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Abstract

We find the cardinalities of the solution sets to the polynomial equations c = a + b and
c = a− b on variants of the Cantor set. We also compute examples for the equation c = ab.
A previous theorem states f(C × C) = [0, 1] for the Cantor set C where f(x, y) = x2y. Our

second problem generalizes this to f = xαy for α in the range
log 2

log 3/2
≤ α ≤ 2. We also

explore the case when α is greater than 2. We consider the expansion of f(Cn × Cn) for a
few small n, where Cn is the nth iteration of the Cantor set, to find intervals of α > 2 such
that f(C × C) does not cover the entire interval [0, 1].

Summary

The numbers we typically use are in base 10, meaning they contain the digits 0 through
9. Similarly, numbers in base 3 only contain the digits 0, 1, and 2. The Cantor set is the set
of all numbers from [0, 1] that can be written in base 3 without 1. We study two problems.
In the first problem, we consider three polynomial equations in base 3 where all numbers
involved do not include one of the digits 0, 1, or 2. The second problem generalizes a theorem
about the equation u = x2y in the Cantor set to u = xαy.



1 Introduction

The Cantor set C is defined as all numbers that can be expressed in the form
∑∞

k=1 ak3
−k, ak ∈

{0, 2}. In other words, it is the set of points in the interval [0, 1] that can be written in ternary

without 1. It is produced by repeatedly removing the middle third of each of the remaining

segments, starting with the interval [0, 1]. Denote these iterations Cn, as seen in Figure 1.

Figure 1: Iterations of the Cantor set Cn. The Cantor set satisfies C = limn→∞Cn.

We define the set C(A) as {a ∈ Z≥0|a =
∑j

k=0 ak3
k for ak ∈ A, j ∈ Z≥0}, where A is a

two-element subset of the set {0, 1, 2}. C(A) is an analog of the Cantor set. Numbers in both

sets consist of only two distinct numbers from the set {0, 1, 2} in their ternary representation.

Because the Cantor set has been more extensively studied, the connection between the sets

reveals some potential directions of exploration for our own problem.

We define the set C(A)N to be {a ∈ C(A) : a < 3N}. We want to find the cardinality of

the set SN := {(a, b) ∈ C(A)N ×C(A)N : ∃ c ∈ C(A) s.t. P (a, b) = c} for some polynomial P .

Note that SN depends on the polynomial P . We will specify which polynomial SN refers to

in each section. We consider variations of this problem, such as changing A to be a different

two-element subset of {0, 1, 2}. Our first problem is the discrete version of the problem of

finding the Minkowski dimension of the solution set [1]. Motivation for the problem thus

arises from this connection.

We also explore a second problem on the Cantor set itself. In 2017, Athreya, Reznick,

and Tyson [2] proved that every element u of [0, 1] can be written in the form u = x2y, where
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x, y are elements of the Cantor set C. We investigate the range of possible values for α in

u = xαy for which the result still holds.

In Sections 2 and 3, we find formulas for the cardinalities of the solution sets for P (a, b) =

a + b and P (a, b) = a − b, respectively. In Section 4, we compute the cardinalities |SN | for

some small N for P (a, b) = ab. In Section 5, we form a conjecture for the lower bound on α in

u = xαy based on the proof by Athreya, Reznick, and Tyson for α = 2. Section 6 generalizes

the result to a larger range for α < 2, and Section 7 explores what happens for α > 2.

2 |SN | for P (a, b) = a + b

For our first problem, we find formulas for the cardinalities of the solution sets to polyno-

mial equations on the Cantor set variant C(A). We first consider the case where P (a, b) = a+b

and C({0, 1}).

Theorem 2.1. When SN := {(a, b) ∈ C(A)N × C(A)N : ∃ c ∈ C(A) s.t. a + b = c} and

C(A) := {a ∈ Z≥0 : a =
∑j

k=0 ak3
k for ak ∈ {0, 1}, j ∈ Z≥0}, |SN | = 3N .

Proof. Let a =
∑N−1

i=0 ai3
i and b =

∑N−1
i=0 bi3

i with ai, bi ∈ {0, 1}, so c = a + b =
∑N−1

i=0 ci3
i

where ci ∈ {0, 1, 2}. We want ci to also be 0, 1 for all i so c ∈ C(A). For each i ∈ {0, 1, ..., N−

1}, there are four cases:

When ai = 0 and bi = 0, we have ai + bi = 0.

When ai = 0 and bi = 1, we have ai + bi = 1.

When ai = 1 and bi = 0, we have ai + bi = 1.

When ai = 1 and bi = 1, we have ai + bi = 2.

Thus, ai + bi does not exceed 2 for any i, so ci = ai + bi and each of the N sums is

independent from the others. Each sum can be any of the first three cases, so |SN | = 3N .

We now consider the case where P (a, b) = a+b and A is the set {1, 2}, following a similar

method of proof.
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Theorem 2.2. When SN := {(a, b) ∈ C(A)N × C(A)N : ∃ c ∈ C(A) s.t. a + b = c} and

C(A) := {a ∈ Z≥0 : a =
∑j

k=0 ak3
k for ak ∈ {1, 2}, j ∈ Z≥0}, |SN | =

3N + 1

2
.

Proof. As before, we let a =
∑N−1

i=0 ai3
i and b =

∑N−1
i=0 bi3

i with ai, bi ∈ {1, 2}, so c = a+b =∑N−1
i=0 ci3

i where ci ∈ {0, 1, 2}. We find a recursive formula for |SN |. There are four cases:

When ai = 1 and bi = 1, we have ai + bi = 2.

When ai = 1 and bi = 2, we have ai + bi = 3.

When ai = 2 and bi = 1, we have ai + bi = 3.

When ai = 2 and bi = 2, we have ai + bi = 4.

When x0 = y0 = 1, there are |SN−1| such ordered pairs. The second and third cases are

not possible when i = 0 because ci would then equal 0, which is not part of our solution set.

When the last case holds for i = 0, the sum a0 + b0 causes a regroup and increases z1 by 1. If

this happens, a1 and b1 have to be one of the last three cases. Then by the same reasoning,

all following ai and bi must be one of the last three cases. Thus, there are 3N−1 ordered pairs

with i = 0 as the last case. Thus, |SN | = 3N−1 + |SN−1| with S0 = 1. We can rewrite the

recursive formula in closed form as |SN | =
3N + 1

2
.

3 |SN | for P (a, b) = a− b

For P (a, b) = a − b, we allow negative integers in C(A). By symmetry, |SN | is equal for

a > b and a < b. Thus, it suffices to consider when a > b. Define Sm,n to be the solution set for

a and b with exactly m and n digits, respectively. Note that SN =
⋃

m,n≤N
Sm,n =

N⋃
m=1

N⋃
n=1

Sm,n.

Theorem 3.1. When S := {(a, b) ∈ C(A)N × C(A)N : ∃ c ∈ C(A) s.t. a − b = c} and

C(A) := {a ∈ Z≥0 : a =
∑

k=0 ak3
k for ak ∈ {0, 1}, j ∈ Z≥0}, |Sm,n| = 3n−12m−n.

Proof. As before, we let a =
∑N−1

i=0 ai3
i and b =

∑N−1
i=0 bi3

i with ai, bi ∈ {0, 1}, so c = a−b =∑N−1
i=0 ci3

i where ci ∈ {0, 1, 2}. We first consider the four cases:
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When ai = 1 and bi = 1, we have ai − bi = 0.

When ai = 0 and bi = 1, we have ai − bi = −1.

When ai = 1 and bi = 0, we have ai − bi = 1.

When ai = 0 and bi = 0, we have ai − bi = 0.

If m = n, we assume am = bn = 1. Then i = 0, 1, ...,m− 1 has to be case 3 or 4, so there

are 2m possibilities.

Now let m > n. In case 2, the −1 is equivalent to a ci = 2 and subtracting 1 from ci+1.

This cannot happen because we cannot have any ci = 2. Thus, i = 0, 1, ..., n−2 can be cases

1, 3, or 4, so there are 3n−1 ways to assign a case to i = 0, 1, ..., n− 2. We can assume that

bn is 1, so i = n− 1 has to be case 1. Then for i = n, ...,m− 1, ai can equal 0 or 1 for each

i, so there are 2m−n ways to assign those. Thus, Sm,n = 3n−1 · 2m−n.

We now consider the case where P (a, b) = a− b and A is the set {1, 2}.

Theorem 3.2. When S := {(a, b) ∈ C(A)N × C(A)N : ∃ c ∈ C(A) s.t. a − b = c} and

C(A) := {a ∈ Z≥0 : a =
∑

k=0 ak3
k for ak ∈ {1, 2}, j ∈ Z≥0}, |Sm,n| = 2m−n

(
3n + 3

4

)
.

Proof. If m = n, there are two ordered pairs in the solution set: (
∑m

i=0 2 · 3i,
∑m

i=0 3i) and

(
∑m

i=0 3i,
∑m

i=0 2 · 3i).

Now let m > n. As before, we let a =
∑N−1

i=0 ai3
i and b =

∑N−1
i=0 bi3

i with ai, bi ∈ {1, 2},

so c = a− b =
∑N−1

i=0 ci3
i where ci ∈ {0, 1, 2}. We first consider the four cases:

When ai = 2 and bi = 2, we have ai − bi = 0.

When ai = 1 and bi = 2, we have ai − bi = −1.

When ai = 2 and bi = 1, we have ai − bi = 1.

When ai = 1 and bi = 1, we have ai − bi = 0.

By a similar recursive method as in the proof of Theorem 2.2, there are
3n + 1

2
possibilities

for i = 0, 1, ..., n− 1. There is exactly one way that there are no regroups in this range. For

this, there are 2m−n possibilities for i = n, n+1, ...,m−1. There are
3n + 1

2
−1 =

3n − 1

2
ways
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that there is a regroup in this range. For this, ai has to be 2. There are 2m−n−1 possibilities

for i = n+ 1, ...,m− 1. Thus, |Sm,n| =
3n − 1

2
· 2m−n−1 + 2m−n = 2m−n

(
3n + 3

4

)
.

4 |SN | for P (a, b) = ab

We wrote a Python program to compute the cardinalities of SN for N = 1, 2, ..., 12. The

computed |SN | for A = {0, 1} are 4, 15, 52, 161, 472, 1281, 3346, 8365, 20370, 47731, 109276,

243987.

Figure 2: |SN | for A = {0, 1}

5 Necessary condition for good α < 2 in u = xαy

The second problem is based on a theorem on products in the Cantor set. We define a

value of α to be good if f(C × C) = [0, 1] when f(x, y) = xαy. Thus, a value of α is bad if

f(C × C) skips an interval in [0, 1].

Theorem 5.1 (Athreya, Reznick, Tyson [2]). Every element u of [0, 1] can be written in the
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form u = x2y, where x, y are elements of the Cantor set C.

It was remarked in [2] that to generalize this, we consider f(x, y) := xayb. Because

u = xayb if and only if u1/a = xyb/a, for u ∈ (0, 1), it suffices to consider a = 1. We first

compute C1 ×C1 where C1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
. We get

[
0,

1

3

]
∪

[(
2

3

)1+α

, 1

]
. If α > 1 and(

2

3

)1+α

>
1

3
, we see that f(C2

1) misses an interval in [0, 1]. Thus, α >
log 2

log 3/2
≈ 1.0795.

Using the same method, we compute C2 × C2 to see if we can improve the lower bound

on α. The resulting union of intervals appears to cover all of [0, 1] for
log 2

log 3/2
≤ α ≤ 2. We

thus conjecture that
log 2

log 3/2
is the smallest good α.

6 Necessary and sufficient condition for good α when

α < 2

Lemma 6.1. To represent the removal of the middle third, let I = [a, a + 3t] and Ï =

[a, a+t]∪[a+2t, a+3t]. Suppose F : Rm → R is continuous, and suppose that for every choice

of disjoint or identical subintervals Ik ⊂ [a, b] of common length, F (I1, ..., Im) = F (Ï1, ..., Ïm).

Then F (Cm
a,b) = F ([a, b]m).

This lemma was proved by Athreya, Reznick, and Tyson in 2017 [2].

Theorem 6.2. Let C̃ = C ∩
[

2

3
, 1

]
. Then f(C̃2) =

[(
2

3

)α+1

, 1

]
when 1.5 ≤ α ≤ 2.

Proof. Let I = [a, a+ 3t] and J = [b, b+ 3t] be in

[
2

3
, 1

]
. We first must show that f(I, J) =

f(Ï , J̈) when f(x, y) = xαy. We begin by defining the intervals

[u1, v1] := [aαb, (a+ t)α(b+ t)];

[u2, v2] := [aα(b+ 2t), (a+ t)α(b+ 3t)];

[u3, v3] := [(a+ 2t)αb, (a+ 3t)α(b+ t)];
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[u4, v4] := [(a+ 2t)α(b+ 2t), (a+ 3t)α(b+ 3t)].

We see that f(I, J) = [u1, v4] and f(Ï , J̈) = [u1, v1] ∪ [u2, v2] ∪ [u3, v3] ∪ [u4, v4]. Note that

u1 < u2, v1 < v2, and u3 < u4, v3 < v4, so [u1, v1] ∪ [u2, v2] = [u1, v2] and [u3, v3] ∪ [u4, v4] =

[u3, v4] if v1 > u2 and v3 > u4. And because u1 < u3 and v2 < v4, if v2 > u3, then

[u1, v2] ∪ [u3, v4] = [u1, v4]. Therefore, it suffices to show that v1 > u2, v3 > u4, and v2 > u3.

We first show that v3 > u4.

Figure 3: Graph of y =

log

1 +
t

2

3
+ t


log

(
1 +

t

1− t

)

The maximum of the function y =

log

1 +
t

2

3
+ t


log

(
1 +

t

1− t

) in the range 0 ≤ t ≤ 1

9
is achieved
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as t approaches 0, so

max
0≤t≤ 1

9

log

1 +
t

2

3
+ t


log

(
1 +

t

1− t

) = lim
t→0

log

1 +
t

2

3
+ t


log

(
1 +

t

1− t

) = 1.5.

The limit equals 1.5, so α is always greater than or equal to the maximum of the function

y(x) over 0 ≤ t ≤ 1

9
. Hence,(

1 +
t

1− t

)α
≥ 1 +

t
2
3

+ t
∀ 0 ≤ t ≤ 1

9
,

so 1 +
1

1− 3t

t
+ 2


α

≥ 1 +
1

2
3

t
+ 1

.

Because [a, a+3t] ⊂
[

2

3
, 1

]
, a ≥ 2

3
and a+3t ≤ 1, so

2

3
≤ a ≤ 1−3t. Similarly,

2

3
≤ b ≤ 1−3t.

Because a ≤ 1− 3t and b ≥ 2

3
,

(
1 +

1
a
t

+ 2

)α
≥
(

1 +
1

1−3t
t

+ 2

)α
≥ 1 +

1
2
3

t
+ 1

≥ 1 +
1

b
t

+ 1
.

Thus, (
1 +

1
a
t

+ 2

)α
≥ 1 +

1
b
t

+ 1
,

so (
a+ 3t

a+ 2t

)α
≥ b+ 2t

b+ t
.

Therefore,

(a+ 3t)α(b+ t) ≥ (a+ 2t)α(b+ 2t),

so v3 > u4.

We claim that v3 > u4 implies v1 > u2. By definition, v3 > u4 if and only if
t

a+ 2t
>

α

√
b+ 2t

b+ t
−1, and v1 > u2 if and only if

t

a
> α

√
b+ 2t

b+ t
−1. Because a and t are both positive,
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t

a
is always greater than

t

a+ 2t
, so v3 > u4 implies v1 > u2. It thus remains to show that

v2 > u3.

We claim that if α ≤ 2, then v2 > u3. By definition, v2 > u3 if and only if
b+ 3t

b
>(

a+ 2t

a+ t

)α
. Athreya, Reznick, and Tyson proved that this is true for α = 2. When α ≤ 2,(

a+ 2t

a+ t

)α
≤
(
a+ 2t

a+ t

)2

because
a+ 2t

a+ t
> 1. Thus,

b+ 3t

b
>

(
a+ 2t

a+ t

)α
for α ≤ 2, so

v2 > u3.

Therefore, f(I, J) = f(Ï , J̈). By Lemma 6.1, f(C̃2) = [(2
3
)α+1, 1].

Theorem 6.3. If
log 2

log 3/2
≤ α ≤ 2, then f(C2) = [0, 1].

Proof. Suppose u ∈ [0, 1]. If u = 0, then u = 02 · 0. If u > 0, then there exists a unique

integer r ≥ 0 so that u = 3−rv, where v ∈ (1
3
, 1]. When α =

log 2

log 3/2
,

(
2

3

)α+1

=
1

3
, so when

log 2

log 3/2
≤ α ≤ 2,

(
2

3

)α+1

≤ 1

3
. By Theorem 6.2, f(C̃2) =

[(
2

3

)α+1

, 1

]
if 1.5 ≤ α ≤ 2, so

f(C̃2) ⊃
[

1

3
, 1

]
. Hence, v = xαy for x, y ∈ C̃ ⊂ C, and since x, 3−ry ∈ C, u = xα(3−ry) is

the desired representation.

7 Necessary condition for good α when α > 2

Using a MATLAB program, we compute f(C2×C2) directly for different values of α > 2.

We find that an interval in [0, 1] is skipped for α in the range from about 3.04 to 5.88.

Because f(Cn×Cn) ⊃ f(C×C) for all positive integers n, we know that f(C×C) also skips

some interval in [0, 1] for that α. Examining the intervals, we determine the exact bounds of

bad α from f(C2 × C2) to be
log 3/2

log 8/7
< α <

log 1/2

log 8/9
.

Theorem 7.1. If
log 3/2

log 8/7
< α <

log 1/2

log 8/9
, then there exists some element u in [0, 1] that

cannot be expressed in the form xαy for some x, y in the Cantor set C.
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Proof. Expand f(C2 × C2) to get[
0,

(
1

9

)α(
1

9

)]
∪
[
0,

(
1

9

)α(
1

3

)]
∪
[
0,

(
1

9

)α(
7

9

)]
∪
[
0,

(
1

9

)α
(1)

]
∪
[
0,

(
1

3

)α(
1

9

)]
∪
[(

2

9

)α(
2

9

)
,

(
1

3

)α(
1

3

)]
∪
[(

2

9

)α(
2

3

)
,

(
1

3

)α(
7

9

)]
∪
[(

2

9

)α(
8

9

)
,

(
1

3

)α
(1)

]
∪
[
0,

(
7

9

)α(
1

9

)]
∪
[(

2

3

)α(
2

9

)
,

(
7

9

)α(
1

3

)]
∪
[(

2

3

)α(
2

3

)
,

(
7

9

)α(
7

9

)]
∪
[(

2

3

)α(
8

9

)
,

(
7

9

)α
(1)

]
∪
[
0,

1

9

]
∪
[(

8

9

)α(
2

9

)
,
1

3

]
∪
[(

8

9

)α(
2

3

)
,
7

9

]
∪
[(

8

9

)α(
8

9

)
, 1

]
.

For α > 2, this union can be condensed to[
0,

1

9

]
∪

[(
1

3

)(
2

3

)α+1

,

(
3

7

)(
7

9

)α+1
]
∪

[(
2

3

)α+1

,

(
9

7

)(
7

9

)α+1
]

∪

[(
1

4

)(
8

9

)α+1

,
1

3

]
∪

[(
3

4

)(
8

9

)α+1

, 1

]
.

We must show that this union of intervals skips some element in [0, 1] when α is in the range

log 3/2

log 8/7
< α <

log 1/2

log 8/9
. To show this, we consider these four intervals:

If 3.04 ≈ log 3/2

log 8/7
< α <

log 1/3

log 7/9
≈ 4.37, we can combine the first two intervals into[

0,

(
3

7

)(
7

9

)α+1
]

.

If 4.37 ≈ log 1/3

log 7/9
≤ α <

log 6

log 3/2
≈ 4.42, the second interval is completely included in the

first, so we have
[
0, 1

9

]
.

If 4.42 ≈ log 6

log 3/2
≤ α <

log 1/2

log 6/7
≈ 4.50, we can combine the first two intervals into[

0,

(
3

7

)(
7

9

)α+1
]

.

If 4.50 ≈ log 1/2

log 6/7
≤ α <

log 1/2

log 8/9
≈ 5.88, we can combine the first three intervals into[

0,

(
9

7

)(
7

9

)α+1
]

.

For each of the four cases, we check that the upper bound of the combined interval is less

than each of the lower bounds for the remaining intervals. Therefore, the union excludes
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some interval from [0, 1] for all α in the range
log 3/2

log 8/7
< α <

log 1/2

log 8/9
.

Since we have proven the sharp range of bad α that we conjectured from f(C2 × C2),

we now compute f(C3 × C3) with MATLAB. The results, as seen in Figure 4, give the

approximate intervals of bad α.

Figure 4: Bad α for 2 < α < 20 (in red)

From the MATLAB program, it appears that f(Cn × Cn) covers all of [0, 1] for all suffi-

ciently large α. The intervals of bad α for f(C3×C3) are distributed throughout [2, 20], but

it is difficult to compute the bounds precisely.

8 Conclusion

In this paper, we considered two problems. The first examined |SN | for the three poly-

nomial equations c = a + b, c = a − b, and c = ab on the truncated middle-thirds Cantor

set C(A) for A = {0, 1} and A = {1, 2}. We found formulas for the first two polynomial

equations and computed |SN | for N = 1, 2, ..., 12 for the last equation. These results are

important because they provide information towards the Minkowski dimension of the solu-

tion set of the continuous version of this problem. In the second problem, we focused on a

theorem proved in 2017 by Athreya, Reznick, and Tyson, which states f(C × C) = [0, 1]

when f = x2y. Generalizing their proof to xαy, we found that this result holds for all α in

the range
log 2

log 3/2
≤ α ≤ 2. We then directly computed f(C2×C2) to find a range of bad α:

log 3/2

log 8/7
< α <

log 1/2

log 8/9
.
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Future directions for the first problem include exploring |SN | for P (a, b) = ab when A is

{0, 2} and {1, 2}. For the second problem, we can use f(Cn × Cn) for n > 2 to find more

necessary conditions for good α > 2 and evaluate what happens for very large α.
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