
A Computational Approach to Intrinsic Linkedness in
Complete Graphs

Saba Zerefa

under the direction of

Vishal Patil
Massachusetts Institute of Technology

Research Science Institute
July 31, 2018



Abstract

Connections among topology, geometry, and graph theory arise when analyzing structural
components of nonplanar graphs. Initial discovery into intrinsic knottedness and linkedness
of graphs began with proofs that K6 is intrinsically linked and K7 is intrinsically knotted.
Previously it had been shown that K9 is intrinsically linked in linear embeddings and K10 is
intrinsically linked in all spatial embeddings with linking number ≥ 2. We show through a
computational approach that K7 is not intrinsically linked in linear embeddings with linking
number ≥ 2, and that K8 is not intrinsically linked in spatial embeddings with linking
number ≥ 2. It is still unknown whether K9 is intrinsically linked in spatial embeddings or
K8 is intrinsically linked in linear embeddings with linking number ≥ 2.

Summary

When studying graphs, or points in space and the connections between them, certain
structures can appear within the graph such as knots and links. Knots are closed curves,
and links are collections of knots. Linking numbers are a way to associate certain properties
of knots and links to graphs. Previous work was concerned with determining whether links
of a certain linking number existed within all possible diagrams of complete graphs, or
graphs within which each vertex is connected by an edge to all vertices by an edge. We
show that complete graphs with 8 vertices do not possess links of linking number at least
2 in all drawings. Additionally, we show that a complete graphs with 7 vertices, in three
dimensional drawings with straight lines, do not possess links of linking number at least 2 in
all drawings. These results can be used in determining properties of molecules such as DNA
and the effectiveness of veins in leaves.



1 Introduction

As networks and systems grow increasingly complex, so has the need to model and analyze

those systems. This has led to the rapidly increasing relevance of mathematical fields such

as graph theory. Graphs are used to model many complex systems, such as social networks,

pathology and disease spread, and communication systems.

In complicated spatially embedded graphs, structures such as knots and links may ap-

pear, where knots are non-self intersecting curves in space and links are collections of knots.

The relationships between these topological structures and graphs were first noted in Conway

and Gordon’s 1983 proof that K6 is intrinsically linked and K7 is intrinsically knotted [1].

Knots and links can appear in complex systems such as the knotting of DNA, other molec-

ular polymers, and leaf venation in plants [2] [3]. Although in these situations, graphs are

significant in that they reflect connections between elements, it is important to also acknowl-

edge the presence of more complex structures that can be formed within the graph, such as

links and knots. These structures can provide further insight into the modeled system than

simply analyzing vertices and connections between them, allowing for the categorization of

graphs and simplification of network analysis.

Previous analyses of linkedness and knottedness of graphs have been concerned with

complete graphs, or graphs within which every vertex is connected by an edge to every other

vertex, especially those which possess a given topological structure in every embedding [1].

Our research is concerned with identifying the prevalence of a specific type of link in both

linear and general spatial embeddings of complete graphs, a 2-component link with linking

number ≥ 2, where linking number is a value quantifying crossings in a link. Although

previous research has established the existence of these structures in specific complete graphs,

it has not been shown whether these graphs are the smallest complete graphs that contain

a 2-component link with linking number ≥ 2 in every embedding.
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2 Background

2.1 Graphs

A graph is an abstract structure, denoted G = (V,E), identified by a vertex set V and

an edge set E, where E ⊆ V × V . The elements of the edge set are the pairs of vertices

that comprise all the edges of a graph. Two graphs are equivalent if they possess the same

vertex set and edge set. Our research will primarily be concerned with complete graphs,

denoted Kn, where n is the total number of vertices within the graph. In a complete graph,

all vertices are connected to all other vertices.

Definition 2.1. The embedding of a graph G onto Rn is a map φ : V → Rn such that

φ(v1) = φ(v2) if and only if v1 = v2, and a map ψ : E → E(Rn), where E(Rn) is the set of

non self-intersecting curves in Rn and for E ∈ E, ψ(E) = ψ(vi, vj) is a curve with endpoints

φ(vi) and φ(vj).

Definition 2.2. A linear embedding of a graph G is an embedding where all edges are

straight lines.

In an embedding of a graph, edges cannot cross, with the exception of adjacent edges

meeting at their shared vertex. A graph that can be embedded in R2 is called planar, and

graphs that cannot be embedded in R2 are nonplanar. Nonplanar graphs can be depicted

in two dimensions if crossings are denoted in the planar drawing; a solid strand indicates

a strand laying on top, while a corresponding broken strand represents the strand laying

underneath. Every embedding we refer to from now on will be in R3, although they may be

depicted in R2.

Two significant types of embeddings of graphs are linear embeddings and general spatial

embeddings. In linear embeddings of graphs, all edges must be straight lines whereas in

general spatial embeddings, edges can be curves. A notable difference between these two
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types of graph embeddings is that in the general embedding of a graph, two edges that share

a vertex can cross each other; however, this can never be the case in a linear embedding

because in a straight edge model, the only way for two edges adjacent on a vertex to intersect

without being curved is if they are the same edge. A graph is said to be weighted if its edges

are associated with quantities.

A path of a graph is a traversal in that graph between two vertices, characterized by

an alternating, non-repeating sequence of the form (v1, e1, v2, e2, v3, . . . , en, vn), where each

consecutive vertex and edge in the sequence are adjacent on the graph. A cycle is a path

that begins and ends at the same vertex.

2.2 Links and Knots

A knot is a closed, non-self-intersecting curve in R3 that is homeomorphic to a circle, such

as the trefoil in Figure 1. A link is a collection of two or more of these non-self intersecting

curves, such as the Hopf link in Figure 2.

Figure 1: The trefoil, the most basic nontrivial knot.

Figure 2: The Hopf link, the most basic nontrivial link.

Two knots or links are said to be isotopic, or equivalent, if they can be transformed into
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each other without the knot curve passing through itself. Procedures that deform a knot

while still maintaining its identity are known as Reidemeister moves, depicted in Figure 3.

Similarly, two different graph embeddings are considered identical if they share the same

vertex and edge set and can be transformed into each other using traditional Reidemeister

moves as well as two additional Reidemeister moves R4 and R5, which are depicted in Figure

4.

Figure 3: The three types of Reidemeister moves [4].

Figure 4: The two additional types of Reidemeister moves for graphs [5].

The crossing number for a knot or a link quantifies either the overlapping components of

knots or the separate overlapping knots that comprise a link. The crossing number follows

a sign convention illustrated in Figure 5. Consider the orientation of the top edge and the

orientation of the bottom edge. If the top edge needs to be rotated clockwise to be parallel to

and match the orientation of the bottom edge, then the signed crossing number is -1; if the

top edge needs to be rotated counterclockwise, then the signed crossing number is +1. The

linking number of a link is denoted lk(L), where lk(L) = 1
2

∑
c∈L cr(c), and cr(c) denotes

the signed crossing number of some crossing c between different components of the link.
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E(c) = +1 E(c) = −1

Figure 5: The rules for the signed crossing number of a link or knot: ε(C) denotes the crossing

number of a crossing C.

Structures such as links and knots can exist within the cycles of a nonplanar graph.

In these cases, graph theory must be considered in conjunction with knot theory in order

to identify these structures and classify the graphs that contain them. We proceed with

definitions regarding graphs containing knots and links.

Definition 2.3. An intrinsically knotted graph is a graph that contains a knotted cycle in

every embedding in R3.

Definition 2.4. An intrinsically linked graph is a graph that contains at least two linked

cycles in every embedding in R3.

3 Previous Work

The first results regarding intrinsically knotted and intrinsically linked graphs were with

mathematicians Conway and Gordon [1], while different proofs for their initial theorems

are present in other literature [6]. Most studies of intrinsic knottedness and linkedness of

graphs have only considered complete graphs. Two notable advancements in this field are

the following theorems about K6 and K7:

Theorem 3.1 (Conway, Gordon 1983 [1]). Every spatial embedding of K6 contains a non-

trivial link.
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Theorem 3.2 (Conway, Gordon 1983 [1]). Every spatial embedding of K7 contains a non-

trivial knot.

These theorems, as well as most investigations of knotted and linked graphs, rely on prop-

erties of graph equivalence, knot equivalence, and invariant functions to show the prevalence

of a given structure in all embeddings of a graph.

In Kozai’s [6] refinement of the proof of Theorem 3.1, the sum of all linking numbers

across disjoint cycles in embeddings of graphs is shown to be an invariant function across

all embeddings of the same graph. Taking the sum of linking numbers (mod 2) for embed-

dings of K6, it was found that every embedding of K6 possesses a sum of linking numbers

across disjoint cycles congruent to 1 (mod 2). Thus, all cycles of K6 were proven to contain

a nontrivial link. A similar analysis was used to prove that every embedding of K7 con-

tains a nontrivial knot. By analyzing a knot invariant function of Hamiltonian cycles across

embeddings of K7, it was shown that K7 is intrinsically knotted [6].

Previous research has identified knots of varying complexity for complete graphs, but has

not explored lower bounds. For example, it is known that K972 always contains a knot more

complex the trefoil, but it is not known if 972 is the smallest n for a Kn that satisfies this

condition [7].

Theorem 3.3 (Flapan 2002 [8]). If a graph contains a 3-component link, it must contain a

2-component link with linking number at least 2.

Theorem 3.3 was used to prove that K10 is intrinsically linked with a 2-component link

of linking number at least 2. This theorem identifies identities between different types of

linking structures that are relevant for us in determining when graphs contain links with

linking number at least 2.

Theorem 3.4 (Flapan, Naimi, Pommersheim 2001 [9]). K10 is intrinsically triple linked,

and K9 is not intrinsically triple linked.
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Remark 3.1. A triple linked graph is a graph that contains a 3-component link.

The proof of this theorem provided a drawing of K9 with no 3-component links. Because a

3-component link in a graph implies that there exists a 2-component link with linking number

≥ 2, this embedding of K9 is not known for sure to possess 2-component links with linking

number ≥ 2 without further analysis. This embedding will be a subject of investigation later

in the paper.

Theorem 3.5 (Flapan 2002 [8]). Every embedding of K10 in R3 contains a 2-component link

L = L1 ∪ J1 such that we have |lk(L1, J1)| ≥ 2.

Note that Theorem 3.4 identifies K10 as intrinsically linked with a 3-component link, and

by Theorem 3.3 if a graph contains a 3-component link, it must contain a 2-component link

with linking number ≥ 2. Theorem 3.5 identifies that all embeddings of K10 possess links

of higher complexity than the Hopf link. However, Theorem 3.5 does not identify whether

or not K10 is the least possible complete graph that suits the condition. In our research,

we employ a computational approach to define new upper and lower bounds of the smallest

complete graph that intrinsically possesses disjoint cycles of linking number at least 2.

By Theorem 3.1, K6 is intrinsically linked. Clearly K5 cannot be intrinsically linked, as

it does not possess two pairs of disjoint cycles. Thus, K6 is the current greatest lower bound

for the least n for a Kn that possesses at least one pair of disjoint cycles with linking number

at least two. The current best upper bound for this problem is n = 10, as indicated by

Theorem 3.5. In our research, we use a computational analysis of embeddings of complete

graphs in order to refine the upper and lower bound of the size of complete graphs that are

intrinsically linked with linking number at least 2.

Theorem 3.6 (Naimi, Pavelescu 2014 [10]). Every linear embedding of K9 in R3 contains

a link with three components.
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Theorem 3.6 shows that all linear embeddings of K9 contain a 3-component link; because

all graphs containing 3-component links contain 2-component links with linking number ≥ 2,

all linear embeddings of K9 contain 2-component links with linking number ≥ 2. As is the

case with Theorem 3.5, it is not known whether this is the smallest n satisfies this condition.

Our research is concerned with discovering the greatest n of linear embeddings of Kn that

must possess linking number ≥ 2 in order to define a new lower bound of the least Kn that

satisfies this condition.

Theorem 3.7 (Guy 1972 [11]). For n ≤ 12, the crossing number of a complete graph Kn is

bounded by cr(Kn) ≤ 1
4
bn
2
cbn−1

2
cbn−2

2
cbn−3

2
c.

Guy quantifies the upper limit for the minimal crossing number of a graph Kn. Because

crossings are required for the presence of links and knots in nonplanar graphs, it is often useful

to attempt to construct a graph with a relatively small crossing number when attempting to

prove by counterexample that a graph is not intrinsically knotted or linked with a particular

type of knot or link, for this lowers the likelihood that a link or knot is present. Theorem

3.7 is important to consider when constructing embeddings of a complete graph.

4 Results

4.1 Computational Approach

We use Java programming to computationally analyze the links contained in complete

graphs. We construct crossing matrices and graphs in order to accomplish this.

Definition 4.1. The signed crossing matrix C of a graph Kn is a square
(
n
2

)
by
(
n
2

)
matrix

such that the rows and columns enumerate and represent each distinct edge in the graph.

Let Cij = Cji be the signed crossing number of edge i and j, valuing the respective element
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of the matrix as 0 if the edges do not cross. If the edges do cross, then Cij = Cji is the sum

of the signs of the total number of crossings with those same two edges.

Remark 4.1. The expression for determining linking number based off of values in the

matrix is

lk((a1, . . . , ap), (b1, . . . , bq)) =
∑

i=1,2...,p; j=1,2,...,q

Caiai+1bjbj+1
sgn(ai+1 − ai) sgn(bj+1 − bj).

Note that C = CT and that the majority of the elements in C are 0. Additionally, the

signed crossing matrix only represents a particular embedding of a graph, not all embeddings

of the graph.

Further explanation of the code can be found in Appendix A.1.

4.2 General Spatial Embeddings of Complete Graphs

Although Theorem 3.5 establishes that K10 possesses at least one pair of links with linking

number greater than two, there was no investigation as to whether this may be the least

possible n.

By Theorem 3.1, K6 is intrinsically linked. By Theorem 3.7, the minimal crossing number

of an embedding of K5 must be 1. Because linking number is defined as half of the signed

crossing number, and linking number is an integer, the sum of signed crossing numbers for

the graph must be at least 2 to have a link. Therefore K5 can not be intrinsically linked.

Consequently, K6 is the least possible bound for being intrinsically linked with a link of

linking number at least 2.

Using the computational method articulated in Appendix A.1, embeddings of K6, K7,

and K8 were found that did not contain any pair of linked cycles with the magnitude of

linking number greater than 1. Because of this, it must be the case that neither K7 nor K8

can possess links with a greater complexity than the Hopf link in every embedding. Thus,

neither K7 nor K8 are intrinsically linked with a 2-component link that has linking number of
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at least 2. Embeddings of K6, K7 and K8 that contain maximum linking number 1 between

their cycles are identified in Figure 6, Figure 7, and Figure 8, respectively.

Figure 6: Embedding of K6 with the red line representing the pair of linked cycles. Note they

have linking number 1 [5].

1 2

3

4

5

6

7

Figure 7: Embedding of K7 with no pair of links with linking number greater than 1.
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1 2

3

4

5

6

7

8

Figure 8: Embedding of K8 with no pair of links with linking number than 1.

These two embeddings of K7 and K8 were generated by constructing general embeddings

of K7 and K8 with either minimal or close to the minimal crossing number calculated from

Theorem 3.5, then running computations with the computer program to check if any cycles

with linking number of at least 2 were present. If these cycles were present, crossings were

changed, the changes would be logged into the code and the code would recompute. For

example, note that difference between the K7 subgraph of the provided K8 formed by the

vertices v1, v2, . . . , v7 and the K7 provided is the crossing between edges (v4, v7) and (v3, v5).

4.3 Linear Embeddings of Complete Graphs

We begin by considering the K7 diagram in Figure 7 that does not contain any 2-

component links with linking number ≥ 2 and attempt to show a similar embedding as

linear. Choose three separate vertices to lie on the same plane. We can then characterize

all of the points by assigning heights in conjunction with a standardized projection on the
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xy-plane in order to determine whether or not the points are able to exist as straight lines as

depicted in the embedding without affecting the crossings contained within the graph. We

found a linear embedding of K7 using this method in Figure 9. A K6 without linking number

≥ 2 can be formed from removing v5 and its corresponding edges from K7 in Figure 9.

v1, h7

v3, h6

v4, h5

v5, h1

v6, h4

v7, h3

v2, h2

Figure 9: Linear embedding of K7 with no pair of links with linking number greater than 1.

In the x-y-projection of the linear embedding in Figure 9, the only relationships given

regarding how the embedding exists in space are which edges lie above or below others, given

by crossings, and where they are relative to each other. If we are able to assign heights to

every vertex so that for each crossing, the x and y coordinates of different edges at that

point are identical but the heights, or z coordinates, reflect the over and under crossings of

the strands, then that diagram is able to exist as a linear embedding in R3. Beginning with

a projection of K7 on an x-y plane with straight edges, if we are able to assign z coordinates
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to all vertices that reflect the crossing information of that graph, we know that there exists

that embedding of the graph in space.

In Figure 9, heights are associated for each vertex such that for each h, if i < i + 1

for some i, hi < hi+1, with the exception of h4 = h5 = h6 = 0. In order to generate this

diagram, we begin by choosing 3 vertices, v6, v4, and v3 to be on the same plane. We then

place v1, connecting it to all other existing vertices so that all edges containing v1 lie above

the remaining edges. We follow the same procedure with v7, but place it under all other

vertices. Next we place v2 below the construction, resulting in edges that lie below all other

edges, and lastly repeating the same procedure for v5. This procedure, because it is similar

to the spatial embedding of K7’s construction, also yields a complete graph with no links of

linking number at least 2.

By Theorem 3.6, K9 is known to have a 3-component link in all linear embeddings, and

consequently K9 must have a 2 component link with linking number ≥ 2 by Theorem 3.3

[8]. Thus, by providing a linear embedding of K7 that does not contain a link with linking

number ≥ 2, showing K9 is a lower bound becomes a matter of whether K8 is intrinsically

linked with linking number at least 2.

4.4 K9 Embedding Without Triple Link

Recall that Theorem 3.4 stated that K9 is not intrinsically linked with a 3-component

link. As an example of a K9 embedding with no 3-component links, the embedding of K9

illustrated in Figure 10 was given.

Because we know that a 3-component link in a graph suggests the presence of a 2-

component link with linking number ≥ 2 as well, this graph is interesting to analyze because

it may suggest a small amount of 2-component links with linking number ≥ 2.
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Figure 10: Embedding of K9 with no 3-component link [9]

Although a minimal crossing number might seem as if it would prevent more complex

structures from arising, the crossing number of the K9 in Figure 10 is 56, which is significantly

larger than 36, the minimal crossing number of K9 generated by Theorem 3.7. Calculating

the signs of all of the crossings from the convention articulated in Section 4.1 yields a total

of 321 cycles of linking number ≥ 2 in Figure 10. This is abnormal because it shows that the

complexity of crossings required for possessing many 2-links with linking number ≥ 2 also

can lead to no 3-links.

As a means of further analyzing the relationship between crossings of a graph and the

structures they form within a graph, we can create representations of crossings and edges

through forms such as the signed crossing matrix, as mentioned in Section 4.1, or a crossing

graph. Crossing relationships can be shown when considering the graph G’= (E,C), where

for a graph G = (V,E), E ⊆ V × V and C ⊆ E × E. E, or the edges in the original graph,
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correspond to vertices in G’ while C represents the set of crossings and corresponds to edges

in G’. This graph has an adjacency matrix of the crossing matrix defined in Definition 4.1. In

G’, edges are connected if there is a crossing between them. Consider G’ for the embedding

of K9 in Figure 11.

Figure 11: Crossing graph of a K9 with no 3-component link [12]

The abundance of connections in the graph G’ suggests presence of non-trivial topological

structures that may reflect properties of the original graph. G’ is a useful tool for analyzing

the crossings within a graph and the corresponding structures they create within the graph.

5 Applications

Our results are an instance of an interplay between topology and geometry — the topology

of the abstract graph and the geometry of its spatial embeddings. As indicated by our results,

there is much space for geometric approaches in knot theory and topological graph theory.

These relationships between topology and geometry in the representations of graphs hold

significance beyond mathematics as well. In physical networks, graph theory in addition to

the topology and geometry that characterizes them are essential for modeling, such as for

modeling the means of transporting nutrients in plants. Additionally, the structures possessed
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in graphs and knots formed by DNA polymers on a molecular level reflect physical properties

and characteristics of those polymers.

In the study of transport networks, especially with respect to leaves, the presence or

absence of loops can still reflect the optimization of the network for certain features. Vena-

tions in leaves are the transport networks for nutrients within the leaves. Katifori, Szöllősi,

and Magnasco found that although loopless leaf venation has the benefit for efficiency, the

presence of loops can allow for the optimal state of a transport network because high loop

density can handle both resilience to damage and fluctuations in load [2]. Because our results

are concerned with characterizations of topological representations of graphs, these types of

concepts can be utilized in the study of efficient networks in biological and physical systems.

Topological analysis of graphs also is present in molecular level analysis of polymers as

well as their physical properties. The Coulomb energy is the energy required to charge a

conductive object and relates to the size and shape of the object. Vargas-Lara et al. found

that these Coulomb energies are directly proportional to the knot crossing number of DNA[3].

By allowing for detections of similar structures, our results can allow for the simplification of

analyses of the topological objects contained in complex structures, which can consequently

be used to determine physical properties of these structures.

6 Discussion and Future Work

The results are primarily concerned with providing upper and lower bounds for the n of

Kn graphs that are intrinsically linked with a structure of linking number ≥ 2. We found a

linear embedding of K7 that did not contain links with linking number ≥ 2, demonstrating

that K7 is not intrinsically linked with these structures. Because it was previously proven

that K9 is intrinsically linked with a 3-component link, applying Theorem 3.3 reveals that

K9 contains a 2-component link with linking number ≥ 2. However, it is unknown whether
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K9 is the smallest K9 with this structure because it is unknown whether K8 contains a link

with linking number at least 2. We do, however, show that for linear embeddings of complete

graphs the bound for the least n of a Kn intrinsically linked with linking number at least 2

is 8 ≤ n ≤ 9.

We also exhibit spatial embeddings of K7 and K8 that do not possess links with linking

number ≥ 2, proving that K7 and K8 are not intrinsically linked with such structures. It is

known that K10 is intrinsically linked with this structure in all spatial embeddings, yet it is

not known if n = 10 is the least possible Kn that satisfies this condition. We show that the

least n for a complete graph Kn containing linking number at least 2 in spatial embeddings

must satisfy 9 ≤ n ≤ 10.

The most direct future work of this project would be concerned with investigating the in-

trinsic linkedness with linking number ≥ 2 of K9 in spatial embeddings as well as K8 in linear

embeddings— if K9 is intrinsically linked with this structure, then K9 is the least complete

graph with this property, and if it does not then K10 is. Similarly, if K8 is intrinsically linked

with a linking number ≥ 2 in linear embeddings then it is the least Kn with this property;

otherwise, K9 is. Our investigation into this problem found that even in embeddings of K9

with no 3-component links, there were hundreds of 2-component links with linking number

≥ 2. Further research can investigate the prevalence of different types of links or knots in

various spatial embeddings of complete graphs as well as linear embeddings.

The significance of the crossing matrix and crossing graph in describing structures formed

within the graphs they are derived from could provide interesting results as well. The cross-

ing matrix and crossing graph could provide new avenues for investigating linkedness and

knottedness in their parent graph.
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A Computational Methodology

A.1 Computational Approach

Within the program1, the standard direction of signed crossing number for the intents

and purposes of the code was chosen by considering the direction of the edge going away

from the vertex labelled with a lower number and towards the vertex labelled with the higher

number. Note that this choice is arbitrary.

The program generates the signed crossing matrix of a given embedding as a parameter

through user input, utilizing crossing information. The program also enumerates all pairs of

vertices as rows and columns of the signed crossing matrix. All possible cycles of all possible

lengths 3 through n − 3 are generated. By looping through all pairs of lengths of possible

cycles of a graph Kn, e.g.

(3, 3), (3, 4), . . . , (3, n− 3), (4, 4), . . . ,

the program can run through all pairs of disjoint cycles possible in the particular embedding

of a graph in an organized fashion. During this process, linking numbers are noted, allowing

the program to display the complexity of links in the given embedding of a graph. The

program would reverse signs of certain edges composing directed cycles when the direction

of multiple edges were conflicting. For example, consider the cycle (v1v4v3). The direction of

the first edge, (v1, v4), in this 3-cycle matches the signing convention of going from the lesser

numbered vertex to the greater number, while the next two edges (v4, v3) and (v3, v1) do not.

In this scenario, the program would “switch” the sign of the crossing numbers of these edges

in the linking number computation.

User input consists of the edges that cross and the sign of their crossing. From this

input, the sign crossing matrix C is generated. Independent of the crossing matrix, several

intermediate steps are required for the generation of disjoint cycles. The cycle information

1The code is publicly available at www.github.com/sabzer/IntrinsicLinkedness
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for the complete graph was mainly stored in arrays The largest array is constructed with

elements that are arrays of cycle types. Suppose one is characterizing the cycles of Kn in

code, for some given n. This array is be of length n− 5, and contain in its first element all

3-cycles in Kn, in its second element 4-cycles in Kn, etc. up to n − 3-cycles in Kn. Each of

these subarrays of cycles of length i are created by first choosing a combination of i-cycles,

and then running permutations that generate the remaining cycles of that length. Identical

cycles that may have been overcounted in permutations are avoided by checking to see if

permutations are either backwards or backwards and shifted; by fixing the first position in

a permutation we avoid wasting significant computational power in deleting cycles.

Once all cycles are generated, cycles of a given length i are considered in conjunction with

all other cycles of length i, i+ 1, . . . , n− i. A check is run to see if the cycles are disjoint by

comparing the vertices present in the cycles; if they are not, the linking number calculation

for that pair of cycles is abandoned. If they are, then the linking number between them is

calculated and noted.

To calculate linking number solely from the computational information stored by the

crossing matrix, recall that we develop the expression

lk((a1, . . . , ap), (b1, . . . , bq)) =
∑

i=1,2...,pj=1,2,...,q

Caiai+1bjbj+1
sgn(ai+1 − ai) sgn(bj+1 − bj),

where sgn(x) is the signum function, and the sequences of vertices represent cycles. With this

expression, the program can run through all pairs of disjoint cycles of a given embedding of a

complete graph and note non-zero crossing numbers, as well as the cycles that lead to these

crossing numbers. This allows the program to quickly determine whether an embedding ofK7,

K8, or K9 possess at least one pair of disjoint cycles in an embedding that does not contain

a link with linking number ≥ 2 when generating counterexamples to prove that a graph is

not intrinsically embedded with that link. If it does find a pair, we are uncertain whether

that graph is intrinsically embedded with a linking number ≥ 2 and continue searching for
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a counterexample.

A.1.1 Computational Complexity

We proceed with an investigation into the computational complexity of the program used

to determine the linking numbers of all pairs of disjoint cycles of a given Kn.

Take some Kn. The possible lengths of cycles are 3 to n−3. The code searches through all

possible pairs of cycles of lengths that add up to at most n and calculate their linking numbers

only if the cycles are disjoint. We will investigate how many linking number computations

the program must undergo when running a complete analysis on the linking number between

all pairs of disjoint cycles in a graph.

Consider two possible cycle lengths a and b in a Kn, where a ≥ 3, b ≥ 3, and a+ b ≤ n.

Then the number of disjoint cycles of the given Kn that the code would have to run through

is equal to (
n

a

)
(a− 1)!

2

(
n− a
b

)
(b− 1)!

2
,

if a 6= b, and

1

2

(
n

a

)
(a− 1)!

2

(
n− a
a

)
(a− 1)!

2

if a = b. Thus, for a given Kn, the total quantity of cycles for which the linking number is

calculated in the code is

bn
2
c∑

a=3

n−a∑
b=a+1

(
n

a

)
(a− 1)!

2

(
n− a
b

)
(b− 1)!

2
+

bn
2
c∑

a=3

(
n

a

)
(a− 1)!

2

(
n− a
b

)
(b− 1)!

2
. (1)

Now consider the possible cycle lengths in K2n and the corresponding quantities of dis-

joint cycles. A case analysis reveals that the disjoint cycles of length n dominate the com-

putation by a significant margin. To approximate the computational weight of this case we

can employ Stirling’s approximation. From Equation 1, the number of disjoint pairs of n-

cycles is 1
2

(
2n
n

)
( (n−1)!

2
)2. Factorization and reorganization yields the expression 1

8n3 × (2n)!
n!

.

We then apply Stirling’s approximation for large factorials, which states that for large n,
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n! ∼ (n
e
)n
√

2πn.

Utilizing Stirling’s approximation on Equation 1 yields

(2n)!

n!
∼
(
2n
e

)(2n)√
4πn(

n
e

)n√
2πn

=
√

2× 22n × nn × e−n ∼
(4n

e

)n
for large n.

Here we can see that as 2n gets increasingly large, the computations that the computer

has to go through increases around the order of nn. Because in K2n the n-cycle case domi-

nates the computation, this is a sufficient expression with which to determine computational

complexity.

23


	Introduction
	Background
	Graphs
	Links and Knots

	Previous Work
	Results
	Computational Approach
	General Spatial Embeddings of Complete Graphs
	Linear Embeddings of Complete Graphs
	K9 Embedding Without Triple Link

	Applications
	Discussion and Future Work
	Acknowledgments
	Computational Methodology
	Computational Approach
	Computational Complexity



