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Abstract

We say that a planar drawing of a graph is 1-thick if the distance between the images of
any two vertices, a vertex and an edge, and two non-adjacent edges is at least 1. We prove that
the cylinder mesh graph CM,N has a 1-thick drawing inside a ball of radius C · (

√
MN +N)

for some absolute constant C. Moreover, we prove that the value
√
MN +N is sharp up to

a constant factor.

Summary

We take a cylinder mesh and draw the structure on the plane. We consider different
ways of representing with vertices and edges the three-dimensional structure to look at
how the distances between components of the cylinder mesh change in the two-dimensional
drawing. Our results have applications in electrical engineering for designing circuit boards
and orienting the conductive paths so that they fit in the smallest board possible without
overlapping.



1 Introduction

Kolmogorov and Barzdin’s study [1] of embeddings of graphs into R3 was the first

study that measured the geometric complexity of embeddings of simplicial complexes, and

it raised subsequent important questions later studied by Gromov and Guth [2], Freedman

and Krushkal [3]. Gromov and Guth generalize the results of Kolmogorov and Barzdin about

embedding simplicial complexes into R3 to embedding graphs into Rn. Both studies use thick-

ness as a measure to evaluate the geometric complexity of an embedding. Kolmogorov and

Barzdin discuss the possibility of applying the study of geometric complexity of embeddings

to the study of neural networks. In the brain, neurons are oriented so that the cell body is

aligned toward the outer brain while the axons are located in the inner brain. This specific

orientation is reminiscent of how graphs can be embedded into R3 optimally to fit in a ball

under the assumption that two axons cannot come too close to each other. The neuron’s cell

body corresponds to the vertices and the axons connecting the cell bodies correspond to the

edges.

While the study of embeddings into R3 can be applied to neural networks in three-

dimensional spaces such as the brain, our study of embedding into R2 may have applications

in designing printed electric circuit boards where the conductive paths cannot come too

close.

An embedding is a representation of a topological object in a given space in a way that

preserves its topological structure. An embedding of a graph into R2 gives a planar drawing

of the graph, meaning that the graph may be represented in the plane by non-intersecting

curves.

We consider a specific planar graph. First take a cycle graph CM with M vertices and

M edges.
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Figure 1: The cycle graph C8

Then take N copies of this graph and connect them with edges to make a cylinder mesh

graph CM,N . In other words, CM,N is obtained from the M ×N grid by adding N edges to

make it a cylinder mesh.

Figure 2: The cylinder mesh graph C8,4

The cylinder mesh is one of the simplest examples of a large planar graph for which

the estimations of geometric complexity of embeddings are not trivial. Can we estimate the

minimal geometric complexity using the thickness of any embedding of CM,N into R2?

We say that a planar drawing of a graph has thickness at least 1 if the distance between

the images of any two vertices, the images of any two nonadjacent edges, and the images of

an edge and a vertex that are nonadjacent are all at least 1. We prove that the cylinder mesh

graph CM,N has a 1-thick drawing inside a ball of radius C · (
√
MN +N) for some absolute

constant C. Moreover, we prove that the value
√
MN +N is sharp up to a constant factor.

In Section 2, we introduce preliminary definitions and in particular, we define Kolmogorov–
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Barzdin thickness. In Section 3, we introduce our main theorem. In Sections 4 and 5, we prove

the main theorem. In Section 6, possible future directions are discussed.

2 Definitions

A graph G = (V,E) is given by its set of vertices V (G) and its set of edges E(G) (i.e.,

two-element subsets of V (G)).

Definition 2.1. A topological embedding i of G into Rd is given by the following data:

1) for each v ∈ V (G), we specify a point i(v) ∈ Rd;

2) for each e = {v, u} ∈ E(G), we specify a continuous curve ie : [0, 1]→ Rd such that

{ie(0), ie(1)} = {i(v), i(u)};

3) for all v, u ∈ V (G), i(v) 6= i(u) unless v = u; for all e ∈ E(G), v ∈ V (G), t ∈ (0, 1),

ie(t) 6= i(v); and for all e, f ∈ E(G), e 6= f , t, s ∈ [0, 1], ie(t) 6= if (s).

We will use notation i : G ↪→ Rd for topological embedding.

Remark 2.1. Graphs admitting an embedding into R2 are called planar. In 1930, Kura-

towski [4] gave a criterion for a graph to be planar. He proved that a graph is planar if and

only if it does not contain a homeomorphic copy of either K5 or K3,3.

Remark 2.2. Part 3) means that the images of vertices and edges of G do not intersect unless

otherwise addressed in part 2).

Remark 2.3. If the image of an embedding i belongs to the ball BR of radius R, we use

notation i : G ↪→ BR.

Definition 2.2. Let CM be a cycle graph with M vertices. Take N copies of CM and denote

these cycles as C
(i)
M where 1 ≤ i ≤ N . Denote the vertices of C

(i)
M in order as V (C

(i)
M ) =

{v(i)1 , . . . , v
(i)
M }. Then, we define the cylinder mesh graph CM,N as follows: Take the disjoint
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union of the C
(i)
M and add edges (v

(i)
j , v

(i+1)
j ) for all 1 ≤ i ≤ N − 1 and 1 ≤ j ≤M . We refer

to C
(i)
M as the layers of CM,N .

Define the distance between sets A and B as

dist(A,B) = inf{‖x− y‖ |x ∈ A, y ∈ B},

where ‖·‖ denotes the Euclidean norm. Given an embedding i of graphG into Rd, Kolmogorov

and Barzdin [1] define its thickness as follows.

Definition 2.3. Let G be a graph and let i : G ↪→ Rd be a topological embedding. We

say that i is of Kolmogorov–Barzdin thickness, or KB-thickness, at least T if the Euclidean

distance between the images of any two vertices is at least T , the distance between the images

of any nonadjacent edges is at least T , and the distance between the image of an edge and

the image of a vertex not in the edge is at least T .

Definition 2.4. Given two functions f(M,N) and g(M,N), we write f . g if there exists

an absolute constant C > 0 such that f(M,N) ≤ C · g(M,N) for sufficiently large M,N .

We write f ∼ g if f . g and g . f .

3 Embedding the Cylinder Mesh Graph CM,N into R2

Our main result establishes bounds on the KB-thickness of the embedding of CM,N into

a unit ball in the plane.

Theorem 3.1. Any topological embedding i : CM,N ↪→ B1 ⊂ R2 has KB-thickness at most

C1√
MN+N

for some absolute constant C1. Moreover, there exists an embedding i0 of thickness

at least C2√
MN+N

for some absolute constant C2.

We start from the following observation. An embedding i : CM,N ↪→ B1 of thickness T

can be inflated to get an embedding i′ : CM,N ↪→ B1/T of thickness 1. Therefore, the problem
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of embedding CM,N into B1 with largest possible thickness is equivalent to the problem of

finding an embedding of CM,N of thickness 1 into BR with smallest possible R, which is

written as Ropt. We work with the second formulation.

To prove Theorem 3.1, we consider two cases: M ≤ N and M > N . The proof for the

case M ≤ N is given in Section 4, and the proof for the case M > N is given in Section 5.

4 Proof of Theorem 3.1 in the Case M ≤ N

When M ≤ N , we prove that Ropt ∼ N . Lemma 4.1 proves the upper bound and

Lemma 4.2 proves the lower bound.

Lemma 4.1. If M ≤ N , there exists an embedding i0 : CM,N ↪→ BR for R . N .

Proof. We prove this lemma by exhibiting an explicit embedding of KB-thickness 1 (see

Figure 3) in the plane so that the image of CM,N consists of N concentric circles each 1

apart, connected by M edges.

Figure 3: Explicit embedding with N concentric circles

In this embedding, every two consecutive circles are 1 unit apart. The radius R of BR

is the sum of the radius of the innermost circle Rinner and all the distances between the N
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concentric circles. Because there are M vertices on each circle, and the vertices must be at

least 1 apart according to the definition of KB-thickness, we have Rinner ∼M . Moreover, the

sum of the distances between the N layers add up to N − 1. Therefore, R ≤ M + N , and

because M ≤ N , we have R . N . Thus, Ropt . N .

Lemma 4.2. If M ≤ N , then for any embedding i : CM,N ↪→ BR, R & N .

Proof. We prove in several steps that given any embedding, R & N . In 1932, Whitney [5]

proved a result equivalent to the fact that any 3-connected planar graph has a unique drawing

on S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} (see the discussion in [6]). Recall that a planar

graph is 3-connected if it has at least 4 vertices and there does not exist a set of 2 vertices

whose removal disconnects the graph. One way to see that CM,N is a 3-connected planar

graph is to apply Steinitz’s criterion [7]. Because CM,N is the edge graph of a 3-dimensional

convex polytope, then by Steinitz’s criterion it is a 3-connected planar graph (see Figure 4).

Figure 4: C6,5 as the edge graph of a convex polytope

Therefore, any planar drawing of CM,N can be obtained as the stereographic projection

from a point inside some face of the spherical drawing (see Figure 5).
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Figure 5: Stereographic projection

If the point of projection lies between C
(i)
M and C

(i+1)
M , the planar drawing consists exactly

of one family of the layers including and above C
(i)
M and another family of the layers including

and below C
(i+1)
M . Above and below are related to the indices used in Figure 4. Any planar

drawing of CM,N consists of at most 2 families of nested closed simple curves (see Figure 6).

Figure 6: Example of a planar drawing of CM,N

One family consists of at least N
2

nested closed simple curves. Call the curves C1, C2, . . . , Cm,
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m ≥ N
2

, in the order from the innermost curve to the outermost curve. In Figures 6 and 7,

the edges connecting the layers of CM,N are omitted for convenience. Then, we choose a

radial segment S that intersects the innermost layer which we call C1. By the Jordan curve

theorem, S intersects the entire family. Note that S does not have to cross the layers in

increasing order (see Figure 7).

Figure 7: Radius S crossing a family of layers

Using the definition of KB-thickness, we cut out a line segment of length at least 1 between

every two consecutive layers Ci and Ci+1 that S intersects as follows. Call the endpoints of

these cut-out line segments Ai, Bi, where Ai := last point of Ci ∩ S and Bi := first point

of Ci+1 ∩ S after Ai. First and last follow the order of S going outward from the innermost

layer to the outermost layer.

Figure 8: Spacing between consecutive layers
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So far, Ai and Bi were defined informally because it is not clear whether they exist. We

will define Ai, Bi formally. Parametrize the curve

C1 = {x1(t), y1(t) | t ∈ [0,M)}.

Parametrize the line segment

S = {x(r), y(r) | r ∈ [0, R]},

where 0 corresponds to the center of the ball and R corresponds to the boundary of the ball.

Parametrize the points of intersection of S and C1 by introducing

I1 = {t ∈ [0,M) | (x1(t), y1(t)) = (x(r), y(r)) for some r}

and

J1 = {r ∈ [0, R] | (x(r), y(r)) = (x1(t), y1(t)) for some t}.

Notice that there is a bijection between I1 and J1. Let r = sup J1. By definition of supremum,

r ≤ r for all r ∈ J1. By default, it is not clear whether r ∈ J1. However, it can be shown

using continuity that, in fact, r ∈ J1. The formal argument is given in Lemma 4.3. Define

A1 = (x(r), y(r)). All the remaining Ai and Bi are defined similarly. By definition of KB-

thickness, any line segment AiBi has length at least 1.

By the definition of Ai, Bi, there are no intersections of S with either Ci or Ci+1 between

Ai and Bi. By the Jordan curve theorem, there is no other intersection of S and Cj between

Ai and Bi. Thus, the line segments AiBi are non-overlapping. Because all non-overlapping

line segments AiBi for all 1 ≤ i ≤ m− 1 have lengths at least 1, the length of S is at least

N
2
− 1 and R & N .
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Figure 9: Points of intersection on continuous curves

Lemma 4.3. With the notation of Lemma 4.2, the last point of intersection (see Figure 9)

between C1 and S exists, that is, r ∈ J1.

Proof. By definition of sup, J1 ∩ (r − ε, r) 6= ∅ for all ε > 0. For all n ∈ N, take εn = 1
n
.

Choose rn ∈ J1∩(r−εn, r). As n approaches infinity, rn approaches r. Let tn ∈ I1 correspond

to the rn under the J1− I1 bijection. Using the Weierstrass compactness theorem, we choose

a subsequence of (tn)∞n=1, call it (tnk
)∞k=1, such that there exists limk→∞ tnk

∈ [0,M ]. By

continuity,

x(r) = x( lim
k→∞

rnk
) = lim

k→∞
x(rnk

) = lim
k→∞

x1(tnk
) = x1( lim

k→∞
tnk

).

Similarly,

y(r) = y1( lim
k→∞

tnk
).

Therefore,

(x(r), y(r)) = (x1( lim
k→∞

tnk
), y1( lim

k→∞
tnk

)) ∈ C1.

Thus, r ∈ J1, and the last point of intersection between S and C1, or A1, exists.

Combining Lemma 4.1 and Lemma 4.2, we get Ropt ∼ N , thus concluding the proof of

the case M ≤ N .
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5 Proof of Theorem 3.1 in the Case M > N

In the case M > N , we prove that Ropt ∼
√
MN . Lemma 5.1 proves the lower bound

and Lemma 5.2 proves the upper bound.

Lemma 5.1. If M > N , then for any embedding i : CM,N ↪→ BR, R &
√
MN .

Proof. Ropt &
√
MN can be proven with a volumetric argument. Consider any embedding

of CM,N into a ball with radius R. Then, replace all the vertices of CM,N with disks of radius

1
2

centered at the vertices. Since the embedding has KB-thickness at least 1, the disks do

not overlap. Then, there may exist disks that are not contained in the ball with radius R.

However, if we inflate the ball with radius R to a ball with radius R + 1
2
, all the disks must

be contained in the inflated ball. Let us denote the inflated ball as BR+ 1
2

and the disks as

B
(i)
1
2

, 1 ≤ i ≤M .

Then,
M⋃
i=1

B
(i)
1
2

⊂ BR+ 1
2
.

Thus, the sum of the areas of all the non-overlapping disks is at most the area of BR+ 1
2
.

π

4
MN ≤ π

(
R +

1

2

)2

1

2

√
MN ≤ R +

1

2
≤ 2R.

Thus, we can say that R &
√
MN .

Lemma 5.2. If M > N , there exists an embedding i0 : CM,N ↪→ BR for R .
√
MN .

Proof. We can prove R .
√
MN by exhibiting an explicit embedding. Consider tiles of

sidelength 3N × 3N . There are two types of tiles: straight and curved, shown in Figure 10.

We use these tiles to form a grid which contains the embedding of CM,N .
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Figure 10: Straight tile and curved tile

Intersections of two edges represent vertices. The edges are placed exactly in the middle

of each tile (see Figure 10). Because M > N , we write M = kN + r, where k, r ∈ N and

r < N . Then,

MN = kN2 + rN,

where rN < N2.

Choose L =
[√

M
N

]
+ 1. Form an L× L grid with the tiles. Note that L2N2 ≥MN . We

arrange the tiles so that the edges in the tiles form a loop (see Figure 11). We consider that

a tile is occupied if there are edges drawn on the tile. For L even, we can construct the grid

so that all the tiles in the grid are occupied. We do so using exactly 2L curved tiles and

L2 − 2L straight tiles. For L odd, we construct the grid so that all the tiles except for one

are occupied. We can do so using exactly 4L− 8 curved tiles and L2 − 4L+ 7 straight tiles.

Figure 11: Constructions for L = 4, L = 5
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For both cases, draw the connecting edges so that there are k tiles with exactly N2

vertices and 1 tile with exactly rN vertices (see Figure 12). Leave the remaining L2 − k − 1

tiles with no vertices in them. Then, there are a total of MN vertices drawn on the L × L

grid.

Figure 12: Embedding of C28,3

It can be seen that this embedding has KB-thickness at least 1. Moreover, the radius of

the ball containing the L× L grid is

R =
3√
2
LN =

3√
2

([√
M

N

]
+ 1

)
N ≤ 3√

2

(√
M

N
+ 1

)
N =

3√
2

(√
MN +N

)
∼
√
MN.

Figure 13: Radius of the ball containing the embedding of C28,3
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Combining Lemma 5.1 and 5.2, we get Ropt ∼
√
MN , thus concluding the proof of the

case M > N . The proof of Theorem 3.1 is complete.

6 Future Work & Conclusion

Our results apply to a specific planar graph: the cylinder mesh graph CM,N . The volumet-

ric argument for the lower bound may be generalized for other graphs. This argument shows

that for any graph G = (V,E), Ropt &
√
|V |. However, this bound is not sharp, as shown in

Lemma 4.2, where a better bound is exhibited for G = CM,N with M ≤ N . Moreover, the

explicit embeddings that prove the upper bound are specific to CM,N . We plan to generalize

our results to other planar graphs by looking at other explicit embeddings that may work

for more general planar graphs.

Moreover, we may consider other ways of measuring the geometric complexity of an

embedding, such as by measuring distortion. The most common definition of distortion is as

follows.

Definition 6.1. Let X be a graph and let i : X ↪→ R2 be a piecewise-smooth embedding.

The distortion is defined by

δ(i) = sup
x,y∈i(X)

disti(X)(x, y)

distR2(x, y)
,

where disti(X) measures distance in the intrinsic metric of i(X) ⊂ R2.

Matoušek [8] investigated the properties of finite metric spaces using a different definition

of distortion.

Definition 6.2. Let X be a graph and let i : V (X)→ R2 be an embedding of the vertices

of X. The Matoušek distortion of i is defined as the faithfulness of i with respect to the

distances when X is treated as a finite metric space with the metric given by the edge
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distance.

δ′(i) = sup
v 6=u∈V (X)

distR2(i(v), i(u))

distX(u, v)
· sup
v 6=u∈V (X)

distX(u, v)

distR2(i(v), i(u))
,

where distX denotes the edge distance in X.

What is the minimal possible distortion of an embedding i : CM,N ↪→ R2? Can we

generalize the results for any graph G?
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