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Abstract

The pants graph was first introduced to better understand distinct pants decom-
positions of hyperbolic surfaces. The action of the mapping class group on the pants
graph gives rise to a modular pants graph, which allows for the study of homeomor-
phism classes of pants decompositions. Using the bijection between homeomorphism
classes of pants decompositions and trivalent multigraphs, we provide two upper
bounds on the number of vertices in the modular pants graph of genus g: the first
is in terms of the number of trivalent multigraphs of genus g with one bridge; the
second is a recursive bound in terms of g which makes use of girth.

Summary

In Euclidean geometry, there is only one line through a given point parallel to a
given line. There are other types of geometries where this is not true, including one
known as hyperbolic geometry. Hyperbolic geometry, just like Euclidean geometry,
can be extended to higher dimensions, otherwise known as hyperbolic space. Within
this space, there are hyperbolic surfaces. These surfaces can be cut up into smaller
surfaces known as pairs of pants, which can be viewed as building blocks for larger
surfaces. The number of ways to do so for a given surface is not known; in this paper
we provide upper bounds for this quantity.



1 Introduction

Euclid first laid out the foundations of Euclidean geometry, built entirely from

five postulates, in The Elements. Failed efforts to prove the parallel postulate from

the other four led to other geometries where the parallel postulate does not hold,

collectively known as non-Euclidean geometry. Hyperbolic geometry is one such ge-

ometry. Every hyperbolic surface can be cut up into pairs of pants. For a given

surface, this division into pants is not unique, and so the pants graph was introduced

in 1980 by Hatcher and Thurston [1] to understand relationships between distinct

pants decompositions. More recent work has highlighted the use of graph theory in

investigating the structure the pants graph.

A pair of pants is a surface of genus 0 with three boundary components, shown

in Figure 1. A pants decomposition of a surface of genus g is a system of 3g − 3

non-homotopic and non-intersecting simple, closed curves that cuts the surface into

2g−2 pairs of pants, as described by Putman [2]. An example is in Figure 1. The pants

graph is a graph whose vertices represent isotopy classes of pants decompositions and

whose edges represent elementary moves that change one pants decomposition into

another. One such move is an A-move, as in Hatcher [3], which changes one type of

curve into another.

Figure 1: A pair of pants and a pants decomposition of a genus 2 surface

1



The modular pants graph, described by Putman [2], is a graph where vertices rep-

resent homeomorphism classes and where edges represent A-moves only. The number

of homeomorphism classes of pants decompositions is not known. The following fact,

shown in Putman [2], has led to graph theoretical approaches to this problem: homeo-

morphism classes of pants decompositions are in bijection with trivalent multigraphs,

where a trivalent multigraph is any undirected graph where all vertices have de-

gree three and where duplicate edges and loops are allowed. Each individual pair of

pants in a pants decomposition corresponds to a vertex in a trivalent multigraph,

and a shared boundary between two pairs of pants corresponds to an edge between

vertices. An example is provided Figure 2.

Figure 2: A pants decomposition of a genus 3 surface and its corresponding trivalent
multigraph; each pair of pants corresponds to a vertex; a shared boundary corresponds to
a shared edge

We can then use trivalent multigraphs to investigate pants decompositions with-

out looking at pants decompositions themselves. In particular, we can describe A-
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moves in terms of trivalent multigraphs, as in Sultan [4] and Benvenuti and Piergallini

[5]. Sultan provides a bound on the maximum distance in the modular pants graph

between a non-separable trivalent multigraph and some separable trivalent multi-

graph using the graph theoretic concept of girth [4].

The modular pants graph is a combinatorial model of the Weil-Petersson metric

on the moduli space of Reimann surfaces, as shown in Brock [6], which is useful for

studying hyperbolic space. The Weil-Petersson metric is also of interest to physicists

because it appears in calculations in string theory. In addition, the generation of

trivalent graphs has long been a problem in both math and computer science, as

described by Brinkmann, Goedgebeur and Van Cleemput [7], and cubic graphs are

also interesting to chemists for modelling carbon networks.

In Section 2, we go over graph theory and the definition of the modular pants

graph. In Section 3 we further explore the structure of the modular pants graph. In

Section 4, we provide an upper bound on the number of vertices in the modular pants

graph in terms of the number of trivalent multigraphs of genus g with one bridge

(Theorem 14). In Section 5, we provide an a recursive upper bound (Theorem 17)

for the number of vertices in the modular pants graph in terms of g using girth and

A-move’s actions on cycles described in Sultan [4].
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2 Preliminaries

2.1 Graph Theory

We investigate how A-moves change certain graph theoretical properties of triva-

lent multigraphs. We are then able to study pants decompositions and the modular

pants graph entirely within the realm of graph theory. The following definitions from

graph theory are relevant for that purpose.

A bridge in a graph G is an edge whose removal from G would result in a

disconnected graph. The girth of a graph G is the length of the smallest cycle in G.

A full, rooted, binary tree is a graph which contains no cycles, and where one

vertex has degree 2 and all others have degree 3 or 1. A trivalent multigraph is

an undirected graph whose vertices all have degree 3 and where duplicate edges and

loops are allowed.

2.2 Pants Decompositions, A-moves and The Modular Pants

Graph

As previously mentioned, the set of homeomorphism classes of pants decompo-

sitions is in bijection with the set of trivalent multigraphs. The bijection between

pants decompositions and trivalent multigraphs is the following: vertices in trivalent

multigraphs correspond to pairs of pants, and two vertices in a trivalent multigraph

are connected by an edge if the two pairs of pants they represent share a simple

closed curve in the pants decompositions. Thus a trivalent multigraph of genus g
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consists of 2g − 2 vertices and 3g − 3 pairs of pants.

An A-move is one of two elementary actions that can be performed on a pants

decomposition, the other being an S-move. S-moves do not change the homeomor-

phism class of the pants decomposition and so are not represented in the modular

pants graph. We do not discuss S-moves further in this paper. A-moves can be under-

stood both in terms of pants decompositions and in terms of trivalent multigraphs.

An A-move on a pants decomposition is depicted in Figure 3.

Figure 3: An A-move on part of a pants decomposition

We now define A-moves in terms of trivalent multigraphs, based on definitions

used in Sultan [4] and in Benvenuti and Piergallini [5].

Definition 1. An A-move is a mapping from one trivalent multigraph G to the

another trivalent multigraph H that is dependent on a chosen edge e in G and a

pairing of the edges adjacent to e. Suppose we have an edge e in G which is adjacent

to edges a and c at a vertex v1 and to edges b and d at a vertex v2, as in Figure 4 An

A-move with respect to e in G, with pairings (a, b) and (c, d), is a mapping where,

if Ae(a,b)(h) is the image of an element h (so h is either a vertex or an edge) under

the A-move, then:

1. Ae(a,b)(a) is adjacent to Ae(a,b)(b) and Ae(a,b)(e) at Ae(a,b)(v1)
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2. Ae(a,b)(c) is adjacent to Ae(a,b)(d) and Ae(a,b)(e) at Ae(a,b)(v2)

3. all other edge-vertex incidences are preserved as long as they don’t involve e,

v1, or v2

Figure 4 is a depiction of an A-move on a trivalent multigraph. Note that, given

an edge e, there are two possible A-moves one can perform on the edge, given by the

two different possible pairings of the edges adjacent to e. Unless it is necessary to

specificy the pairing, we will denote an A-move with respect to e as Ae. In addition,

note that the labelling is “removed” after the A-move is performed so that we once

again have an unlabelled trivalent multigraph. It is possible that an A-move results

in the same graph.

Figure 4: An A-move with respect to e (with pairings (a,b) and (c,d)); vertices are not
labelled

With a more concrete concept of an A-move on trivalent multigraphs, we can

present a definition of the modular pants graph, from Putman [2].
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Definition 2. The modular pants graph of genus g, denoted Pm(g), is the

graph where each vertex represents a homeomorphism class of pants decompositions

of genus g, and thus a trivalent multigraph, and there exists an edge between vertices

if an A-move can be performed on the trivalent multigraph represented by one of the

vertices to get to the trivalent multigraph represented by the other vertex.

Trivalent multigraphs, pants decompositions and the vertices of Pm(g) are then

interchangeable in this context. In this paper graph is interchangeable with trivalent

multigraph; graph is never used to refer to Pm(g) or to a graph that is not a trivalent

multigraph. Trivalent multigraphs are unlabelled unless we impose a labelling; thus

two trivalent multigraphs are considered the same if they are isomorphic.

3 Action of A-moves on Separable Graphs and

Separability of Specific Edges

To get a bound for the number of vertices in Pm(g), we look at the structure of

the Pm(g); in particular, we define the separation number of a trivalent multigraph

and the separability of an edge.

Definition 3. A graph G is k-bridged if there are exactly k distinct bridges in G;

k is the separation number of G, denoted Ns(G).

We are not only interested in how separable a graph is at a global scale, but also

at how specific edges behave within a graph.
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Definition 4. Given a labelling of the edges of G, an edge e in G is separating if

e is a bridge in G; otherwise e is non-separating. Whether or not a given edge is

separating is the edge’s separability.

We now have a crucial lemma about the behavior of A-moves on edge separability.

Lemma 5. Given a trivalent multigraph G, a labelling of the edges in G and an

edge e in G, for all h 6= e, Ae(h) has the same separability as h. In other words, an

A-move with respect to an edge e preserves the separability of all edges except e.

Proof. We do separate cases, and the cases are shown in Figure 5.

Figure 5: Cases for proof of Lemma 5

Case 1: e is adjacent to two loops, one at each vertex. Then G has only two

vertices and three edges. Let one loop be a and the other b. Loops are always non-

separating. After performing either of the two possible A-moves on e, we obtain the

the only other trivalent graph on 2 vertices, where the vertices share three edges,

each of which is non-separating. Thus the separability of the two loops remains the

same.
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For the next two cases, note that A-move with respect to an edge e changes only

those edge adjacencies that occur on a vertex incident to e.

Case 2: e is adjacent to one loop at one vertex, and to two distinct edges at the

other. Let the loop be c and let the two distinct edges be a and b. In this case, the two

different possible A-moves result in isomorphic graphs. Without loss of generality,

we only have to look at b. We have two subcases: either b is separating, or b is

non-separating.

If b is non-separating, there exists a path from b to a that does not contain vertices

incident to e. This path is unchanged by the A-move, so there exists a path from

Ae(b) to Ae(a) that does not contain vertices incident to Ae(e). Then Ae(b) lies on a

cycle with Ae(a), and so is non-separating.

If b is separating, there are no other paths from b to a besides the one that passes

through a vertex incident to e. Then the only path from Ae(b) to Ae(a) is the one

that passes through Ae(e). So Ae(b) is separating.

Case 3: e is adjacent to no loops; e is adjacent to two distinct edges at each

vertex, for a total of four distinct edges. Suppose e is adjacent to edges a and c at

one vertex, and to edges b and d at the other. Without loss of generality, suppose

that we perform an A-move on e with pairings (a, b) and (c, d). We need only look at

one of the edges adjacent to e, say a. We have two subcases: either a is a separating,

or it is not.

If a is separating, there is exactly one path from a to each of b, c or d, and for

each, that path passes through a vertex incident to e. Then in the image of the A-

move, there is only one path from Ae(a) to each of Ae(b), Ae(c), and Ae(d), and for
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each, that is a path that passes through a vertex incident to Ae(e). So Ae(a) is still

separating.

If a is non-separating, there is a path from a to one of b, c, or d that contains

no vertices incident to e. Then we have a path from Ae(a) to one of Ae(b), Ae(c) or

Ae(d) that does not contain either of the vertices incident to Ae(e). Thus Ae(a) is

non-separating.

In particular, this means that, given an edge e, both possible A-moves one can

perform on e preserve the separability of all edges except e.

Lemma 6. Given a k-bridged trivalent multigraph G, with k ≥ 1, there exists a

separating edge e in G so that the image of e under some A-move Ae, Ae(e), is

non-separating.

Proof. First, any separating edge e which is incident to a vertex on a cycle can be

made non-separating by an A-move with respect to e. (Because it is separating, the

other endpoint of e cannot be part of the same cycle). Suppose e is adjacent to edges

a and b at one of its endpoints, so that a and b lie on a cycle with one another. That

means there exists a path connecting a and b that touches no vertex incident to e.

Then an A-move with respect to e maps to a new graph where Ae(e) is adjacent to

Ae(a) at one vertex and to Ae(b) at another. Because the A-move preserves all edge

adjacencies except for the adjacencies occurring on a vertex incident to e, Ae(e) is

part of a cycle. Thus Ae(e) is no longer separating. Figure 6 depicts this.
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Figure 6: A separating edge e becoming non-separating through an A-move

Now consider some k-bridged graph G with k ≥ 1. If there is a separating edge

incident to a vertex on a cycle, we are done. Otherwise, assume for the sake of con-

tradiction that there are no such separating edges in G. Choose one separating edge

e1. Choose one of the vertices incident to e1. Because e1 is not incident to a vertex

on a cycle, the two other edges incident to this vertex are each also separating (the

only way for them to be non-separating would be if there were a path from one to

another that does not pass through a vertex incident to e1, but this is impossible

because neither vertex incident to e1 lies on a cycle). Choose one of these two new

separating edges, say e2. If e2 is incident to a vertex on a cycle, we have a contra-

diction. So then, as before, we choose one of the vertices incident to e2. Continue on

in this way. Since there are a finite number of separating edges, at some point we

must choose the same edge again, say er, so that er is the first edge repeated in our

sequence of chosen edges. Then er is on a cycle, and so it is non-separating, which

is a contradiction. Thus there must exist a separating edge incident to a vertex on a

cycle if G contains a positive number of separating edges, and we are done.

Lemma 5 and Lemma 6 then give rise to relationships between trivalent multi-
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graphs of different separation numbers within Pmg.

Proposition 7. If a genus g trivalent multigraph G is k-bridged, and another genus

g trivalent multigraph H is one A-move away from G in Pm(g), then H is (k − 1)-,

(k)- or (k + 1)-bridged.

Proof. By Lemma 5, the only edge which may have a different separability than its

image under an A-move Ae is the edge e. Thus if H is one A-move away from G,

then Ns(H) differs from Ns(G) by at most 1.

We have a more specific result about moving to lower separation number.

Proposition 8. Given any k-bridged trivalent multigraph G with k ≥ 1 there exists

a (k− 1)-bridged trivalent multigraph H that is adjacent to G in the Pm(g). In other

words, we can perform an A-move on any k-bridged graph to get to a (k− 1)-bridged

graph.

Proof. Consider a k-bridged trivalent multigraph G. By Lemma 6, we know that

we can find a separating edge that can be made non-separable via a single A-move;

by Lemma 5, this A-move changes the separability of no other edges except that

separating edge. Thus we can get from G to some (k − 1)-bridged graph in a single

A-move.

Corollary 9. The distance between a given separable trivalent multigraph and some

nonseparable trivalent multigraph in Pm(g) is exactly the number of bridges in the

separable graph.

Given the ability to move between graphs of different separation number, we find

the largest possible separation number of a trivalent multigraph of genus g.
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Definition 10. A trivalent loop-tree is a graph whose vertices all have degree 3

and where there are no cycles except for loops.

Figure 7 is an example of a trivalent loop-tree. Deleting any separating edge in

a trivalent loop-tree results in two disconnected components. Each component is a

construction where a loop is attached to each vertex of degree 1 in a full, rooted

binary tree. It is known that any full, rooted binary tree with n vertices has
(n+ 1)

2

vertices of degree 1.

Figure 7: A trivalent loop-tree

Proposition 11. Trivalent loop-trees of genus g have the maximal number of sepa-

rating edges, namely 2g − 3.

Proof. Consider a trivalent loop-tree G of genus g. Choose some separating edge e in

G, with endpoints v1 and v2. Let K1 and K2 be the two disconnected subgraphs of

G obtained by deleting e, so that K1 contains v1. Suppose K1 consists of m vertices;

then K2 consists of 2g− 2−m vertices. The subgraph of K1 obtained by deleting all

of the loops is a full, rooted binary tree with m vertices, so that subgraph has
m+ 1

2

leaves. Then K1 has
m+ 1

2
loops. Similarly, K2 has

2g − 2−m+ 1

2
loops. The total

number of loops in G is then
m+ 1

2
+

2g − 2−m+ 1

2
= g, because any loop in G
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is either in K1 or K2. Besides those loops, all other edges in the entire graph G are

separating. Since there are 3g − 3 total edges in G, G is (2g − 3)-bridged.

Now suppose for the sake of contradiction that we have a graph G which is with

separation number 2g − 2. We can delete all the separating edges of G. We have

at least 2g − 2 separating edges, so we should have at least 2g − 1 disconnected

components. But there are only 2g − 2 vertices in G, a contradiction. Thus the

maximal separation number of a trivalent multigraph of genus g is 2g − 3.

4 Bounding the number of vertices in the modular

pants graph using k-bridged graphs

We use moves between k-bridged graphs to get a bound on the size of Pm(g). For

intuition, within Pm(g), certain graphs must lie in a ball of some radius centered on

a graph with some characteristic. Then the number of graphs of one type must be

less than the number of vertices that lie within such a ball.

Given k ≥ 0, the number of k-bridged trivalent multigraphs of genus g is denoted

Sepk(g). The number of non-separable trivalent multigraphs of genus g, which are the

graphs with 0 bridges, is denoted NSep(g) = Sep0(g). The total number of separable

graphs is Sep(g).

Lemma 12. For k ≥ 1,

Sepk(g) ≤ 2(3g − 3− (k − 1)) Sepk−1(g).

Proof. By Proposition 8, each k-bridged graph is adjacent to some (k − 1)-bridged

graph. Each (k − 1)-bridged graph has 3g − 3 − (k − 1) non-separating edges. To
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get to a k-bridged graph, an A-move must be done with respect to one of these

non-separating edges. There are two possible A-moves given an edge. So that means

there are at most 2(3g−3−(k−1)) graphs adjacent to a given (k−1)-bridged graph.

Since every k-bridged graph is adjacent to some (k − 1)-bridged graph, we have the

result.

We also relate NSep(g) to Sep1(g).

Lemma 13. For a given genus g,

NSep(g) ≤ (2(3g − 3))Mg−1 Sep1(g),

where Mg = b2 log2(g − 1) + 2c.

Proof. From the proof of Lemma 4.3 in Sultan [4], we know that we can reduce

the size of the smallest cycle in a graph through successive A-moves on an edge

in the smallest cycle until we have a loop and a separating edge (basically a cycle

of length 1). The number of A-moves necessary is the girth of the graph minus 1.

Because of Lemma 5, this results in a graph with one more bridge than the original

graph we started with. Thus the distance between a given k-bridged graph and some

(k + 1)-bridged graph is at most the girth of the k-bridged graph minus 1. If a non-

separable graph has girth c, it is at most c−1 A-moves away from a 1-bridged graph,

because we can do successive A-moves to reduce the size of any cycle in a graph by

1 with each move. The girth of a genus g graph is at most Mg = b2 log2(g − 1) + 2c,

from the proof of Lemma 4.3 in Sultan [4]. All trivalent multigraphs, and thus all

1-bridged trivalent multigraphs, have 3g − 3 edges, upon which 2 A-moves can be

performed. Then, given a 1-bridged graph, the number of graphs that are at most

Mg − 1 A-moves away is at most (2(3g − 3))Mg−1. This gives the result.
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Then we have a bound for the total number of trivalent multigraphs of genus g,

Tot(g) in terms of Sep1(g).

Theorem 14. For a given genus g,

Tot(g) ≤ Sep1(g)

(
2g−3∑
k=1

(
2k−1 (3g − 4)!

(3g − 3− k)!

)
+ (2(3g − 3))Mg−1

)
,

where Mg = b2 log2(g − 1) + 2c.

Proof. From Lemma 12, we have

Sepk(g) ≤ 2k−1 (3g − 4)!

(3g − 3− k)!
Sep1(g).

Summing over all k results in a bound for the total number of separable graphs:

Sep(g) ≤ Sep1(g)

2g−3∑
k=1

2k−1 (3g − 4)!

(3g − 3− k)!
.

Combining this with Lemma 13 gives the proposition.

From Theorem 14gives the following asymptotic relation. The details of the cal-

culations are left to Appendix B.

Tot(g) . g3g Sep1(g).

5 Bounding the number of vertices in the modular

pants graph using girth

Sultan[4] showed that it is possible to reduce the girth of a graph by 1 through

an A-move on some edge in the cycle of shortest length. This gives rise to another

upper bound for the size of Pm(g). Let Girc(g) be the number of genus g trivalent
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multigraphs of girth c. Then c can range from 1 to Mg = b2 log2(g − 1) + 2c. The

maximum girth comes from Sultan [4].

Lemma 15. For a given genus g and girth c,

Girc(g) ≤ 2(3g − 3) Girc−1(g).

Proof. We can move from any graph of girth c to a graph of girth c−1 in one A-move,

as shown in the proof of Lemma 4.3 in Sultan [4]. Thus any graphs of girth c is a

distance of 1 away from some graph of girth c − 1 in Pm(g). For a given graph of

girth c−1, there are at most 2(3g−3) distinct graphs that are one A-move away.

We can relate Gir1(g) to Tot(g − 1).

Lemma 16. For a given genus g,

Gir1(g) ≤ (3(g − 1)− 3) Tot(g − 1).

Proof. Every graph of girth 1 and genus g can be viewed as a construction where a

vertex with an edge that leads to another vertex with a loop is inserted into some

edge of some graph of genus g − 1. There are 3(g − 1) − 3 edges in any trivalent

multigraph of genus g. This gives the result.

We now have an recursive upper bound for Tot(g).

Theorem 17. For a given genus g,

Tot(g) ≤

(
Mg∑
c=1

(2(3g − 3))c−1

)
(3(g − 1)− 3) Tot(g − 1),

where Mg = b2 log2(g − 1) + 2c.

Proof. From Lemma 15, we have

Girc(g) ≤ (2(3g − 3))c−1 Gir1(g).
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Summing over all c results in

Tot(g) ≤

(
Mg∑
c=1

(2(3g − 3))c−1

)
Gir1(g).

With Lemma 16, we arrive at the proposition.

Theorem 17 gives the following asymptotic relation. Details of the calculations

are left to Appendix B.

Tot(g)

Tot(g − 1)
. g3 log2(g)+4.

6 Future Work

Rather than looking at separation number and girth separately, it may be pro-

ductive to consider them simultaneously. In addition, these bounds are extremely

generous; investigating symmetries of graphs may result in improvements to the

bounds. Moreover, there is still not much known about the structure of the pants

graph, so identifying subgraphs and looking at the connectivity of different parts of

the pants graph may be interesting.
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A Appendix 1: An upper bound for 1-bridged graphs

We relate Sep1(g) to counts of nonseparable graphs of lower genus.

Proposition 18. For a given genus g,

Sep1(g) ≤ (3(g− 1)− 3) NSep(g− 1) +

b g
2
c∑

i=2

(3i− 3)(3(g− i)− 3) NSep(i) NSep(g− i).

Proof. First, we show that any 1-bridged graph can be viewed as a construction where

we take two non-separable trivalent multigraphs, break apart an edge in each by

inserting a vertex, and then connecting the two new vertices. Consider some 1-bridged

trivalent multigraph G. Its only separating edge, say e, connects two components,

say K1 and K2 that would be disconnected if e were deleted. Consider just one of

the components, say K1. Because the only separating edge in G is e, there exists a

path that doesn’t pass through e between any two vertices in K1. Thus K1, when

e is deleted, still has no bridges. K1 has only one vertex of degree 2, namely the

vertex that was incident to e in G. Let this vertex be v1; let the two vertices it

is adjacent to be v1,1 and v1,2. Then obtain a new graph K ′1 by deleting v and its

incident edges, and then drawing an edge between v1,1 and v1,2. This new K ′1 is a

non-separable trivalent multigraph. (Any path that passed through v1 in K1 either

passed through or started/ended on v1,1 and v1,2, and so in K ′1 there are still paths

between all possible pairs of vertices.) Thus we can reconstruct G by taking these

two non-separable graphs K ′1, K
′
2, replacing a specific edge in each with a vertex of

degree 2, and then attaching those two new vertices via another edge.

Thus all 1-bridged graphs of a given genus can be obtained by choosing two

non-separable graphs of lower genus, choosing a specific edge to be replaced in each
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graph, and then attaching the two graphs. To obtain a graph graph of genus g (so

2g − 2 vertices), we would need a non-separable graph of genus i (2i − 2 vertices)

and a non-separable graph of genus g − i (2(g − i) − 2 vertices); adding in the two

additional vertices in our construction results in a total of 2g−2 vertices. On a graph

of genus i, there are 3i−3 edges. Thus given a specific non-separable graph of genus i

and specific non-separable graph of genus g−i, there are at most (3i−3)(3(g−i)−3)

distinct ways to attach them to each other via the construction described to form

a 1-bridged graph of genus g. Note that no two values of i can result in the same

constructions, since the two components separated by an edge in the end result

would be of different sizes. Thus iterating over all possible values i with i ≤ g − i

gives the result. Note that there are no trivalent multigraphs of genus 1, which is

why NSep(g − 1) is on its own. For non-separable graphs of genus g − 1, we can

replace one of its edges with a vertex of degree 2 and its incident edges, and then to

that vertex attach a vertex with a loop to obtain a 1-bridged graph of genus g.

B Appendix 2: Asymptotic analysis of the bounds

We compute asymptotics for the bounds in Theorem 14 and Theorem 17.

Theorem 14 says

Tot(g) ≤ Sep1(g)

(
2g−3∑
k=1

(
2k−1 (3g − 4)!

(3g − 3− k)!

)
+ (2(3g − 3))Mg−1

)
,

where Mg = b2 log2 (g − 1) + 2c. We compute the asymptotics for this bound in
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terms of Sep1(g). We will split the coefficient of Sep1(g) into two parts and calculate

the asymptotics of the two parts separately before calculating them for the total

expression.

In the sum in the coefficient, the term with the largest growth is the one that

corresponds to k = 2g − 3. We have(
2g−3∑
k=1

(
2k−1 (3g − 4)!

(3g − 3− k)!

))
∼ 22g−4 (3g − 4)!

g!

∼ 22g−4

√
2π(3g − 4)(3g−4

e
)3g−4

√
2πg(g

e
)g

= (
2

e
)2g−4

√
3g − 4

g

(3g − 4)3g−4

gg
.

where we applied Stirling’s Approximation to the factorials on the right. Since

lim
g→∞

3g − 4

g
= 3, we have(

2g−3∑
k=1

(
2k−1 (3g − 4)!

(3g − 3− k)!

))
∼
√

3(
2

e
)2g−4

(3g − 4)3g−4

gg
.

We have lim
g→∞

(3g − 4)3g−4

(3g)3g−4
=

1

e4
, so then(

2g−3∑
k=1

(
2k−1 (3g − 4)!

(3g − 3− k)!

))
∼
√

3(
2

e
)2g−4

1

e4
(3g)3g−4

gg

=
√

3
22g−433g−4

e2g
g2g−4

=

√
3

2434

(
2233

e2

)g

g2g−4.
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To simplify further, we have√
3

2434

(
2233

e2

)g

g2g−4 .

(
2233

e2

)g

g2g−4

. ggg2g−4

= g3g−4

. g3g.

We now compute the asymptotics for the other component of the coefficient of

Sep1(g). Since bfc ∼ f , we have

(2(3g − 3))Mg−1 = (2(3g − 3))b2 log2(g−1)+1c

∼ (2(3g − 3))2 log2(g−1)+1.

Since lim
g→∞

log2(g − 1)

log2(g)
= 1, we have

(2(3g − 3))Mg−1 ∼ (2(3g − 3))2 log2(g)+1

= 2g2(3g − 3)2 log2(g)+1.

We have lim
g→∞

(3g − 3)2 log2(g)+1

(3g)2 log2(g)+1
= 1, so then

(2(3g − 3))Mg−1 ∼ 2g2(3g)2 log2(g)+1

= 6(9)log2(g)g2 log2(g)+3.

To simplify further, we have

6(9)log2(g)g2 log2(g)+3 . (9)log2(g)g2 log2(g)+3

. glog2(g)g2 log2(g)+3

= g3 log2(g)+3.
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Then we have(
2g−3∑
k=1

(
2k−1 (3g − 4)!

(3g − 3− k)!

)
+ (2(3g − 3))Mg−1

)
. g3g + g3 log2(g)+3

. g3g.

So

Tot(g) . g3g Sep1(g).

We do Theorem 17 next. Theorem 17 says

Tot(g) ≤

(
Mg∑
c=1

(2(3g − 3))c−1

)
(3(g − 1)− 3) Tot(g − 1).

We calculate asymptotics for the coefficient of Tot(g− 1). The term in the sum with

the fastest growth is the one that corresponds to c = Mg, so we have(
Mg∑
c=1

(2(3g − 3))c−1

)
(3(g − 1)− 3) ∼ (2(3g − 3))Mg−1(3(g − 1)− 3)

= (2(3g − 3))2 log2(g)+1(3(g − 1)− 3)

∼ 22 log2(g)+1(3g − 3)2 log2(g)+2

= 24log2(g)(3g − 3)2 log2(g)+2

∼ 24log2(g)(3g)2 log2(g)+2

= 18(36)log2(g)g2 log2(g)+2.

Then we have

18(36)log2(g)g2 log2(g)+2 . (36)log2(g)g2 log2(g)+2

. (g)log2(g)g2 log2(g)+2

= g3 log2(g)+4.

So then we have

Tot(g)

Tot(g − 1)
. g3 log2(g)+4.
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In Brinkmann, Goedgebeur and Van Cleemput [7], we have counts for the number

of trivalent multigraphs for very small n, where n = 2g− 2 is the number of vertices.

It appears that their data could grow like gcg for some constant g.
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