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Abstract

Koszul algebras are one of the most studied types of quadratic algebras due to their
numerous applications in other fields of mathematics. We generalise the notion of a Koszul
algebra through the use of oriented graphs. The defining properties of Koszul algebras can
be attached to a special type of oriented graphs: a line with vertices, where all edges are
oriented towards the right. Reversing this combinatorial correspondence, we introduce a
new type of algebras, Cyclic Koszul algebras, associated with oriented cycles. Firstly, we
show that the new structure recovers some of the fundamental properties of classical Koszul
algebras; for instance, if an algebra is Cyclic Koszul, then so is its dual algebra. Conversely,
when dimV = 2, we prove that the symmetric algebra S(V ) is not Cyclic Koszul, contrasting
the fact that it is Koszul. However, we partially prove a conjecture that if we quantize the
symmetric algebra S(V ), it will be Cyclic Koszul in most cases.

Summary

We introduce a generalisation of the so-called quadratic Koszul algebras. Imagine we had
an alphabet of any size. Using it we can construct words and combine them together to
form sentences. However, because addition is commutative, interchanging words produces
the same sentence. To a big extent, this “language” resembles the so-called tensor algebra.
We can eliminate part of the language by forbidding some sentences of two-letter words.
The new language resembles a quadratic algebra. Quadratic algebras are quite difficult to
be described mathematically. However, when we forbid two-letter combinations in a more
specific way, we understand the new language quite better. The equivalent, well-understood
quadratic algebras are called Koszul algebras. The defining properties of Koszul algebras
are best illustrated by relating them to a specific oriented graph: a line with vertices, where
each edge is oriented towards the right. Reversing this combinatorial correspondence, we
introduce a new type of algebras, Cyclic Koszul algebras, associated with oriented cycles.
We investigate how different is the behaviour of classical Koszul algebras in comparison
to Cyclic Koszul algebras. At first glance, both algebras share some common fundamental
properties. However, on a deeper level, Cyclic Koszul algebras prove to have interesting
properties which are not seen in Koszul algebras.



1 Introduction

The tensor algebra T (V ) of a vector space V is one of the most fundamental objects in

mathematics. Many other important algebras, such as the symmetric algebra S(V ) and the

exterior algebra
∧

(V ), can be obtained as a quotient of the tensor algebra. The simplest

nontrivial way to take a quotient is by an ideal generated by quadratic relations. This gives

us the notion of a quadratic algebra. The motivation for introducing quadratic algebras also

comes naturally from the study of quantum groups [1]. More precisely, as said in Polishchuk

and Positselski [2], quadratic algebras provide a convenient framework for ”noncommutative

spaces” on which quantum groups act. That implies the need to control the size of quadratic

algebras as measured by their Hilbert series. However, the latter proves to be quite hard to

do for general quadratic algebras and so the notion of a Koszul algebra, a special type of

quadratic algebra, was defined. An example of the nice properties of Koszul algebras is the

identity hA(t)hA!(−t) = 1, where hA(t) is the Hilbert series of a Koszul algebra A and hA!(t)

is the Hilbert series of the dual algebra A! of A. This identity does not hold for a general

quadratic algebra A.

Surprisingly, Koszul algebras have many applications in different areas of mathematics

such as representation theory, algebraic geometry, topology, number theory and others (a list

of references is given in [2, p. viii] ). For example, as said in Polishchuk and Positselski [2],

in representation theory certain subcategories of the category O for a semisimple complex

Lie algebra are governed by Koszul algebras.

In this project we study a generalisation of Koszul algebras arising from graphs. To a

Koszul algebra we can associate a simple type of oriented graphs: a line with arrows to the

right (see Figure 1.) This connection will be explained in detail in Section 3.1. Reversing the

combinatorial correspondence, in this paper we study the algebraic counterpart of oriented

cycles, which give rise to Cyclic Koszul algebras.
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Figure 1: Oriented graph of Koszul algebras.

We succeed in proving that Cyclic Koszulness is preserved upon dualization. Moreover,

we present a way in which one can construct high-dimensional Cyclic Koszul algebras from

low-dimensional Cyclic Koszul algebras.

In the second section, we go through the main definitions and theorems needed. In the

third section, we present our generalisation of the Koszul algebras and derive some standard

properties about the new structure.

In the fourth section, a special type of quadratic algebras, which behave in a quite in-

triguing way, is examined. More precisely, we prove that the symmetric algebra S(V ) =

T (V )/〈y ⊗ x − x ⊗ y〉, where dimV = 2 and {x, y} is a basis of V , is not Cyclic Koszul,

which contrasts to the fact that it is Koszul. However, we conjecture that if we quantize

S(V ), i.e. consider taking the quotient over the ideal generated by y ⊗ x − ax ⊗ y, where

a ∈ C is not a root of unity and is different from 0, then the algebra T (V )/〈y ⊗ x− ax⊗ y〉

is Cyclic Koszul. We partially prove the conjecture although there is much more to be done.

The studied cases strongly suggest the validity of the conjecture in the general case.

2 Preliminaries

In the first subsection we provide some basic definitions and theorems and in the second

we introduce the notion of chain complexes of vector spaces. Throughout the paper we work

with finite-dimensional vector spaces over the field of complex numbers.
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2.1 Basic definitions and theorems

Quadratic algebras are constructed from the tensor algebra.

Definition 2.1. The tensor algebra of a vector space V is the direct sum of the tensors of

all ranks on V

T (V ) = C⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · .

Definition 2.2. A quadratic algebra A is the data of a vector space V and a subspace of

relations I ⊆ V ⊗ V

A = T (V )/〈I〉,

where 〈I〉 is the ideal generated by I.

Distributive lattices in which the elements are vector spaces are necessary for the defini-

tion of Koszul algebras.

Definition 2.3. Let (L,∨,∧) be an algebraic structure consisting of a set L and two binary

operations ∨ and ∧ on L. Then (L,∨,∧) is a lattice if ∨ and ∧ are commutative and

associative, and if the following identities called the absorption laws hold

a ∨ (a ∧ b) = a,

b ∧ (a ∨ b) = b,

where a, b ∈ L. If also the identities x∨(y∧z) = (x∨y)∧(x∨z) and x∧(y∨z) = (x∧y)∨(x∧z)

are true, then the lattice is distributive.

For a quadratic algebra to be Koszul we impose the following restrictions.

Definition 2.4. Fix a subspace I ⊆ V ⊗ V . For each n ≥ 2 consider the n − 1 subspaces

V ⊗i ⊗ I ⊗ V ⊗n−2−i where i ∈ {0, ..., n − 2}. If for a given n ≥ 2 these subspaces form a

distributive lattice, where the ∨ is defined to be vector sum and the ∧ is the usual intersection

considering the vector spaces as sets, the algebra T (V )/〈I〉 is said to be n-Koszul. If for each

n ≥ 2, the algebra T (V )/〈I〉 is n-Koszul we call it a Koszul algebra.
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Example 1. The simplest type of Koszul algebras are quadratic algebras where the quotient

is an ideal generated by a monomial, i.e. A = T (V )/〈x2〉. Let V be two-dimensional with

basis {x, y}. We show that A is 4-Koszul, although one can show it for every n ≥ 2. We

prove, as an example, that

(V ⊗ V ⊗ I + I ⊗ V ⊗ V ) ∩ V ⊗ I ⊗ V = V ⊗ V ⊗ I ∩ V ⊗ I ⊗ V + I ⊗ V ⊗ V ∩ V ⊗ I ⊗ V

The basis for V ⊗ I ⊗ V is {x4, x3y, yx3, yx2y} where we have ignored the symbol ⊗ for

simplicity. All elements of the basis except yx2y are contained in either V ⊗V ⊗I or I⊗V ⊗V .

However, since yx2y is a basis element of V ⊗4 it cannot be obtained from the other basis

elements, nor from the sum V ⊗ V ⊗ I + I ⊗ V ⊗ V .

The most famous example of a Koszul algebra is the symmetric algebra T (V )/〈yx−xy〉.

Nevertheless, to prove Koszulness one needs to use free linear resolutions, see Polishchuk and

Positselski [2, p. 20].

There are several equivalent definitions of Koszul algebras which can be found in Pol-

ishchuk and Positselski [2] and Ufnarovskii [3]. A condition for A = T (V )/〈I〉 to be Koszul

is given by the following theorem.

Theorem 2.1 (Polishchuk and Positselski [2, p. 15]). Let W be a vector space and X1, . . . , Xn

⊆ W be a collection of its subspaces. Then the following conditions are equivalent:

1. the collection X1, . . . , Xn forms a distributive lattice;

2. there exists a basis B of W such that each of the subspaces Xi is the linear span of a

subset of B.

Since V ⊗i ⊗ I ⊗ V ⊗n−2−i are subspaces of V ⊗n, then to prove that T (V )/〈I〉 is Koszul,

we use Theorem 2.1 with an appropriate basis of V ⊗n. We note, however, that finding such a

basis from scratch is usually quite complicated. There are other methods shown in Polishchuk

and Positselski [2].
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Koszulness is preserved when taking the dual algebra.

Theorem 2.2 ( Polishchuk and Positselski [2, p. 27]). Let V ∗ be the dual of a vector space V

and let I⊥ ∈ V ∗⊗V ∗ be the orthogonal complement of I ∈ V ⊗V . An algebra A = T (V )/〈I〉

is n-Koszul if and only if the dual algebra A! = T (V ∗)/〈I⊥〉 is n-Koszul. More generally, A

is Koszul if and only if A! is Koszul.

Example 2. It is well-known that dual algebra of the symmetric algebra is the exterior

algebra T (V )/〈x⊗ y + y ⊗ x〉. Thus, by Theorem 2.2 the exterior algebra is also Koszul.

2.2 Complexes of vector spaces

A collection of vector spaces forming a distributive lattice is equivalent to certain prop-

erties related to complexes of those vector spaces.

Definition 2.5. Let X1, X2 . . . be vector spaces and let φ1, φ2 . . . be linear maps, such that

φi maps Xi to Xi−1 for i > 2 and φ1 is just the zero map from X1 to 0. Note that the

number of vector spaces can be finite as well as infinite. A chain complex C•(X1, X2, . . . ) is

a sequence

C• : · · · φ3−→ X2
φ2−→ X1

φ1−→ 0,

where φi ◦ φi+1 = 0 for all i ≥ 1

Among chain complexes, of particular interest are the exact ones.

Definition 2.6. Let C•(X1, X2, . . . ) be a complex of vector spaces. If Imφk+1 = kerφk for

some fixed k, then we say the complex is exact at Xk. If the complex is exact at all Xk, we

call the complex exact.

With this definition in mind we present a wonderful proposition which connects the

distributivity of vector spaces to exactness of complexes. The notation {x1, . . . , x̂k, . . . , xn}

means that we take all elements from x1 to xn without the element xk.
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Proposition 2.3 (Polishchuk and Positselski [2, p. 16]). Let W be a vector space and let

X1, . . . , Xn ⊂ W be a collection of subspaces such that any proper subset X1, . . . , X̂k, . . . , Xn

is distributive. Then the following conditions are equivalent

1. The collection X1, . . . , Xn form a distributive lattice;

2. the complex of vector spaces B•(W ;X1, . . . , Xn)

W −→
⊕
t

W/Xt −→ . . . −→
⊕

t1<···<tn−i

W/(
n−i∑
s=1

Xts) −→ . . . −→ W/
∑
s

Xs −→ 0, (1)

where s, t, t1, t2, . . . ∈ {1, . . . , n}, is exact everywhere except for the leftmost term;

3. the complex of vector spaces B•(W ;X1, . . . , Xn)

0 −→
⋂
s

Xs −→ · · · −→
⊕

t1<···<tn−i

n−i⋂
s=1

Xts −→ · · · −→
⊕
t

Xt −→ W, (2)

where s, t, t1, t2, . . . ∈ {1, . . . , n}, is exact everywhere except for the rightmost term;

The map from
⊕

p1<···<pn−i

⋂n−i
s=1Xps to

⊕
q1<···<qn−i−1

⋂n−i−1
s=1 Xqs is defined by (α1, . . . , α( n

n−i)
) 

(a1, . . . , a( n
n−i−1)

), where aj = (−1)sign(j1,j)αj1+· · ·+(−1)sign(ji+1,)αji+1
. The numbers j1, . . . , ji+1

and the function sign(, ) are defined in the following way: Let us denote by Ij the jth addend

of the direct sum
⊕

p1<···<pn−i

⋂n−i
s=1Xps with respect to lexicographical order. In the same way

we define Yj to be jth addend in
⊕

q1<···<qn−i−1

⋂n−i−1
s=1 Xqs. There are exactly i + 1 intersec-

tions Yj1 , . . . , Yji+1
which contain Ij. Let Xw be the space which is being intersected in Ij, but

not in Yjk . Then the function sign(jk, j) depends on the position of the index w in the string

p1, . . . , pn−i. If the position has an odd index, then sign(jk, j) = 0, otherwise sign(jk, j) = 1.

Exactness of a complex is preserved when taking the duals of the vector spaces and maps

in the complex.
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Figure 2: Visualising V ⊗i ⊗ I ⊗ V ⊗n−2−i for n = 4.

Theorem 2.4. If the complex C•(X1, X2, . . . )

C• : · · · φ3−→ X2
φ2−→ X1

φ1−→ 0

is exact at Xk, then the complex C•(X1
∗, X2

∗, . . . )

C• : · · · φ3
∗

←−− X2
∗ φ2

∗

←−− X1
∗ φ1

∗

←−− 0,

where φ1
∗, φ2

∗, . . . are the dual maps of φ1, φ2, . . . respectively, is exact at Xk
∗.

3 Cyclic Koszulness and Fundamental Theorems

We study a generalisation of Koszul algebras by examining whether more complicated

collections of subspaces of V ⊗n form a distributive lattice. To illustrate and define this

explicitly, we use oriented graphs.

3.1 A generalisation of Koszulness and oriented graphs

The collection of subspaces V ⊗i ⊗ I ⊗ V ⊗n−2−i can be represented through an oriented

graph (Figure 2) with n vertices where each vertex is marked with a number from 0 to

n− 1 and an edge between two vertices is drawn if and only if their indices are consecutive

numbers. Moreover, the edge is always oriented towards the vertex with the bigger index.

We also denote by ei the edge connecting the vertices with indices i and i+ 1. We place

a copy of a given vector space V at every vertex. We define ei to correspond to the vector

space V ⊗i⊗I⊗V ⊗n−2−i. The indices of the vertices connected by ei imply that I will occupy
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the (i+ 1)st and (i+ 2)nd position of the tensor product.

Our objective is to consider subspaces of V ⊗n not just of the form V ⊗i ⊗ I ⊗ V ⊗n−2−i,

but others where I is represented by two nonconsecutive positions in the tensor product.

Example 3. Let S(V ) be the symmetric algebra where V has a basis {x, y} and let n = 3.

We can consider the subspace W spanned by the sum

a1(yxx− xxy) + a2(yyx− xyy)

and ask whether it creates a distributive lattice together with V ⊗ I and I⊗V . Note that W

can also be defined by taking all vectors of the form yvx− xvy where v can be any vector

in V . Notice that the product yx − xy, which spans I, is “split” in first and third position

of the tensor product.

We use oriented graphs to explicitly define our generalisation of Koszul algebras. For a

given oriented graph G([n], E) where n is the number of vertices and E is the set of edges,

one can again place copies of V at each vertex. Then again each edge represents a subspace

of V ⊗n, however now a given edge may connect vertices with nonconsecutive indexes, for

example m and m+ p where p ≥ 2.

These new vector spaces have a more complex structure as in Example 3. Let I have a ba-

sis α1, . . . , αs. Therefore, each αq (q ∈ {1, . . . , s}) can be represented as a sum
∑

j1,j2∈[1,...,k] v
(q)
j1
⊗

v
(q)
j2

where v
(k)
j1

, v
(k)
j2
∈ V and k can be any positive integer smaller than or equal to the square

of the dimension of V . The restriction for k comes from the fact that (dimV )2 = dimV ⊗V .

If we, for example, accept that the edge between the vertices with indices m and m + p

(Recall that our first vertex had index 0.) is oriented towards the vertex with index m we

can define the vector space of that edge to contain all vectors which are spanned by the sum

s∑
i=1

∑
j1,j2∈{1,...,k}

v(i,0)⊗. . .⊗v(i,m−1)⊗v(i)j2 ⊗v(i,m+1)⊗. . .⊗v(i,m+p−1)⊗v(i)j1 ⊗v(i,m+p+1)⊗. . .⊗v(i,n−1),

(3)
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Figure 3: Visualising n = 3 for cyclic graphs.

where v(i,y) can be any vector in V for y ∈ {0, 1, . . . , m̂,m + 1 . . . ,m+ p
∧

, . . . , n − 1}. If the

edge is oriented towards the vertex with index m + p then the vectors v
(i)
j1

and v
(i)
j2

just

interchange their positions in the tensor product. Note that when p = 1, we get the vector

space V ⊗m ⊗ I ⊗ V ⊗n−m−2 and thus recover the original construction when our graph has

the form from Figure 2.

What are the properties, which the subspaces, corresponding to edges, satisfy for different

graphs? Do they still form a distributive lattice and for which I does that happen? Are all

theorems from the usual case still true?

3.2 Cyclic Koszulness and basic properties

The object of study in this paper is the case when the graph G is a cycle (see Figure 3).

In other words we have one more subspace of V ⊗n, where I is represented by the first and

last position of the tensor product. More precisely, the vectors v
(i)
j2

and v
(i)
j1

are in the first

and last position of the tensor products in (3), respectively. For instance, this happened in

Example 3.

The edge between the vertices with indices 0 and n − 1 is denoted by en−1. We denote

the vector space represented by the edge ei by Ei (i ∈ {0, . . . , n− 1}), so that no confusion

arises.
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Definition 3.1. For each n ≥ 2, let e0, . . . , en−1 be the edges of a cycle where all edges,

except en−1, are oriented towards the vertex with the bigger index. An algebra A = T (V )/〈I〉

is Cyclic n-Koszul if the vector spaces E0, . . . , En−1 form a distributive lattice. The algebra

A is Cyclic Koszul if it is cyclic n-Koszul for all n ≥ 2.

We continue with our first result.

Theorem 3.1. An algebra A = T (V )/〈I〉 is Cyclic n-Koszul if and only if the dual algebra

A! = T (V ∗)/〈I⊥〉 is Cyclic n-Koszul. More generally, an algebra A is Cyclic Koszul if and

only if the dual algebra A! is Cyclic Koszul.

Before proceeding with the proof we need a few lemmas.

Lemma 3.2. If E0, . . . , En−2 form a distributive lattice, then the collection E0, . . . , Êk, . . . En−1

also forms a distributive lattice .

Proof. By Theorem 2.1 there is a basis B of V ⊗n which contains bases for E0, . . . , En−2.

Every vector in B has the form
∑mn

i=1

⊗n
j=1 vij where each vij ∈ V and dimV = m. Let

us change the vectors vij by mapping them to vij+k+1
with the rule that if j + k + 1 > n

then we just take the value modulo n. Because of the bilinearity of the tensor product

the transformed vectors are still a basis of V ⊗n. Moreover, for the same reason, if in the

beginning a collection of vector were a basis for Ej, they are now a basis for Ej+k+1. Because

n − 1 + k + 1 ≡ k (mod n), no basis is given to Ek. Because each of the other vector

spaces gets one basis transported to it, we can conclude that the collection of vector spaces

E0, . . . , Êk, . . . En−1 forms a distributive lattice.

The next lemma is standard and relates the notions of a dual and direct sum.

Lemma 3.3. Let us have two finite-dimensional vector spaces V and W . Then if ⊕ is the

exterior direct sum, the vector spaces (V ⊕W )∗ and V ∗ ⊕W ∗ are isomorphic.
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The next lemma connects the notions of quotient, duality and orthogonal complement.

Lemma 3.4 (e.g. Conrad [4, p. 7]). Let V be a finite dimensional vector space. If W is a

subspace of V , then the vector spaces (V/W )∗ and W⊥ are isomorphic.

The next lemma is again widely used.

Lemma 3.5 (Sharipov [5, p. 97]). Let V be a vector space and X1 and X2 be subspaces.

Then for X1
⊥, X1

⊥ ∈ V ∗ we have X1
⊥ ∩X2

⊥ = (X1 +X2)
⊥

Proof of Theorem 3.1. We need to prove that if the collection of vector spaces E0, . . . , En−1

forms a distributive lattice then so do E0

′
, . . . , E

′
n−1, where Ei

′
is the same as Ei, however,

instead of V we use V ∗ and in the place of I ⊆ V ⊗ V , we use I⊥ ⊆ V ∗ ⊗ V ∗. We will prove

two things. Firstly, that any proper subset of E0

′
, . . . , E

′
n−1 forms a distributive lattice and

secondly, that the complex B•(V
∗⊗n;E0

′
, . . . , E

′
n−1) (see (1)) is exact everywhere except for

the leftmost term.

Because E0, . . . , En−1 form a distributive lattice, so does the collection {E0, . . . , En−2}.

Notice that this subset is visualised not by a cycle but by the same graph which visualises the

normal Koszul algebras (Figure 2). We just do not consider the edge that connects the first

with the last vertex. Therefore, by Theorem 2.2 we have that the collection E0

′
, . . . , E

′
n−2

forms a distributive lattice. Thus, from Lemma 3.2 we obtain that each of the collections

{E0

′
, . . . , Êk

′
, . . . , E

′
n−1} form a distributive lattice. This finishes the first part of the proof.

From Proposition 2.3 it follows that the complex B•(V ⊗n;E0, . . . , En−1) is exact every-

where except for its rightmost term. We prove that this is equivalent toB•(V
∗⊗n;E0

′
, . . . , E

′
n−1)

being exact everywhere except at its leftmost term.

Let us take the dual of any of the elements in B•(V
∗⊗n;E0

′
, . . . , E

′
n−1) apart from V ∗⊗n

and 0. From Lemma 3.3 and Lemma 3.4 it follows that
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 ⊕
t1<···<tn−i

V ∗⊗n/(
n−i∑
s=1

E
′
is)

∗ ∼= ⊕
t1<···<tn−i

(
V ⊗n/(

n−i∑
s=1

E
′
is)

)∗
∼=

(
n−i∑
s=1

E
′
is

)⊥
,

By Lemma 3.5 we have that (
n−i∑
s=1

E
′
is

)⊥
∼=

n−i⋂
s=1

(E
′
is)
⊥
,

Finally, we prove that (Ek
′
)⊥ ∼= Ek, where k ∈ {0, . . . , n− 1}. For k ∈ {0, . . . , n− 2}

Ek = V ⊗k ⊗ I ⊗ V ⊗n−2−k,

E
′
is = V ∗⊗k ⊗ I⊥ ⊗ V ∗⊗n−2−k.

Note that if ψ ∈ V ∗, v ∈ V , w ∈ W , ψ ∈ W ∗, for some vector spaces V and W , then

(φ⊗ψ)(v⊗w) = φ(v)×ψ(w). Since I and I⊥ both occupy the k + 1th and k + 2nd position

in their respective tensor products Ek and E
′
is , it follows that

V ⊗k ⊗ I ⊗ V ⊗n−2−k ⊆ (V ∗⊗k ⊗ I⊥ ⊗ V ∗⊗n−2−k)⊥.

When we look at En−1 and E
′
n−1 the same argument still holds because in the sum (3) the

vector subspaces I and I⊥ are placed in the first and last position of all tensor products.

We dot not prove the inverse inclusion, instead we prove that Ek and E
′
k have the same

dimension. Let dim I = i. Then dimV ⊗k ⊗ I ⊗ V ⊗n−2−k = mn−2i (recall that m is the

dimension of V ). Moreover, dimV ∗⊗k ⊗ I⊥ ⊗ V ∗⊗n−2−k = mn−2(m2 − i). Therefore,

dim(V ∗⊗k ⊗ I⊥ ⊗ V ∗⊗n−2−k)⊥ = mn −mn−2(m2 − i) = mn−2i.

Thus, since the dual of 0 is 0, we can directly apply Theorem 2.4 to prove the exactness of

B•(V
∗⊗n;E0

′
, . . . , E

′
n−1) at every term except for the leftmost one. This finishes the second

part of our proof.

Theorem 3.6. Let A = T (V )/〈I〉 and B = T (W )/〈J〉 be two Cyclic n-Koszul algebras.

Then the algebra C = T (V ⊗W )/〈I ⊗ J〉 is also a Cyclic n-Koszul algebra. More generally,

if A and B are Cyclic Koszul algebras, then C is also a Cyclic Koszul algebra.

Proof. Let E(0,a), . . . , E(n−1,a); E(0,b), . . . , E(n−1,b) and E(0,c), . . . , E(n−1,c) be the vector spaces
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created from the cyclic graphs when at each vertex we place V , W or V ⊗ W , respec-

tively. From Theorem 2.1 it follows that there is a basis B1 of V ⊗n which contains bases

B(0,a), . . . , B(n−1,a) for E(0,a), . . . , E(n−1,a), respectively. Similarly, there is a basis B2 of W⊗n

which contains bases B(0,b), . . . , B(n−1,b) for E(0,b), . . . , E(n−1,b), respectively. Let us consider

the vector space R = V ⊗n⊗W⊗n. It has a basis B1⊗B2. Each of the subspaces E(i,a)⊗E(i,b)

has a basis B(i,a) ⊗ B(i,b). Let us consider the canonical isomorphism between V ⊗n ⊗W⊗n

and (V ⊗W )⊗n. Then E(i,a)⊗E(i,b) is mapped to E(i,c). Respectively, B(i,a)⊗B(i,b) is mapped

to a basis of E(i,c).

This theorem will allow one to construct high-dimensional Cyclic Koszul algebras with

complicated quotients if a few low-dimensional Cyclic Koszul algebras are found.

4 Cyclic Koszulness of S(V ) and quantization

We use the notation from the previous section.

One of the most well studied algebras obtained as a quotient of the tensor algebra is the

symmetric algebra S(V ) = T (V )/〈I〉, where 〈I〉 is generated by the differences of products

v⊗w−w⊗v for all v, w ∈ V . It is well-known that S(V ) is Koszul for all possible dimensions

of V , see e.g. Polishchuk and Positselski [2, p. 20].

Later E. You investigated for which I is T (V )/〈I〉 Koszul when dimV = 2. He obtained

the following result.

Theorem 4.1 (You [6, p. 12 ]). We assume that A =
⊕∞

i=0Ai = T (V )/〈I〉 is a quadratic

algebra, where V = A1, dimV = 2, and I is is a set of all quadratic relations of A.

(1) When dim I = 0, 1, 3, 4, this A is Koszul;

(2) When dim I = 2, only A, which has dimA3 = 2, is Koszul.

13



In this chapter we ask whether similar theorems hold for Cyclic Koszulness. A surprisingly

interesting structure arises.

Conjecture 1. Let V be a vector space with a basis x, y and let a ∈ C be a nonzero number.

The algebra A = T (V )/〈y ⊗ x − ax ⊗ y〉 is Cyclic 2-Koszul. For each n ≥ 3, A is Cyclic

n-Koszul if and only if a is not an nth root of unity. More generally, the algebra A is Cyclic

Koszul if and only if a is not a root of unity.

In other words, the symmetric algebra is not Cyclic Koszul, but when we quantize it, it is

often Cyclic Koszul. For comparison, the symmetric algebra, as well as its quantized version

are Koszul which follows directly from Theorem 4.1. We partially prove the above conjecture

and the studied cases strongly suggest it is true.

4.1 The a = 1 and n ≥ 2 case

When a = 1, the algebra A becomes the symmetric algebra S(V ), because dimV = 2.

From Theorem 4.1 we know that S(V ) is Koszul. Thus, we can investigate its Cyclic n-

Koszulness through the use of Proposition 2.3 and Lemma 3.2. More precisely, for S(V ) to

be Cyclic n-Koszul, we need to prove that the complex B•(V ⊗n;E0, . . . , En−1)

0 −→
⋂
s

Es −→ · · · −→
⊕

t1<···<tn−i

n−i⋂
s=1

Ets −→ · · · −→
⊕
t

Et −→ V ⊗n, (4)

where s, t, t1, . . . , ts ∈ {0, . . . , n− 1}, is exact everywhere except for its rightmost term.

Case 1. Let n = 2. Then we end up with the complex

0
φ3−→ I

φ2−→ I ⊗ I φ1−→ V ⊗2.

Note that the second term of the complex is I ∩ I = I. The map φ2 : a  (a,−a) is

injective which confirms the exactness at I. The kernel of φ1 is also one dimensional since

φ1(α1, α2) = 0 if and only if α1 + α2 = 0. Thus, the complex is exact at I ⊗ I as well which
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proves that S(V ) is Cyclic 2-Koszul.

Case 2. Let n ≥ 3. Let us look only at the exactness at
⊕

tEt

· · · −→
⊕
t1<t2

Et1 ∩ Et2
φ2−→
⊕
t

Et
φ1−→ V ⊗n.

We will show that there is an element in the kerφ1 which is not an element in Imφ2

by constructing an example. When multiplying x and y with tensor product we ignore the

symbol ⊗ in order for the formulas to be clearer. Consider the element(
(yx− xy)xn−2, x(yx− xy)xn−3, . . . , xn−2(yx− xy), yxn−1 − xn−1y

)
.

When we sum all n of its parts we get zero which implies that it is in the kernel of

φ1. However, the intersections Et1 ∩ Et2 are zero if t1 and t2 are consecutive numbers or

if they are the numbers 0 and n − 1. The latter can be checked directly by showing that

(I ⊗ V ) ∩ (V ⊗ I) = {0}. If t1 and t2 are not consecutive then we have Et1 ∩ Et2 = V ⊗t1 ⊗

I ⊗ V ⊗t2−t1−1 ⊗ I ⊗ V ⊗n−t2−2. Because I is the span of yx− xy, a linear sum of elements in

E0 ∩ E2, . . . , E0 ∩ En−2 can never give us the element (yx − xy)xn−2, where we have n − 2

consecutive x’s. Therefore, the case a = 1 is solved.

4.2 The cases n = 2, 3, 4, 5 and a not a root of unity

Firstly we note that for n = 2, one can prove that for any nonzero a, the algebra A =

T (V )/〈yx−axy〉 is Cyclic 2-Koszul by using the same method as in section 4.1, because the

value of a is not used in the proof.

We show that if n = 3, 4, 5 and if a is not a 3rd, 4th, 5th root of unity, respectively, then

the algebra A is Cyclic n-Koszul. We solve the case n = 4, but the other two are analogous.

We have the complex B•(V ⊗n;E0, . . . , En−1)

0 −→
3⋂
s=0

Es −→
⊕

t1<t2<t3

3⋂
s=1

Ets −→
⊕
t1<t2

2⋂
s=1

Ets −→
3⊕
t=0

Et −→ V ⊗4.
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The relation (V ⊗ I) ∩ (I ⊗ V ) = 0 simplifies it to

0 −→ E0 ∩ E2 ⊕ E1 ∩ E3
φ2−→ E0 ⊕ E1 ⊕ E2 ⊕ E3

φ1−→ V ⊗4.

The map φ2 sending a pair (α1, α2) to (−α1,−α2, α1, α2) is injective which proves the

exactness at E0 ∩E2 ⊕E1 ∩E3. The rank of φ2 is two, so to prove exactness at
⊕3

t=0Et we

need to show that the kernel of φ1 is two-dimensional. Note that the dimension of
⊕3

t=0Et

is 16. Therefore, our problem is equivalent to showing that the matrix representing φ1 with

respect to some bases has rank 14. For the standard bases the matrix was found and the

rank was calculated to be 14 with a computer program (see Appendix A). When a = 1, for

example, the rank was 12, not implying exactness as stated by our conjecture.

5 Conclusion and Future development

We introduced a new structure - Cyclic Koszul algebras, and proved fundamental prop-

erties for it. We plan to continue the project by searching for properties of Cyclic Koszul

algebras which are not generally present in Koszul algebras. An example would be to look

at the Hilbert series of Cyclic Koszul algebras and try to prove some kind of identities.

We believe that Conjecture 1 is implied by two theorems from noncommutative geometry,

although this observation is not rigorous. The first theorem by Berest, Felder and Ramadoss

in [7], says that the homology of the quantized symmetric algebra A = T (V )/〈yx − axy〉

vanishes when a is not a root of unity. The second theorem by Feigin and Tsygan in [8],

states that the cyclic homology of A is isomorphic to its homology, so it also vanishes. A

rigorous proof to our conjecture, with the apparatus in this paper can be of certain interest.
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A Matrices

The basis of V is {x, y} and the basis of I is (yx − axy). Then we can naturally define

the basis of Ei for all i and from there the bases for E0 ⊕ E1 ⊕ E2 ⊕ E3 and V ⊗4 are also

defined. The matrix representing φ1 is



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −a 0 0 0 1 0 0 0

0 0 0 0 −a 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 −a 0 0 0 0 0 0 0 1 0 0

−a 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 −a 0 0 0 1 0 0 0 −a 0 0 0 0 1 0

0 0 −a 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −a 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 −a 0 0 0

0 1 0 0 0 0 0 0 0 0 −a 0 0 0 0 0

0 0 1 0 0 0 −a 0 0 0 1 0 0 −a 0 0

0 0 0 1 0 0 0 −a 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 −a 0

0 0 0 0 0 0 0 1 0 0 0 −a 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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