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Abstract

If N heat sources are placed onto a closed torus and taken away at time t = 0, surface
temperature will initially spike at these N points and eventually converge to some equilib-
rium. An interesting question to consider is, what is the optimal placement of heat sources so
that surface temperature reaches equilibrium at the quickest rate? Solutions to this question
are known for square tori S. We instead explore solutions for various parallelogram tori,
represented by lattice grids on which the fundamental domain is a parallelogram P = A(S)
for A ∈ GL(2,Z). In particular, we use Fourier series to show that if {(zn, wn)Nn=1} is an
optimal solution on S, then {A(zn, wn)Nn=1} is an optimal solution on P, where decay rate is
preserved up to a change in constant.

Summary

A number of heat sources are placed onto a closed torus (or equivalently, the surface of
a donut) and then taken away. Initially, surface temperature will spike at the points where
the heat sources where placed, then eventually level off everywhere to some equilibrium. An
interesting question to consider is, what is the optimal placement of heat sources so that
surface temperature spreads evenly at the quickest rate? Answers to this question are known
for the square torus, obtained by gluing together opposite sides of a square. In this paper,
we explore solutions on parallelogram tori, obtained by gluing together opposite sides of
various parallelograms. In particular, we show that analogous solutions to those on square
tori preserve decay rate up to a constant.



1 Introduction

What is the most efficient way to cook a donut? Consider the mathematical version of

this question: what is the optimal placement of heat sources onto a torus so that surface

temperature converges to equilibrium at the quickest rate? Intuitively, if we place N identical

heat radiators on the surface of a torus and take them away at time t = 0, initial temperature

will spike at the points where the radiators were placed. As hotter points become cooler and

vice versa, the surface of the torus will converge to some equilibrium temperature.

We first introduce some background. All heat flow must follow the governing physical law

of the free heat equation, which states that if we denote the temperature of (x, y) at time t

as u(t, x, y), then

∂u

∂t
= ∆u =

∂2u

∂x2
+
∂2u

∂y2
.

This equation will later allow us to explicitly solve for u(t, x, y) in terms of Fourier series.

Gluing opposite edges of a square together produces a square torus, which motivates

representing such a surface as an infinite grid of squares of side 2π, such that the point

(z, w) is equivalent to (z + 2π,w) is equivalent to (z, w + 2π). To our question of optimal

radiator placement, Pausinger and Steinerberger [1] offer a family of solutions on the square

torus. They present a placement of N points which guarantees that the torus reaches an even

heat distribution at a rate of at least e−
N
4
t. For a prime number N , an integer p satisfying

√
N/2 < p ≤

√
N and an arbitrary q ∈ N, they define the point set {(zn, wn)Nn=1} by

zn = 2π
n

N
and wn = 2π

(pn+ q) mod N

N
. (1)

Figure 1 shows an example for N = 7, p = 2, and q = 3.
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Figure 1: Plot of an optimal point set on S

Theorem 1 (Pausinger and Steinerberger [1]). For every smooth heat distribution φ : T2 →

R, the initial heat distribution v(0, z, w) given by

v(0, z, w) =
N∑
n=1

φ(z − zn, w − wn)

converges to equilibrium with speed at least

max
(z,w)∈T2

|v(t, z, w)− c0,0| = ce−αt,

where c0,0 is the constant term of the Fourier series of v(0, z, w), c is a constant independent

of N and t, and α = b
√
N/2c2 + 2b

√
N/2c+ 1 ≥ N/4.

The proof of this theorem partly motivates the proof of our main result, Theorem 4.

In particular, Pausinger and Steinerberger [1] use Fourier series to model functions of heat

distribution and consider their Fourier coefficients. The temperature function v(t, z, w) in-

volves an e−(k
2+m2)t term which decays slowly when the integers k,m are small. Thus, they

attempt to make as many of the early Fourier coefficients ck,m vanish in their placement of

heat sources.

2



In this paper, we consider optimal placement of heat sources on a parallelogram torus,

which can be represented as an infinite grid of repeating parallelograms. In particular, we

show that solutions analogous to those of the form in Eq. (1) give the same decay rate up

to a change in constant. In Section 2, we compute the Fourier series of a function periodic

over P and use it to derive an explicit formula for the temperature function. In Section 3,

we prove our main theorem on the decay rate and optimality of analogous solutions on P. In

Section 4, we examine several examples of particularly interesting tori. Finally, we suggest

future directions in Section 5.

2 Preliminaries

Each unique torus can be represented as a lattice grid associated with one or more

fundamental domains [2]. For instance, a square torus can be obtained by gluing opposite

edges of a square S together and is consequently represented by the lattice grid on which

S is a fundamental domain. The parallelogram P = ( 1 1
0 1 )S, however, is also a fundamental

domain of the same lattice grid, and thus the torus obtained by gluing opposite edges of P

together is equivalent to the square torus. We define a parallelogram torus as one represented

by the lattice grid on which the fundamental domain is a general parallelogram P = A(S),

for matrices A ∈ GL(2,R). Such a surface is denoted as the torus associated with the matrix

A.

We build upon the results in [1] by exploring various parallelogram tori. Since the tem-

perature distribution on the torus must be periodic over P at any point in time, it is natural

to determine a Fourier series expression for such a function. See Figure 2 for a visualization

of one heat source on P =
(

1 1/2

0
√
3/2

)
S.
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Figure 2: Plot of a single heat source on P

Now, let A = ( a bc d ). If we let a P -periodic function be f(x, y) and a point on S be (z, w),

then we have that f ◦ A(z, w) is S-periodic, so

f(x, y) = f ◦ A(z, w)

=
∑

(k,m)∈Z2

ak,me
i(k,m)·(z,w)

=
∑

(k,m)∈Z2

ak,me
i(k,m)·[A−1(x,y)]

=
∑

(k,m)∈Z2

ak,me
i(AT )−1(k,m)·(x,y),

and because

(AT )−1( k
m ) =

1

det(A)

(
d −c
−b a

)
( k
m ) =

1

det(A)

(
dk−cm
am−bk

)
,

the Fourier series of f(x, y) is

f(x, y) =
∑

(k,m)∈Z2

ak,me
i 1
det(A)

[(dk−cm)x+(am−bk)y].
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If we place our N heat sources at {(xn, yn)Nn=1} and let

φ(x, y) =
∑

(k,m)∈Z2

ak,me
i 1
det(A)

[(dk−cm)x+(am−bk)y]

denote the heat distribution of a single heat source, then our initial temperature distribution

is given by

u(0, x, y) =
N∑
n=1

φ(x− xn, y − yn)

=
N∑
n=1

∑
(k,m)∈Z2

ak,me
i 1
det(A)

[(dk−cm)(x−xn)+(am−bk)(y−yn)]

=
N∑
n=1

∑
(k,m)∈Z2

ak,me
i 1
det(A)

[−(dk−cm)xn−(am−bk)yn]︸ ︷︷ ︸
:=ck,m

ei
1

det(A)
[(dk−cm)x+(am−bk)y].

We now compute an expression for the temperature function u(t, x, y) on P from the heat

equation:

u(t, x, y) =
∑

(k,m)∈Z2

ck,me
i 1
det(A)

[(dk−cm)x+(ak−bm)y]e−( 1
det(A))

2
[(dk−cm)2+(am−bk)2]t. (2)

3 Optimal Solutions on P

Now, we explore a family of optimal solutions on P. The surface temperature of the torus

decays only as quickly as the slowest term in Eq. (2), which must be of the form ce−αt, where

c is a constant and α is what we call the decay rate. We define an optimal placement of

points to be one whose decay rate α grows linearly with N. Results by Montgomery [3, 4]

confirm that N heat sources on a torus can never decay faster than e−αt, where α is linear

in N.

One possibility to consider is the family of analogous solutions to the square torus in
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[1]. More precisely, if {(zn, wn)}Nn=1 is an optimal placement of heat sources on S of the

form in Eq. (1), then consider {A(zn, wn)}Nn=1 on P . See, for example, Figure 3, which is a

transformation of the solutions in Figure 1 onto P =
(

1 1/2

0
√
3/2

)
S.

Figure 3: Plot of an optimal point set on P

Question 2. For what matrices A is the solution {A(zn, wn)}Nn=1 on P optimal up to a

change in constant? What are the corresponding decay rates α?

First, we show that in the Fourier series of the temperature function u(t, x, y) on P , the

terms that vanish are the same as the corresponding terms in v(t, z, w) on S. To do this, it

is sufficient to show that corresponding coefficients are equivalent.

Theorem 3. Let {(zw, wn)Nn=1} be an optimal placement of heat sources on S of the form

in Eq. (1). Then the coefficients of the temperature function v(t, z, w) on S are the same

as the coefficients of the temperature function u(t, x, y) on P = A(S) with heaters placed at

{A(zn, wn)Nn=1}.

Proof. On S, fix a heat kernel φ =
∑

(k,m)∈Z2 ak,me
2πi(k,m)·(z,w) for each source. Then,
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v(0, z, w) =
N∑
n=1

φ(z − zn, w − wn) =
N∑
n=1

ak,m
(
e−2πi(k,m)·(zn,wn)

)
e2πi(k,m)·(z,w).

On P, take the heat kernel φ ◦ A−1(x, y). This has Fourier series

φ ◦ A−1(x, y) =
N∑
n=1

ak,me
2πi[(AT )−1(k,m)]·(x,y).

Let A(zn, wn) = (xn, yn). Then, we have

u(0, x, y) =
N∑
n=1

φ ◦ A−1(x− xn, y − yn)

=
N∑
n=1

∑
(k,m)∈Z2

ak,me
i[(AT )−1(k,m)]·(x−xn,y−yn)

=
∑

(k,m)∈Z2

ak,m

(
N∑
n=1

e−i[(A
T )−1(k,m)]·(xn,yn)

)
ei[(A

T )−1(k,m)]·(x,y)

=
∑

(k,m)∈Z2

ak,m

(
N∑
n=1

e−i[(A
T )−1(k,m)]·(xn,yn)

)
ei[(A

T )−1(k,m)]·A(z,w)

=
∑

(k,m)∈Z2

ak,m

(
N∑
n=1

e−i[(k,m)]A−1A·(zn,wn)

)
ei[(k,m)A−1]·A(z,w)

=
∑

(k,m)∈Z2

ak,m

(
N∑
n=1

e−i(k,m)·(zn,wn)

)
ei(k,m)·(z,w)

= v(0, z, w).

So, regardless of the matrix A, identical coefficients will vanish in u(0, x, y) as in v(0, z, w).

However, an important distinction to make is that although corresponding terms vanish,

the decay rate may not necessarily remain the same. We explain why in the following example.

Let a curve in k and m for which the decay rate remains constant be called a decay rate

level curve. Then, the decay rate level curves on a square torus S are circles of the form
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k2 +m2 = α. However, the decay rate level curves on a parallelogram torus P are ellipses of

the form
(
dk−cm
det(A)

)2
+
(
am−bk
det(A)

)2
= α. This follows from Eq. (2). Now, solutions of the form

in Eq. (1) on S guarantee that all terms for which |k|, |m| ≤ ` = b
√
N/2c disappear, so that

the next slowest term decays at a rate corresponding to (k,m) = (0, b
√
N/2c+ 1). Plotting

this on a km-coordinate plane, we can see this is the case because the next lattice point that

k2 + m2 = α intersects which lies outside of the box |k|, |m| ≤ b
√
N/2c is (0, b

√
N/2c+ 1).

In Figure 4, we have that N = 36 so ` = 3 and the next lattice point outside of the blue box

|k|, |m| ≤ 3 is (k,m) = (0, 4), corresponding to a decay rate of α = k2 +m2 = 16.

Figure 4: Decay rate level curves on S Figure 5: Decay rate level curves on P

On the other hand, consider a torus with associated matrix A = ( 1 1
0 1 ). The decay rate

level curves now become ellipses (see Figure 5), so that when N = 36 and ` = 3, the next

lattice point outside of the blue box |k|, |m| ≤ 3 is (k,m) = (2, 4). The slowest term in its

Fourier series corresponds to a decay rate of α = k2 + (m− k)2 = 8. So, since the decay rate

of a solution on the square torus will not always match that of the corresponding solution

on a parallelogram torus, we need to find new bounds on decay rate.

We now present our main theorem. For a torus generated by the parallelogram P = A(S),

consider the point set on P defined by {(xn, yn)Nn=1} = {A(zn, wn)Nn=1} where {(zn, wn)Nn=1}
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is a solution set of the form in Eq. (1) on S.

Theorem 4. For tori with associated matrix A = ( a bc d ) such that max
(
a2+c2

cd+ab
, b

2+d2

cd+ab

)
∈ Q

and for every smooth heat distribution φ : T2 → R, the initial heat distribution u(0, x, y)

given by

u(0, x, y) =
N∑
n=1

φ(x− xn, y − yn)

converges to equilibrium with speed at least ce−αt, where

α = min

(
1

4(b2 + d2)
,

1

4(a2 + c2)

)
N

and c is a constant independent of N and t.

To prove this theorem, we first introduce several lemmas on the geometry of elliptical

decay curves.

Lemma 5. All ellipses of the form (dk − cm)2 + (am− bk)2 = α(det(A))2 for fixed a, b, c, d

and varying α intersect the line y = `+ 1 at points equidistant from
(
cd+ab
b2+d2

(`+ 1), `+ 1
)

and

intersect the line x = `+ 1 at points equidistant from
(
`+ 1, cd+ab

a2+c2
(`+ 1)

)
.

Proof. It is easy to check this computationally. Taking dx of both sides of the ellipse equation

gives

dy

dx

(
2c2y − 2cdx+ 2a2y − 2abx

)
+ x(2d2 + 2b2) + y(−2cd− 2ab) = 0,

so

dy

dx
=
−x(b2 + d2) + y(cd+ ab)

−x(cd+ ab) + y(a2 + c2)
.

The point at which an ellipse is tangent to the line y = ` + 1 occurs when −x(b2 + d2) +

y(cd + ab) = 0 so y = x
(
b2+d2

cd+ab

)
. The point of tangency is

(
cd+ab
b2+d2

(`+ 1), `+ 1
)
. For ease

of notation, let x′ = cd+ab
b2+d2

(` + 1) so that our two equidistant points are (x′ − r, ` + 1) and
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(x′ + r, `+ 1) for r ∈ R. Then,

α(det(A))2 =
(
(d(x′ − r)− c(`+ 1))2 + (a(`+ 1)− b(x′ − r))2

)
=
(
(d(x′ + r)− c(`+ 1))2 + (a(`+ 1)− b(x′ + r))2

)
,

which shows they must lie on the same decay rate level curve. An analogous computation

can be done for the line x = `+ 1.

The next lemma allows us to simplify the problem of optimizing lattice points on ellipses.

Lemma 6. The point (k,m) on the ellipse (dk − cm)2 +(am− bk)2 = α(det(A))2 that gives

slowest decay rate outside of |k|, |m| ≤ ` is exactly the point on y = `+ 1 closest to the line

y = b2+d2

cd+ab
x if b2 + d2 > a2 + c2 or the point on x = ` + 1 closest to the line x = a2+c2

cd+ab
y if

a2 + c2 ≥ b2 + d2.

Proof. This follows from Lemma 5 since the point of intersection between y = b2+d2

cd+ab
x and

y = ` + 1 is precisely
(
cd+ab
b2+d2

(`+ 1), `+ 1
)

and the point of intersection between x = a2+c2

cd+ab
y

and x = ` + 1 is precisely (` + 1, a
2+c2

cd+ab
(` + 1)). The lattice point which gives slowest decay

rate must then be the one closest to this point.

Our problem of optimizing lattice points on the ellipse now becomes equivalent to finding

the point closest to y = b2+d2

cd+ab
x or x = a2+c2

cd+ab
y lying on each lattice line. Now we can finally

prove our main result, Theorem 4.

Proof of Theorem 4. First, consider an optimal placement of heat sources {(zn, wn)Nn=1} on

S of the form in Eq. (1). Then, the heat distribution of a single heat source can be expressed
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as a Fourier series:

φ(z, w) =
∑

(k,m)∈Z

ak,me
ikzeimw.

Pausinger-Steinerberger [1] state that the initial temperature is then

v(0, z, w) =
N∑
n=1

φ(z − zn, w − wn) =
N∑
n=1

∑
(k,m)∈Z2

ak,me
ik(z−zn)eim(w−wn)

=
N∑
n=1

∑
(k,m)Z2

ak,me
−ikzne−imwnei(kz+mw)

=
∑

(k,m)∈Z2

ak,m

(
N∑
n=1

e−ikzne−imwn

)
︸ ︷︷ ︸

:=ck,m

ei(kz+mw).

The solution to the temperature function is

v(t, z, w) =
∑

(k,m)∈Z2

ck,me
−(k2+m2)tei(kz+mw).

We know that the coefficient ck,m vanishes for all |k|, |m| ≤ b
√
N/2c and (k,m) 6= (0, 0) [1].

Theorem 3 tells us that the temperature function on P looks like

u(t, x, y) =
∑

(k,m)∈Z2

ck,me
i 1
det(A)

[(dk−cm)x+(ak−bm)y]e−( 1
det(A))

2
[(dk−cm)2+(am−bk)2]t

where, in particular, the ck,m coefficient is identical to that in v(t, z, w). Our problem then

becomes finding the pair (k,m) that gives the slowest decay rate outside of |k|, |m| ≤ b
√
N/2c

for various N, which by Theorem 6 is equivalent to finding the lattice point closest to

y = b2+d2

cd+ab
x or x = a2+c2

cd+ab
y on the line y = `+ 1 or x = `+ 1 respectively.

Without loss of generality, assume b2 + d2 > a2 + c2. Then, the decay rate level curve

ellipses always reach y = ` + 1 first, so (k,m) points with slowest decay will lie on the

line y = ` + 1. Now, for ease of notation, define p = b2+d2

cd+ab
. In the km-coordinate plane,
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the line y = px for p ∈ Q goes through infinitely many lattice points. Take one such point

(1
p
(`+1), `+1) : then, consider the sequence of (k,m) points with slowest decay corresponding

to increasing N.

The nth point after our selected lattice point must be either
(
`−n+1
p

+
⌊
n
p

⌋
, `+ 1

)
or(

`−n+1
p

+
⌈
n
p

⌉
, `+ 1

)
. Thus, we know the decay rate must be the decay rate of either one of

those two points. We can show that both points give linear decay rates in N with the same

constant. Below, we perform the computation of the decay rate of
(
`−n+1
p

+
⌊
n
p

⌋
, `+ 1

)
,

and the other case is analogous by changing
⌊
n
p

⌋
to
⌈
n
p

⌉
.

From the ellipse equation, we know

α(det(A))2 = (b2 + d2)k2 − 2(cd+ ab)km+ (a2 + c2)m2.

Plugging in (k,m) =
(
`−n+1
p

+
⌊
n
p

⌋
, `+ 1

)
gives that the right hand expression is equal to:

(b2 + d2)

(
`− n+ 1

p
+

⌊
n

p

⌋)2

− 2(cd+ ab)

(
`− n+ 1

p
+

⌊
n

p

⌋)
(`+ 1) + (`+ 1)2(a2 + c2).

Expanding, plugging in p = b2+d2

cd+ab
, completing the square and simplifying gives that the right

hand expression is equal to:

(`+ 1)2
(
a2 + c2 − (cd+ ab)2

b2 + d2

)
+

1

b2 + d2

(
n(cd+ ab)−

⌊
n

p

⌋
(b2 + d2)

)2

.

We can now conclude that

α(det(A))2 ≥ (`+ 1)2
(
a2 + c2 − (cd+ ab)2

b2 + d2

)
,

which simplifies to

α ≥ 1

b2 + d2
(`+ 1)2 =

1

b2 + d2

(⌊√
N

2

⌋
+ 1

)2

≥ N

4(b2 + d2)
.

As mentioned earlier, the case where a2 + c2 ≥ b2 + d2 can be computed analogously, giving
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a decay rate of N
4(a2+c2)

. Thus optimality of solutions is preserved by the matrix A, and we

have that the decay rate of {A(zn, wn)Nn=1} is still linear in N. The overall decay follows that

of the slowest term, which corresponds to taking the minimum of N
4(a2+c2)

and N
4(b2+d2)

.

Remark 7. This theorem is true for all matrices A ∈ SL(2,Z).

Remark 8. For tori with associated matrices A such that p = cd+ab
b2+d2

∈ Z, this theorem can

be checked even more explicitly. Let n be the integer such that ` ≡ n (mod p). Then each

point (k,m) corresponds to either an x-coordinate of `−n
p

or `−n
p

+ 1. In the first case, the

decay rate becomes(
1

det(A)

)2(
a2 + c2 − (cd+ ab)2

b2 + d2

)
(`+ 1)2 +

(cd+ ab)2

b2 + d2
(n+ 1)2,

and plugging in ` =
⌊√

N
2

⌋
gives our result. In the second case, the decay rate is the same

with an extra term of

((cd+ ab)(n+ 1)− (b2 + d2))2

b2 + d2
,

and plugging in ` =
⌊√

N
2

⌋
gives the same result.

Figure 6 is a comparison of max(x,y)∈T2 u(t, x, y) for different point sets on the torus

associated with A =
(

1 1/2

0
√
3/2

)
for N = 7. The blue graph shows the convergence of our

optimal point set which decays at a rate of e−
7
4
t. The gold graph shows the convergence of

a random point set which almost always decays at a rate of e−t.
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Figure 6: Decay rate of optimal point set vs random

4 Examples

4.1 Rectangular Torus

Consider the torus associated with the matrix A = ( a 0
0 d ). Here, the parallelogram forming

the fundamental domain of the torus is a rectangle of width a and height d. Even though

a2+c2

cd+ab
, b

2+d2

cd+ab
/∈ Q, our main theorem still holds true. That is, the point set {(xn, yn)Nn=1} such

that

xn = a
n

N
and yn = d

(pn+ q) mod N

N

for prime N , an integer p satisfying
√
N/2 < p ≤

√
N and an arbitrary q ∈ N is still optimal.

Theorem 9. For tori with associated matrices A = ( a 0
0 d ) and for every smooth heat distri-

bution φ : T2 → R, the initial heat distribution u(0, x, y) given by

u(0, x, y) =
N∑
n=1

φ(x− xn, y − yn)

converges to equilibrium with speed at least

max
(x,y)∈T2

|u(t, x, y)− c0,0| = ce−αt

14



where c0,0 is the constant term of the Fourier series of u(0, x, y), c is a constant independent

of N and t, and

α =


N/4d2 if d > a

N/4a2 if d ≤ a.

Proof. The proof is very similar to that of Theorem 4. The decay rate level curves are now

ellipses symmetric across the x and y axis with equation

(
k

a

)2

+
(m
d

)2
= α.

Our y = b2+d2

cd+ab
x and x = a2+c2

cd+ab
y lines are just the x and y axes. Thus the point (k,m) with

optimal decay rate is (0, `+ 1) if d > a and (`+ 1, 0) if d ≤ a, corresponding to decay rates

of

α =


N/4d2 if d > a

N/4a2 if d ≤ a.

4.2 Eisenstein Integer Lattice Torus

The Eisenstein integer lattice consists of all points of the form a + bω, where a, b ∈ Z

and ω = e2πi/3. Consider the torus associated with A =
(

1 1/2

0
√
3/2

)
, so that the fundamental

domain is a parallelogram P whose vertices lie on the Eisenstein integer lattice. In particular,

the point x is equivalent to x+ 1 is equivalent to x− ω2. Then since a2 + c2 = b2 + d2 = 1,

Theorem 4 tells us that solutions {A(zn, wn)Nn=1} will decay at a rate of e−
N
4
t, which is

actually equal to the decay rate of the square torus.
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4.3 Square-Equivalent Torus

Consider the torus associated with the matrix A = ( 1 1
0 1 ), which forms the square torus

when folded up. It is interesting to see that the transformed point set {A(zn, wn)Nn=1} on P

has a decay rate of e−
N
8
t as compared to the original point set on S with a decay rate of

e−
N
4
t.

5 Future Work

It would be interesting to explore the sequence of tori associated with iterations of A =

( 1 1
0 1 ). It seems that for the torus associated with Aj, the optimal point set decays at a rate

of e
− 1

4(j2+1)
t
. This gives rise to the question of what would happen to the decay rate if we

took the limit as j goes to infinity.

Moreover, since the square and the parallelogram obtained by transforming the square

by ( 1 1
0 1 ) exist on the same lattice grid, it is possible to shift points on the parallelogram back

onto the square. This gives a new family of solutions on S for which it would be insightful

to explore the optimality of.
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