell without error has zero, one, or two boundary lines; otherwise, the loops would not be

orthogonally convex.

First, we consider loops of size one — i.e. one cell X of error with four boundary lines.

By the nature of the loops discussed previously, X is part of a chain of rectangles; thus, at

most two of the cells adjacent X are flippable. Because X has twice the probability of being

flipped, the probability of flipping a cell with error is at least as much as cells without error

for this case.

Now, we consider loops with more than one cell within it. Here, we can use similar

reasoning to Lemma 3.5 and Theorem 3.6. Because cells with three boundary lines consist of

two corners and have twice the weight and there are four more corners with angle 90◦ than

with angle 270◦, for loop on the grid, the probability of flipping a cell with error is larger

than the probability of flipping a cell without error.

The final case we have to consider is the dark gray cells that link adjacent loops, as

described in Appendix A. However, the number of such cells is less than the number of total

loops, so it is overall more likely to select a cell with error. By the same reasoning as in

Theorem 3.6, there are O(n) total possible steps, so the expected change in area is Ω(n−1).

Thus, the expected number of steps for the altered absolute zero process to terminate is

n2

Ω(n−1)
= O(n3).

4 The Probabilistic Model

Now, we add a few more complications into our simulations to approach the Heat Bath

Algorithm. For some probability p < 1
2
, we define the probabilistic model as follows:

Definition 4.1. In the probabilistic model, we again begin with a finite number of cells with

error on an infinite grid. Each step, the following occurs:

1. A random cell with at least one boundary line is selected.

13

2. If this cell has four boundary lines, flip it.

3. If this cell has three boundary lines, flip it with a probability of 1− p.

4. If this cell has two boundary lines, flip it with a probability of 1
2
.

5. If this cell has one boundary line, flip it with a probability of p.

Unlike in the altered absolute zero process, this only counts as a step if a cell is successfully

flipped. This process is then repeated until no cells have error.

Like in the absolute zero process, we run simulations of this probabilistic model to figure

out the average number of steps that the process takes to correct all of the error.

Figure 5: The expected number of steps for the probabilistic model to correct all of the

error in a square loop. The bottom line marks a probability of 0; from bottom to top, the

probability increases by 1
40

up to p = 6
40

= 3
20

for the topmost line.

In Figure 5, we have seven different data sets which correspond to different probabilities

p. Several features about the mechanics of this process are important to understanding the

number of steps that error correcting takes.

14

The plot ends at p = 0.15, although larger probabilities, such as p = 7
40

, were not plotted.

For these larger probabilities, the simulation for the probabilistic model did not terminate in

sufficient time. This implies that the loop continued to grow in size, unlike for lower values

of p, for which all of the simulations ended quickly.

This behavior implies that there is a critical probability at which the loop grows without

bound often, giving an infinite average number of steps. For the processes we have analyzed so

far, the random process could theoretically be unending, but the probability of this occurring

is exponentially decreasing, so the average number of steps is not infinite. However, in this

case, there is a critical probability at which the average number of steps is infinite. This is

behavior similar to problems such as bond percolation. According to the simulations, the

critical probability lies between 0.173 and 0.175.

Simultaneous Algorithms

Finally, we end this section on a remark about simultaneous algorithms. Because each

cell is locally modified as a result of its neighbors, it is possible to run this process for each

cell simultaneously.

However, this algorithm does not have the nice properties that the other algorithms

have. For example, consider the most basic case where, at every step, each cell is flipped

with a probability of 0, 0, 1
2
, 1, or 1, depending on whether it has zero, one, two, three, or

four boundary lines, respectively. This ends up displaying oddities such as the formation of

teeth-like structures shown in Figure 6

15

Figure 6: Several boundary lines have a significant probability of forming teeth when cells

are flipped simultaneously.

The first boundary line shown in Figure 6, which is a very standard part of a loop, has a 1
4

chance of changing into the second boundary line, which increases in perimeter (despite not

flipping any squares with one boundary line). From there, this has a 1
4

chance of changing

back into the first figure, a 1
2

chance of moving laterally (and staying the same length),

and a 1
4

chance of changing into the third boundary line, which increases the perimeter

further. This means, for a sufficiently long starting boundary line, simultaneous algorithms

can be modeled as two fair random walks, with everything in between being teeth as seen in

Figure 6. As we had previously used perimeter as a monovariant for the size of the loop, this

behavior is undesirable. We instead analyze algorithms where cells are flipped sequentially,

which results in more noticeable patterns.

16

5 Heat Bath Algorithm

Finally, we discuss how the heat bath algorithm is able to correct error. The heat bath

algorithm introduces the ability to flip cells that have zero boundary lines, as described by

Dennis et. al. [4]. To prevent adding error at arbitrary locations in an infinite grid, we model

the heat bath algorithm on a finite toric grid, which means that the left edge and right edge

are the same, and the top edge and bottom edge are the same.

As the heat bath algorithm models the introduction as well as the removal of error, we

begin with no error and study the equilibrium number of errors after a long time.

Figure 7: Each line corresponds to a different temperature. The values of e−2β, where β is

the inverse temperature, are 0.5, 0.2, 0.1, 0.05, 0.02, and 0.01 from top to bottom. These

approximately correspond to the probability of flipping a cell with one boundary line.

The results of the simulation for this process for a 20 × 20 loop is shown in Figure 7,

which displays several behaviors.

First, when e−2β is 0.5 or 0.2, the points quickly reach an equilibrium of approximately

200 errors. This is exactly half of the total number of cells. Our algorithm cannot distinguish

17

cells with error from cells without error; thus, if the expected number of error cells equals

the expected number of non-error cells, there is no way to differentiate the two. However,

for lower values of e−2β, this behavior is not present. Instead of increasing steadily to 200,

the number of error cells plateaus. This implies the existence of an equilibrium at this point.

This means, typically, that a low temperature results in the introduced errors being corrected

quickly.

6 Future Work

Each of the algorithms we analyzed have promising future work to be made. The behaviors

of these loops over time result in notable patterns, as we discovered with the simulations,

but are more difficult to prove mathematically.

For the standard absolute zero process, our current lower bound for the time complexity

is O(n2), which is less than suggested by the simulation. Further work could be done to prove

this lower bound. It would suffice to show that the expected change in area is Ω(n−1); this

appears to be true in general, with only a few exceptions such as the initial square loop.

A process related to the absolute zero process is the totally asymmetric simple-exclusion

processes (TASEPs). In this process, a cell with two boundary lines are randomly removed

from a quadrant of cells. However, unlike in the absolute zero process, cells cannot be added

back. It has been proven in TASEPs that the boundary lines approximate a quarter-circle [5].

The techniques used regarding TASEPs could be used regarding the absolute zero process,

which also approximates a quarter-circle on each corner.

The probabilistic model discussed in Section 4 also has interesting properties to be an-

alyzed. Particularly, there is a critical probability at which the loop is expected to grow

without bound. The cells with error tend to form small clusters; when a loop grows without

bound, the number of these clusters grows, instead of the size of the clusters growing.

18

There is also more future work regarding the heat bath algorithm regarding the behavior

of the loops for different temperatures. The average number of cells approaches an equilibrium

for low temperatures, so we could analyze the behavior of the loop at the equilibrium.

Specifically, the expected change in area should be 0, which is dependent not only on the

number of error cells but also the way these cells are arranged on the grid.

Finally, there are many more algorithms that could be analyzed. Dennis, Kitaev, Landahl,

and Preskill discuss four-dimensional codes in their paper, correcting for both X and Z errors

on the qubits. Although this complicates the processes discussed in our paper, the techniques

used may work for higher-dimensional cases as well.

7 Conclusion

Inspired by the heat bath algorithm, we analyzed several different stochastic processes

that correct error cells on a grid. The first process we analyzed is the most orderly, the

absolute zero process. Simulations of this process on a square initial loop showed an approx-

imately cubic time complexity for the loop to vanish. Then, we made several mathematical

observations about the nature of this loop and used them to prove that this process has an

expected time complexity of at most O(n3). We then proved that an altered version of this

process has an expected time complexity of exactly O(n3).

To approach the original heat bath algorithm, we analyzed a probabilistic model to correct

loop in an error. We found that this process always converges for small probabilities, but

grows without bound for large probabilities. Finally, we analyzed the heat bath algorithm

on an initially empty toric loop. For small temperatures, the grid reached an equilibrium in

the average number of cells with errors; however, for large temperatures, the number of cells

approached n2

2
.

Encoding qubits as grids is efficient because the qubits are closer together, which allows

19

for simple stabilizers (one for each edge). We analyzed the heat bath algorithm and simplified

variants, which are processes that correct errors on these grids. This is useful when using

grids to encode messages, providing insights on the time necessary to correct these errors

and the temperature required to prevent errors from propagating.

8 Acknowledgments

I would like to thank my mentor, Andrey Boris Khesin, for his plentiful advice and

assistance in this project. I would also like to thank my head mentor, Dr. Tanya Khovanova,

for her supervision and advice in the project. I am also grateful to Prof. Ankur Moitra

and Prof. David Jerison for organizing the MIT Math Department and making this project

possible. I am also appreciative of Dr. John Rickert, who provided feedback on the paper

and presentations. Thanks also to Dimitar Chakarov and Dev Chheda for their assistance

with final revisions. I am also thankful to my sponsors for this project, who are Mr. and Mrs.

Brain M. Fairchild, Mr. and Mrs. Daniel A. D’Aniello, Dr. Fei-Ran Tian and Dr. Shanghong

Dong, Dr. and Mrs. Jong K. Lee, Ms. Wendy Kershner, and Matthrew Thrasher, Ph.D. This

project was possible due to the Massachusetts Institute of Technology (MIT) and the Center

for Excellence in Education (CEE), which organized the Research Science Institute (RSI) at

which this project was conducted.

20

References

[1] D. Gottesman. The heisenberg representation of quantum computers. arXiv preprint
quant-ph/9807006, 1998.

[2] A. M. Steane. Simple quantum error-correcting codes. Physical Review A,
54(6):4741–4751, Dec 1996.

[3] I. L. Chuang and R. Laflamme. Quantum error correction by coding. arXiv preprint
quant-ph/9511003, 1995.

[4] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory. Journal
of Mathematical Physics, 43(9):4452–4505, Sep 2002.

[5] Y. Yamada and M. Katori. Velocity correlations of a discrete-time totally asymmetric
simple-exclusion process in stationary state on a circle. Physical Review E, 84(4), Oct
2011.

21

A The Altered Absolute Zero Process

When moves that flip two cells with two opposite boundary lines are permitted, lemma 3.4

does not remain true.

Lemma A.1. After T steps in the altered absolute zero process starting from a single square

loop, each loop that surrounds cells with error on the grid is orthogonally convex.

Proof. We prove that these properties hold after every step. For steps that do not flip a

cell with two opposite boundary lines, the argument in Lemma 3.4 maintains that these

conditions hold. Thus, we consider the first time a cell with two opposite boundary lines is

flipped.

Figure 8: The dark gray cell is flipped from error to no error, forming two potential regions

of error in light gray that are individually orthogonally convex

In Figure 8, call the cell with two opposite boundary lines X, which is marked in dark

gray. When X can be flipped, without loss of generality, assume that the cells to the left

and right of X have no error. Then, since the loop is orthogonally convex, there cannot be

error cells in both the southwest and northwest quadrants. The same logic applies to the

northeast and southeast quadrants. Thus, without loss of generality, the light gray rectangles

mark cells which could be part of the loop; the white cells cannot have error.

22

If these sections recombine, it must be because X was flipped again; no other cell bounds

both rectangles shaded in light gray.

Figure 9: Another dark gray cell is flipped, creating two light gray rectangles as before. This

creates a chain of three light gray rectangles, each connected to the next through one dark

gray cell.

Now, consider another cell with two opposite boundary lines Y being flipped, as in Fig-

ure ??. In this case, we see that the light gray rectangles form a chain, each going from

southwest to northeast. If two consecutive rectangles are combined by flipping a dark gray

cell, this decreases the number of rectangles in the chain but does not violate the conditions.

Figure 10: Rectangles A and B are now oppositely oriented, which means the rightmost dark

gray cell is only connected to one light gray rectangle, C.

23

The other case is if the two new rectangles were oppositely oriented; i.e. from northwest

to southeast, as shown in Figure 10. In this case, we notice that rectangles A and B are

disconnected from rectangle C. Thus, rectangles A and B need to be merged before they

can merge with rectangle C. We can use the same argument as before on rectangles B and

C to prove that the conditions hold.

As the merging of two regions through a dark gray cell is always the same as the separation

of these regions, each contiguous region of error is orthogonally convex.

24

	Introduction
	Simulation of the Absolute Zero Process
	Analysis of the Absolute Zero Process
	Standard Absolute Zero Process
	An Altered Process

	The Probabilistic Model
	Simultaneous Algorithms

	Heat Bath Algorithm
	Future Work
	Conclusion
	Acknowledgments
	The Altered Absolute Zero Process

