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Abstract

The width |X/Y | of a topological space X over a topological space Y is the smallest
integer k for which some continuous mapping F : X → Y has no point in Y with preimage
greater than k. When X and Y are graphs, little is known about lower or upper bounds on
the width. We investigate the width of complete graphs KN over m× n grids Rm,n, as well
as graphs with ε proportion of edges over general graphs G. First, we show the general lower
bound |X/Y | ≥ (h(X)|V |)/(2|X/L|), where L is a line segment, h(X) is the Cheeger constant
of graph X, and |V | is the number of vertices in X. Then, with a linear path projection, we
show that |KN/Rm,n| = Θ(N2/min(m,n)), with the stricter bound |KN/Rm,1| ∼ N2/8 for
m× 1 grids. Finally, we show that the width of a graph with N vertices and ε proportion of
edges over a graph with V vertices is Ω(ε2N2) for ε ≤ 2/V and Ω(ε2N2/V ) otherwise.

Summary

A circuit is a layout of line segments on a flat surface, and nodes are the points where
these line segments intersect. We place components at points on these segments, and place
wires along line segments to connect some pairs of components. An interesting problem
is adjusting this component-wire placement to minimize wire overlap. We show that when
the circuit is a grid and wires connect all pairs of components, this minimal wire overlap
is roughly the number of wires divided by the side length of the grid. We also prove that
when the number of wires is small relative to the number of components, the minimal width
is roughly the number of wires squared, but when larger, is inversely proportional to the
number of nodes.



1 Introduction

A graph is a set of vertices and edges that connect pairs of distinct vertices. We consider

the topological space arising from a graph by replacing vertices with points and edges with

copies of the closed unit interval. Thus, for graphs G,X, we can define mappings F : G→ X

as continuous functions that send points on G to points on X. Two example mappings

between graphs are shown in Figure 1. The width of F is the maximum number of points

from G sent to a single point in X, while the width of G over X is the minimal width of

a mapping from G to X. An interesting problem is to compute the width of G over X for

classes of graphs G,X, such as trees and complete graphs.

Figure 1: Two possible mappings from the top left graph into the top right are shown in the
bottom two diagrams. Colors indicate where the vertices map, and numbers indicate where the
edges map.
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Although no general formula is known for the width of a graph over a line segment L,

its value has been computed or bounded in special cases. Gromov [1] showed that the width

of a graph with N vertices and ε
(
N
2

)
edges over L is O(ε2N2). Lengauer [2] proved that the

depth of a k-ary tree with depth d over L is kO(d). Thilikos and Yannakakis [3, 4] created

algorithms that determine if the width of a given tree over L is less than k and construct a

mapping of minimal width.

Because edges can be mapped in many ways onto general graphs X, it is more difficult to

compute the width of a graph over X. Simpler cases and variants have been tackled, though.

Chavez and Trapp [5] showed that the width of a tree T over a cycle is the same as the

width of T over L. Bezrukov [6] showed that the edge congestion, a variant of width where

mappings must send vertices to vertices, of an n-hypercube over a rectangular grid with 2n

vertices is O(n2). Hruska [7] calculated the edge congestion of trees and spanning trees over

grids and bipartite graphs.

It is of interest to consider the case where G is a grid, which has application to circuit

layouts in very large-scale integration design (VLSI). Bhatt and Leighton [8] showed that

the minimal area of layout of a circuit is at least the square of the width.

In Section 2, we introduce preliminary notation and formalize the notion of width. In

Section 3, we define the Cheeger constant and prove a general lower bound for widths of

graphs over graphs. In Section 4, we show that the width of a complete graph with N vertices

over an m ×m grid is Θ(N2/m). In Section 5, we show that the width of a graph with N

vertices and ε
(
N
2

)
edges over an graph G with V vertices is Ω(ε2N2) for ε < 2/V , and

Ω(εN2/V ) when ε ≥ 2/V .
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2 Preliminaries

2.1 Graph Terminology

A graph G is a pair of sets (V,E), where V is the set of points called vertices, and E(G)

is the set of edges connecting vertices. We only consider simple graphs, which have no more

than one edge between a pair of vertices and no loops.

In this paper, we focus on three families of graphs: complete graphs, ε-complete graphs,

and grids.

The complete graph KN is a graph with N vertices and
(
N
2

)
edges connecting all pairs of

distinct vertices.

For a real number ε > 0, we say a graph G is ε-complete if and only if |E| ≥ ε
(|V |

2

)
, where

|E| is the number of edges and |V | is the number of vertices.

The m × n grid Rm,n is a graph whose vertices are V = {(i, j) | 0 ≤ i ≤ m, 0 ≤ j ≤

n, i, j ∈ Z}, with edges between vertices a distance one apart in R2. These vertices are called

gridpoints, and the edges are called unit segments. The perimeter of Rm,n is the set of points

that lie on the convex hull of the vertices, consisting of two vertical and two horizontal

segments, which are called sides of the grid.

2.2 Formalization of Width

When defining width, we consider graphs as topological spaces by replacing vertices with

points and edges with copies of the closed unit interval [0, 1], so that 0 corresponds to one

endpoint of the edge and 1 to the other. We consider mappings from graph X onto graph Y

where the vertices of X are injectively sent to points on Y , and edges of X are continuously

sent to paths on Y .

Definition 2.1. For graphs X, Y , the width of a continuous mapping F : X → Y is given
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by

w(F ) = max
y∈Y
|F−1(y)|,

where F−1(y) is the set of x ∈ X for which F (x) = y.

Definition 2.2. For graphs X, Y , let F be the set of mappings F : X → Y . The width of

X over Y is given by

|X/Y | := min
F∈F

w(F ).

2.3 Asymptotic Notation

Because we investigate asymptotic bounds when computing width, we formally define

the following asymptotic notation.

Definition 2.3 (Asymptotic Notation). Consider functions f, g : N→ R. Then:

1. f ∼ g if and only if lim
n→∞

f(n)
g(n)

= 1,

2. f & g if and only if f ≥ h for some function h : N→ R satisfying h ∼ g,

3. f . g if and only if f ≤ h for some function h : N→ R satisfying h ∼ g,

4. g = O(f) if and only if n > n0 implies g(n) ≤ Cf(n) for some constants C, n0,

5. g = Ω(f) if and only if n > n0 implies g(n) ≥ Cf(n) for some constants C, n0,

6. g = Θ(f) if and only if g = O(f) and g = Ω(f).

Note that f & g and f . g imply f ∼ g.

3 Lower Bounds Using the Cheeger Constant

We begin by defining the boundary of a subset of vertices of a graph. We compute its

size when the graph is a complete graph.
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Definition 3.1. Consider a graph G with vertices V . The boundary ∂
−→
S of a subset of

vertices S ⊆ V is the set of edges between a vertex inside S and a vertex outside S.

Example 3.1. Suppose we have a complete graph KN , and let S be a subset with k vertices.

All pairs of vertices must be connected, so ∂
−→
S consists of the k(N−k) edges between vertices

inside and outside S.

The Cheeger constant defines how large the boundary of any subset must be relative to

the size of the subset. We calculate the Cheeger constant of a complete graph.

Definition 3.2. Let G be a graph with vertices V , and define S to be the power set of V .

The Cheeger constant of G is given by

h(G) := min
S∈S

|∂
−→
S |

min(|S|, |V | − |S|)
.

Example 3.2. We compute the Cheeger constant of a complete graph KN when N is

even. Suppose we choose a subset S with k vertices, where k ≤ N
2

. From Example 3.1,

|∂
−→
S | = k(N − k), so

|∂
−→
S |

min(|S|, |V | − |S|)
=

k(N − k)

k
= N − k ≥ N

2
.

Similarly, when k ≥ N
2

we find

|∂
−→
S |

min(|S|, |V | − |S|)
=

k(N − k)

N − k
= k ≥ N

2
.

Equality can be achieved by letting S be any subset of KN with exactly N
2

vertices, so

h(KN) = N
2

.

Now we prove a more general lower bound for the width of a graph over a graph, using

both the Cheeger constant and the width.

Theorem 3.1 (Cheeger Bound). Consider a graph G with vertices V . The width of G over

a graph X satisfies

|G/X| ≥
⌊
|V |
2

⌋
· h(G)

|X/L|
.
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Proof. Send G→ X and then X → L through mappings F2, F1.

If F1(F2(v)) is injective on vertices v ∈ V (G), there must exist x ∈ L so that F1(F2(v))

lies to the left of x for exactly
⌊
|V |
2

⌋
vertices v.

If F1(F2(v)) is not injective, we must have F1(F2(v1)) = F1(F2(v2)) for two vertices

v1, v2 ∈ V (G). But as F2(v1) 6= F2(v2), and F1 maps vertices of X injectively, at least one of

F2(v1), F2(v2) is not a vertex of X. This point must lie on an edge of X, so we can alter the

mapping F2 by moving the point infinitesimally along the edge. Now F1(F2(v1)) 6= F1(F2(v2)),

even though the width of F2 has not changed. Thus, we can repeat this process until F1(F2(v))

is indeed injective on vertices v ∈ V (G), and then assume the existence of x ∈ L for which⌊
|V |
2

⌋
vertices v ∈ V (G) have F1(F2(v)) lie left of x.

Take S to be the set of such v. The size of the boundary of S is

|∂
−→
S | ≥ min(|S|, |V | − |S|) · h(G) =

⌊
|V |
2

⌋
· h(G).

Also, x has a preimage of size at most |X/L|. As each edge in the ∂
−→
S must pass through

one of the points in this preimage, there must be at least
⌊
|V |
2

⌋
· h(G)
|X/L| crossings at one of

these points, and this gives a lower bound on |G/X|, as desired.

Corollary 1. If X = L, then |X/L| = 1 and the Cheeger bound becomes |G/L| ≥
⌊
|V |
2

⌋
·h(G).

4 Width of Complete Graphs over Grids

In this section, we compute the asymptotic behavior of the width of a complete graph

KN over a m × 1 grid Rm,1. We also calculate the width of KN over a m × n grid Rm,n up

to a constant factor.

4.1 Width of Complete Graph over m× 1 grid

We begin by using bounding techniques similar to Theorem 3.1 and a cyclic construction

to compute the width of KN over a 1× 1 grid.
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Theorem 4.1 (Complete Graph to 1× 1 grid). We have |KN/R1,1| ∼ N2

8
.

Proof. Note that |KN/R1,1| = |KN/C|, where C is a circle. Mappings F : KN → C send

vertices of KN to points P1, P2, .., PN on C and edges of KN to arcs on C between all pairs

of points Pi, Pj.

First we show the lower bound |KN/C| & N2

8
. Draw a line ` intersecting C at points X, Y

so that at least
⌊
N
2

⌋
points Pi lie on each side of `. There are at least

⌊
N
2

⌋2
arcs between

points on different sides of `. Each arc must cross go through X or Y , so at least 1
2

⌊
N
2

⌋2
paths must cross one of these points. Then the width is |KN/C| ≥ 1

2

⌊
N
2

⌋2 ∼ N2

8
.

Now we show the upper bound |KN/C| . N2

8
. It suffices to construct a mapping F with

width ∼ N2

8
. Let Pi be vertices of a regular N -gon, and connect all pairs of points Pi, Pj

that are not diametrically opposite by the minor arc between them, as shown in Figure 2. If

Pi, Pj are diametrically opposite, connect them by one of the two arcs between them.

Figure 2: Connecting the shortest arc between points on a regular N -gon shows the upper bound
for the width of a complete graph over a circle.

Any point a ∈ C lies in the interior of at most k + 1 arcs that contain k points in their

interior, where 0 ≤ k ≤
⌊
N
2

⌋
−1. Because each element of F−1(a) corresponds to one of these
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arcs (and possibly a itself),

|F−1(a)| ≤ 1 +

bN2 c∑
k=1

k = 1 +

⌊
N
2

⌋ (⌊
N
2

⌋
+ 1
)

2
∼ N2

8
.

This shows |KN/C| . N2

8
and completes our proof.

With the construction in Theorem 4.1 and bounding techniques from Theorem 3.1, we

show that that the width of KN over a 1× 2 grid is approximately the width of KN over a

1× 1 grid.

Theorem 4.2 (Complete Graph to 2× 1 Grid). We have |KN/R2,1| ∼ N2

8
.

Proof. First, to show the upper bound |KN/R2,1| . N2

8
, we construct a mapping F : KN →

R2,1 with width ∼ N2

8
. Map all vertices of KN to a 1×1 grid contained within R1,2, and map

all edges onto the 1×1 grid with the construction in Theorem 4.1. This shows |KN/C| . N2

8
.

Thus, the only thing that remains is to show |KN/C| & N2

8
. Divide R1,2 into sections

A,B,C that all meet at points X, Y , as shown in Figure 3. Let the number of points on

these three sections be a, b, c, respectively, so that a + b + c + N .

If any one of a, b, c is at least N
2

, we can draw a loop around
⌊
N
2

⌋
vertices in the corre-

sponding section that passes through two points on the grid, as shown in Figure 3. All paths

between vertices inside and outside the loop must pass through these points, so we can use

the lower bound from Theorem 4.1 to show |KN/R1,2| ∼ N2

8
.

Otherwise, we have a, b, c < N
2

. Without loss of generality, suppose a ≥ b ≥ c. Note that

there are ab + bc + ac paths between vertices in different sections, which all pass through X

or Y , so

max
(
|F−1(X)|, |F−1(Y )|

)
≥ ab + bc + ac

2
=

a(N − a)

2
+

bc

2
≥ a(2N − 3a)

2
.

The last step follows from N ≥ 2a and the fact that bc is minimized for a given a when

b = a, c = N − 2a. As a(2N−3a)
2

is decreasing for a ≥ N
3

, its minimum is N2

8
, occurring at

a = N
2

. Therefore |KN/R1,2| & N2

8
, completing the lower bound and the proof.
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Figure 3: If one of the regions A,B,C contains more than half the vertices, we can draw a loop
around N

2 vertices in that region, which passes through two points on the grid.

To show that the width of KN over a m×1 grid is also asymptotically N2

8
, we use casework

and combine the techniques in Theorem 3.1, Theorem 4.1, and Theorem 4.2.

Theorem 4.3 (Complete Graph to m× 1 Grid). We have |KN/Rm,1| ∼ N2

8
.

Proof. The proofs for m = 1, 2 follow from Theorem 4.1 and Theorem 4.2. Thus, assume

m ≥ 3. Place Rm,1 on the coordinate plane so that its vertices are {(i, j) : 0 ≤ i ≤ m−1, 0 ≤

j ≤ 1} and vertices are connected if and only if their distance is 1. Suppose a mapping

F : KN → Rm,1 sends vertices of KN to points P1, P2, ..., PN ∈ Rm,1. Let P (a) be the number

of Pi whose x-coordinates are less than or equal to a, and define a0 := inf{a : P (a) ≥ N
2
}.

If a0 ∈ {1, ...,m− 2}, then let X and Y be (a0, 0) and (a0, 1), and denote A,B,C to be

the sets of points with x-coordinates less than, equal to, and greater than a0. By definition of

a0, both A,C contain at most N
2

points Pi. If B contains more than N
2

points Pi, we can draw

a loop around N
2

of them, intersecting B twice, and apply the lower bound argument from

Theorem 4.1 to show |KN/Rm,1| & N2

8
. If B contains at most N

2
points Pi, we can directly

apply the lower bound argument for a 2×1 grid from Theorem 4.2 to show |KN/Rm,1| & N2

8
.

If a0 = 0 or a0 = m− 1, either the leftmost vertical or rightmost vertical segment of the

grid contains at least N
2

vertices. We draw a circle around some N
2

vertices that intersects

9



this segment twice, and use the lower bound from Theorem 4.1 to show |KN/Rm,1| & N2

8
.

If a0 is not an integer, we draw the line x = a0, so that at least N
2
− 2 points are on both

sides. We again use the lower bound argument from Theorem 4.1 to show |KN/Rm,1| & N2

8
.

For all possible values of a0, |KN/Rm,1| & N2

8
. Furthermore, we can place Pi around the

perimeter of Rm,1, deform it into a circle, and use the construction from Theorem 4.1 to

show the upper bound |KN/Rm,1| . N2

8
. Thus, |KN/Rm,1| ∼ N2

8
.

4.2 Width of Complete Graph over m× n grid

We show that the width of a complete graph with N vertices over an m × n grid is

asymptotically N2

min(m,n)
. We begin by proving a key lemma regarding the number of line

segments between points on the perimeter of the grid that pass through a unit square.

Lemma 4.4. Suppose N points are distributed uniformly around the perimeter of grid Rm,m,

and segments are drawn between every pair of points on different sides. The number of line

segments passing through any unit square in the interior of the grid is ∼ 3N2

8m
.

Proof. Consider a particular unit square S within the m×m grid. Clearly there are
(
4
2

) (
N
4

)2
=

3N2

8
ways to connect points on different sides of the perimeter. So, as N → ∞, the number

of line segments passing through S approaches 3pN2

8
, where p is the probability that for two

points randomly chosen on different sides of a grid, the line between them passes through S.
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Figure 4: A dilation of size m sends the lines through S to lines through grid.

The only thing that remains is to compute p. For any line `, let `1 and `2 be the two

lines parallel to ` that pass through opposite corners of S and are farthest apart, and let `3

and `4 be the two lines parallel to ` that pass through opposite corners of the grid and are

farthest apart. These lines are shown in Figure 4. Note that ` passes through S if and only if

it lies between `1 and `2 and passes through the grid if and only if it lies between `3 and `4.

Furthermore, by similarity, the distance between `1 and `2 is 1
m

times the distance between `3

and `4. Therefore, if we fix the slope of a line, the probability that it passes through S given

that it passes through the grid is 1
m

. Because there is a bijection between pairs of points

on different sides of the grid and lines that pass through the grid, we have p = 1
m

, and our

answer is ∼ 3N2

8m
, as desired.

Theorem 4.5. Let m ≤ n be positive integers. The width of a complete graph with N vertices

over an m× n grid satisfies |KN/Rm,n| = Θ (N2/m).

Proof. First, we show the lower bound |KN/Rm,n| & N2

4(m+1)
. The proof is similar to that

of Theorem 4.2. Take a vertical line passing through on the leftmost segment of Rm,n and

continuously move it right. Consider the first time at which more than half of the N mapped
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points are on the line or to its left. If this occurs when the line does not lie on a segment

of the grid, there are ∼
(
N
2

)2
= N2

4
paths between points on the left and right of the line.

As there are m + 1 intersection points of the line with the grid, and each of the ∼ N2

4
paths

must go through at least one of these points, at least ∼ N2

4(m+1)
paths will cross a point. If the

line passes through a segment of the grid, we use the argument from Theorem 4.2 to show

that the width is & N2

4(m+1)
. These cases are shown in Figure 5.

Figure 5: There are two cases to determine the width of a complete graph over a grid: one where
the dividing line does not lie on grid segments, in the leftmost mapping; and one where it does, in
the other two mappings.

Now, we show the upper bound |KN/Rm,n| = O(N2/m). It suffices to find a mapping

from KN onto Rm,m, which is a subgraph of Rm,n, so that O(N2/m) paths pass through every

point. First, uniformly distribute the N points along the perimeter of Rm,m. If two points

lie on different sides of the grid, draw a path between them that only touches edges of unit

squares that the segment between the points passes through, called an approximately linear

path. If two vertices lie on the same side of the grid, draw the shortest path from one vertex

to the other side of the grid, where it ends at a point called its reflection, and then draw

an approximately linear path back to the other vertex. Example of such paths are shown in

Figure 6.
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Figure 6: Paths are drawn between vertices on opposite, adjacent, and the same sides.

From Lemma 4.4, there are ∼ 3N2

8m
segments between points on different sides of the

grid that pass through a unit square. Similarly, there are at most ∼ 3N2

8m
segments between

the reflection of a point and a point on the same side of the grid that pass through a unit

square. As each point on the grid belongs to at most four unit squares, from the definition

of approximately linear paths, we have at most ∼ 3N2

m
, or O(N2/m) paths passing through

every point. Our final case, paths between a point and its reflection, only add O(N2/m2)

paths passing through each point. Thus, there is an upper bound of O(N2/m) on width, as

desired.

5 Width of ε-complete graphs over general graphs

In this section, we prove a lower bound for the width of ε-complete graphs over general

graphs. We begin by demonstrating a lower bound for the width of an ε-complete graph over

a circle C.
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Theorem 5.1 (Proportion-ε edges onto circle). For any ε-complete graph G′, we have

|G′/C| & ε2N2

8
.

Proof. Without loss of generality, suppose the vertices of G′ map to distinct vertices of a

regular N -gon inscribed in C, with the arc distance between any two consecutive vertices is

1. Let ai be the number of arcs of length i between vertices of the N -gon, for 1 ≤ i ≤ N − 1.

Note the following:
N−1∑
i=1

ai = ε

(
N

2

)
, 0 ≤ ai ≤ N.

Now consider the quantity
N−1∑
i=1

iai, which is the sum of the lengths of all arcs. For any integer

1 ≤ k ≤ N ,
N−1∑
i=1

iai =
N−1∑
i=1

N−1∑
j=i

aj ≥
k∑

i=1

N−1∑
j=i

aj

=
k∑

i=1

(
ε

(
N

2

)
−

i−1∑
j=1

aj

)
≥

k∑
i=1

(
ε

(
N

2

)
−N(i− 1)

)
= kε

(
N

2

)
−N

(
k

2

)
=

Nk

2
((N − 1)ε + 1− k).

Because this quadratic in k is maximized at k0 = (N−1)ε+1
2

, let k be the closest integer to k0.

As |k − k0| ≤ 1
2
,

N−1∑
i=1

iai ≥
Nk

2
((N − 1)ε + 1− k)

≥
N
(

(N−1)ε
2

)
2

(
(N − 1)ε + 1− (N − 1)ε

2

)
=

N(N − 1)ε

4

(
(N − 1)ε

2
+ 1

)
.

Thus, there exists some interval between consecutive vertices with at least

1

N

N−1∑
i=1

iai ≥
(N − 1)2ε2

8
+

(N − 1)ε

4
∼ ε2N2

8

arcs passing through it, so |G′/C| & ε2N2

8
, as desired.

Corollary 2. If G is an ε-complete graph, |G/L| & ε2

4

(
N
2

)
because L is a subgraph of C.

Now, we use the lower bound from Theorem 5.1 to obtain a lower bound for the width

14



of an ε-complete graph over any graph G.

Theorem 5.2 (Proportion-ε edges onto graph). Fix a real number ε > 0 and a graph G with

V vertices. Let G′ be any ε-complete graph with N vertices. If ε ≤ 2
V

, then |G′/G| = Ω(ε2N2).

Otherwise, the width is |G′/G| = Ω(εN2/V ).

Proof. Label the edges of G with distinct integers from 1, 2, . . . , T , where T is the number

of edges in G. Define Vi to be the number of vertices from G′ that are mapped onto edge i,

so that
∑

i Vi = N . Similarly, define Ei to be the number of edges from G′ mapped onto the

interior of edge i, and denote E :=
∑

i Ei.

There are ε
(
N
2

)
− E edges in G′ that are not mapped onto the interior of an edge of G.

These edges pass through at least one of the V vertices in G. Thus, some vertex has at least

ε(N
2 )−E
V

edges crossing through it, so this expression is a lower bound for the width.

Also, note that Ej ≥ E
N
Vj for some j, as otherwise

∑
i Ei < E

N

∑
i Vi ≤ E. Consider

the subgraph lying entirely on edge j, which is essentially an ε0-complete graph with Vj

vertices for ε0 =
Ej

(Vj
2 )

. From Corollary 2, the width of this subgraph over L is at least

ε20
4

(
Vj

2

)
=

E2
j Vj(Vj−1)

4V 2
j (Vj−1)2

≥ E2
j

4V 2
j
≥ E2

4N2 . Thus, |G′/G| ≥ E2

4N2 as well.

Combining our two lower bounds on width and varying E, we have

|G′/G| ≥ min
E∈[0,ε(N

2 )]
max

(
ε
(
N
2

)
− E

V
,
E2

4N2

)
.

The maximum of these two quantities is minimized when they are equal, or

E2

4N2
=

ε
(
N
2

)
− E

V
,

0 = V E2 + 4N2E − 2εN3(N − 1),

E =
−4N2 +

√
16N4 + 8εN3(N − 1)V

2V
,

E =
2N2

V

(
−1 +

√
1 +

ε

2

(
1− 1

N

)
V

)
,

E2

4N2
∼ N2

V 2

(
−1 +

√
1 +

εV

2

)2

.
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Taylor expansion yields (−1 +
√

1 + x)2 = 2 + x − 2
√

1 + x ≥ x2

4
− x3

8
≥ x2

8
for x ≤ 1.

For x > 1, we have (−1 +
√
x + 1)2 ≥ ((

√
2 − 1)

√
x + 1)2 ≥ (3 − 2

√
2)x. Now let x = εV

2
.

When ε ≤ 2
V

, we have

E2

4N2
&

N2

64V 2

(
εV

2

)2

=
ε2N2

256
.

When ε > 2
V

, we have

E2

4N2
&

N2

V 2

(
εV (3− 2

√
2)

2

)
=

(3− 2
√

2)εN2

V
.

Thus, |G′/G| is Ω(ε2N2) for ε ≤ 2
V

and Ω(εN2/V ) otherwise.
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