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Abstract

We analyze an open problem in number theory regarding the divisibility
of binomial coefficients. It is conjectured that for every integer n there exist
primes p and r such that if 1 ≤ k ≤ n− 1 then the binomial coefficient

(
n
k

)
is

divisible by at least one of p or r. We prove the validity of the conjecture in
several cases and obtain inequalities under which the conjecture is satisfied.
We relate the problem to Cramér’s, Oppermann’s and Riemann’s conjectures
on prime gaps and study cases in which the conjecture is true using three
primes instead of two. We also establish four upper bounds on the minimum
number of primes needed for the conjecture to be true.

1 Introduction

Apart from their many uses in various fields of mathematics, binomial coefficients
display interesting divisibility properties. Kummer’s [8] and Lucas’ [10] Theorems
are two remarkable results relating binomial coefficients and prime numbers. Kum-
mer’s Theorem provides an easy way to determine the highest power of a prime
that divides a binomial coefficient, and Lucas’ Theorem yields the remainder of the
division of a binomial coefficient by a prime number. Davis and Webb [4] found
a generalization of Lucas’ Theorem for prime powers. Legendre [9] found two ex-
pressions for the largest power of a prime p that divides the factorial n! of a given
integer n.

However, some conjectures about binomial coefficients still remain unproven. We
focus on the following condition considered by Shareshian and Woodroofe in a recent
paper [13]:

Condition 1. For a positive integer n, there exist primes p and r such that, for all
integers k with 1 ≤ k ≤ n−1, the binomial coefficient

(
n
k

)
is divisible by at least one

of p or r.

This condition leads to the following question:

Question 1.1. Does Condition 1 hold for every positive integer n?

In [13] it is conjectured that Condition 1 is true for all positive integers, yet there
is no known proof. Shareshian and Woodroofe construct a chain of implications in
group theory that lead to Condition 1. We tackle this problem using mainly number
theory, although some links with group theory are made.

We also introduce the following variation of Condition 1, which we study later
in this paper:
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Definition 1.2. A positive integer n satisfies the N-variation of Condition 1 if there
exists a set consisting of N different primes such that if 1 ≤ k ≤ n − 1 then the
binomial coefficient

(
n
k

)
is divisible by at least one of the N primes.

This paper is organized as follows. After providing background information in
Section 2, we prove that n satisfies Condition 1 if it is a product of two prime
powers and also if it satisfies a certain inequality regarding the largest prime smaller
than n. Next we provide bounds related to the prime power divisors of n and discuss
several cases in which n satisfies Condition 1 depending on the largest prime smaller
than n/2. In Section 6 and Section 7 we use prime gap conjectures in order to settle
some cases in which a sufficiently large integer n satisfies Condition 1, and discuss
cases in which n satisfies the 3-variation of Condition 1. Finally, in Section 8 we
provide upper bounds for a number N so that all integers n satisfy the N -variation of
Condition 1, followed by computational results and a generalization of Condition 1
to multinomials.

2 Background

Three theorems about divisibility of binomial coefficients and factorials are relevant
for the proofs given in this paper.

Theorem 2.1. (Kummer [8]) Let k and n be integers with 0 ≤ k ≤ n. If α is a
positive integer and p a prime, then pα divides

(
n
k

)
if and only if α carries are needed

when adding k and n− k in base p.

Theorem 2.2. (Lucas [10]) Let m and n be positive integers, let p be a prime, and
let m = mkp

k +mk−1p
k−1 + · · ·+m1p+m0 and n = nkp

k +nk−1p
k−1 + · · ·+n1p+n0

be the base p expansions of m and n respectively. Then
(
m
n

)
≡
∏k

i=0

(
mi

ni

)
(mod p).

It is important to notice that by convention
(
m
n

)
= 0 if m < n. Hence, if any of

the digits of the base p representation of m is 0 whereas the corresponding digit of
the base p representation of k is not 0, then

(
m
k

)
is divisible by p because everything

is multiplied by zero and by Lucas’ Theorem we have that
(
m
k

)
≡ 0 (mod p).

Theorem 2.3. (Legendre [9]) If vp(n) denotes the maximum power α of p such that

pα divides n, then vp(n!) =
∞∑
k=1

⌊
n

pk

⌋
.

Here bxc denotes the integer part of x. Moreover, Legendre also showed that

vp(n!) =
n− Sp(n)

p− 1
,

where Sp(n) denotes the sum of all the digits in the base p expansion of n.
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3 Some cases of n satisfying Condition 1

3.1 When n is a prime power

Proposition 3.1. A positive integer n satisfies the 1-variation of Condition 1 with
p if and only if n = pα for some α > 0, for α ∈ N.

Proof. If n = pα, then the base p representation of n is equal to 1

α zeroes︷ ︸︸ ︷
0 . . . 0. Any k

such that 1 ≤ k ≤ n− 1 has at most α− 1 zeroes in base p. Therefore, at least one
of the digits of the base p representation of k is bigger than the corresponding digit
of n in base p (at least the leading one). It then follows from Lucas’ Theorem that(
n
k

)
is divisible by p. Otherwise, if n is not a prime power, then the ith digit of n in

base p is not 0 for some value of i. Thus, we can find at least one k such that the ith

digit of k in base p is larger than 0. Hence, by Lucas’ Theorem
(
n
k

)
is not divisible

by p.

Corollary 3.2. If n = pα + 1, then n satisfies Condition 1 with p and any prime
factor of n.

Proof. The proof relies on the fact that
(
m
k

)
+
(
m
k+1

)
=
(
m+1
k+1

)
for all positive integers

m and k. If m is a power of a prime p, then it follows from Proposition 3.1 that(
m
k

)
and

(
m
k+1

)
are divisible by p if 1 ≤ k ≤ m− 1. In these cases, because

(
m+1
k+1

)
is

the result of the sum of two multiples of p, it also is a multiple of p. When k = 1 or
k = m, we have that

(
m+1
k

)
= m+ 1, so any prime factor of m+ 1 divides it.

Corollary 3.3. If H is a proper subgroup of the alternating group An and n is a
power of a prime p then the index [An : H] is divisible by p.

Proof. As observed in [13], it is enough to prove this claim when the subgroup H is
maximal, and in this case, the index is either

(
n
k

)
for some k or a multiple of it, as

shown in [13].

3.2 When n is a product of two prime powers

Proposition 3.4. If a positive integer n is equal to the product of two prime powers
pα1 and pβ2 , then n satisfies Condition 1 with p1 and p2.

Proof. Observe that lcm(pα1 , p
β
2 ) = n. The base p1 representation of n ends in α

zeroes and the base p2 representation of n ends in β zeroes. Because any positive
k smaller than n cannot be divisible by both pα1 and pβ2 , it is not possible that k
finishes with α zeroes in base p1 and β zeroes in base p2. Thus, we can apply Lucas’
Theorem modulo the prime p1 if pα1 6 | k or modulo the prime p2 if pβ2 6 | k.

Corollary 3.5. Let n = pα1p
β
2 and H be a proper subgroup of An. Then the index

[An : H] is divisible by at least one of p1 or p2.
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3.3 Considering the closest prime to n

Theorem 3.6. Let q be the largest prime smaller than n and let paii be any prime
factor divisor of n. If n− q < paii , then n satisfies Condition 1 with pi and q.

For the proofs of Theorem 3.4 and Corollary 3.6 we use the Bertrand-Chebyshev
Theorem:

Theorem 3.7. (Bertrand-Chebyshev [1]) For every integer n > 3 there exists a
prime p such that n/2 < p < n.

Proof of Theorem 3.4. We distinguish between two intervals: the interval (1, n− q]
and the interval (n − q, n]. Due to the symmetry of binomial coefficients, we only
consider k ≤ n/2. By the Bertrand-Chebyshev Theorem, we know that there is at
least one prime between n/2 and n, hence n/2 < q < n. Then, for all k, k < n/2 < q.
The base q representation of n is 1 · q + (n − q). Therefore, we do not need to
consider the interval (n − q, n) because the last digit of the base q representation
of any k > n − q is larger than the last digit of the base q representation of n.
Thus, by Lucas’ Theorem, the binomial coefficient

(
n
k

)
is divisible by q. If there is

no multiple of paii in the interval (1, n− q), then by Lucas’ Theorem all the binomial
coefficients

(
n
k

)
with 1 ≤ k ≤ n/2 are divisible by at least pi or q. Moreover, equality

in Theorem 3.4 cannot hold because paii divides both paii and n, and hence q would
not be a prime.

Corollary 3.8. Let p
aj
j denote the largest prime power divisor of an integer n and

q the closest prime to n. If n− q < p
aj
j , then n satisfies Condition 1 with pj and q.

Note that if n satisfies Condition 1 then at least one of these two primes has to
be a prime factor of n, because otherwise

(
n
1

)
= n is not divisible by either one of

the two primes.
The only remaining cases are those in which n− q > paii and n is neither a prime

nor a prime power. Let q2 denote the largest prime smaller than n/2. By analyzing
the integers that are part of these remaining cases, we notice that n usually satisfies
Condition 1 with the pair formed by a prime factor of n and q2. If we analyze the
six numbers smaller than 2,000 such that n − q > paii , we see that the inequality
paii > n − 2q2 holds and q2 and pi satisfy Condition 1. Table 1 provides evidence
with the only four numbers until 1,000 that do not satisfy Condition 1 with q and pi.
However, the sequence of all such integers is infinite. The On-Line Encyclopedia of
Integer Sequences (OEIS) has accepted our submission of this sequence [2] with the
reference A290203.
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Number 126 210 330 630
Prime factorization 2 · 32 · 7 2 · 3 · 5 · 7 2 · 3 · 5 · 11 2 · 32 · 5 · 7
q 113 199 317 619
q2 61 103 163 313
n− q 13 11 13 11
n− 2q2 4 4 4 4
(1, n− q] 2, 3, 4 2, 3, 4 2, 3, 4 2, 3, 4
(n− q, n] 62, 63 104, 105 164, 165 314, 315
Pairs that satisfy 1 3-61 5-103 5-163 3-313, 5-313, 7-313

Table 1: Information about the four numbers below 1,000 that do not satisfy Con-
dition 1 with q and pi.

4 Bounds for p
ai
i

Before analyzing q and q2 further, we establish some bounds for paii assuming that
n− q > paii .

Lemma 4.1. If n is not a prime and n− q > paii , then paii < n/2.

Proof. Using the Bertrand-Chebyshev Theorem we see that n/2 > n− q > 0. Also,
n− q > paii . Therefore, n/2 > paii .

We can find an even lower bound for paii . In 1952, Nagura [11] showed that if
n ≥ 25 then there is always a prime between n and (1 + 1/5)n. Therefore, we find
that 5n/6 < q < n when n ≥ 30.

Lemma 4.2. If n ≥ 30 is not a prime and n− q > paii , then paii < n/6.

The proof is the same as the one for Lemma 4.1. In 1976 Schoenfeld [14] showed
that for n ≥ 2,010,760 there is always a prime between n and (1 + 1/16,597)n.
Therefore, we know that if n > 2,010,882 then

16,597n

16,598
< q2 < n.

Shareshian and Woodroofe [13] checked computationally that all integers smaller
than 10 million satisfy Condition 1, which means that we can apply Schoenfeld’s
bound.

Lemma 4.3. If n is not a prime, n > 2,010,882 and n−q > paii , then paii < n/16,598.

The proof follows the same steps as the previous two lemmas.

Proposition 4.4. Let n = paii m. If n ≥ 2,010,882 and m < 16,598, then n satisfies
Condition 1 with pi and q.

Proof. By Schoenfeld’s bound we know that n − q < n/16,598. If m < 16,598, it
means that paii > n/16,598. Thus, paii > n− q and, by Theorem 3.4, q and pi satisfy
Condition 1.
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5 When n − q > p
ai
i > n − 2q2

In this section we analyze the integers n that satisfy the inequalities

n− q > paii > n− 2q2,

and we prove some cases in which n satisfies Condition 1 with pi and q2. The
fact that we are considering n − 2q2 comes from the base q2 representation of n.
We distinguish between two cases: when k < q2 and when k > q2. The base q2
representation of n is 2 · q2 + (n− 2q2). The base q2 representation of k is 0 · q2 + k if
k < q2 and 1 · q2 + (k− q2) if k > q2. Hence, there is no need to analyze the interval
(n−2q2, q2] because for all k such that n−2q2 < k ≤ q2, we can use Lucas’ Theorem
to see that the binomial coefficient

(
n
k

)
is congruent to 0 modulo q2. Therefore, we

only need to consider the interval (q2, n/2].

5.1 If n is odd

It is important to remark that if k is not a multiple of paii then by Lucas’ Theorem(
n
k

)
is divisible by pi. Therefore, we only have to analyze the integers in (q2, n/2]

that are multiples of paii . We then claim the following:

Theorem 5.1. If n is odd and n− q > paii > n− 2q2, then n satisfies Condition 1
with pi and q2.

Proof. Since n is odd, n/2 is not an integer. Hence it is enough to prove that there is
no multiple of p

aq
q in the interval (qr, n/2). We will prove this by contradiction. Thus

assume that qr < λp
aq
q < n/2 for some integer λ. Then λ ≥ (m− 1)/2 if n = mp

aq
q ,

since ((m−1)/2)p
aq
q is the largest multiple of p

aq
q that is smaller than n/2 (note that

m is odd because n is odd). Now from the inequality ((m− 1)/2)p
aq
q > qr it follows

that n− paqq > 2qr and this contradicts the assumption that n− 2qr < p
aq
q .

5.2 If n is even and pi is not 2

Lemma 5.2. If n is even and pq 6= 2, then the only multiple of p
aq
q in the interval

(qr, n/2] is n/2.

Proof. Since pq 6= 2, the integer n/2 is still a multiple of p
aq
q . Hence we may write

n/2 = λp
aq
q for some integer λ. If there is another multiple of p

aq
q between qr and

n/2, then we have qr < (λ − 1)p
aq
q < n/2, and this implies that n/2 − p

aq
q > qr.

Hence n−2qr > 2p
aq
q > p

aq
q , which is incompatible with our assumption which states

that n− 2qr < p
aq
q .

Theorem 5.3. If 2α is a prime power divisor of n and 2α satisfies

n− q > 2α > n− 2q2,

then n satisfies Condition 1 with 2 and q2.

Proof. The integer n has the factor 2α in its prime factorization, which means that
n/2 has the factor 2α−1. The base 2 representation of n has one more zero than
the base 2 representation of n/2, which means that by Lucas’ Theorem

(
n
n/2

)
is

congruent to 0 modulo 2α. By Lemma 5.2, n/2 is the only multiple of 2α in the
interval (q2, n/2]; hence the proof is complete.
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5.3 If n is even and pi is not 2

By Lemma 5.2 we only need to consider the central binomial coefficient
(
n
n/2

)
, be-

cause the only multiple of paii in the interval (q2, n/2] is n/2. We claim the following
proposition, using Legendre’s Theorem for its proof.

Proposition 5.4. The prime factor pi divides
(
n
n/2

)
if and only if at least one of

the fractions bn/pαc with α ≥ 1 is odd.

Proof. When we compare vpi(n!) and vpi((n/2)!) we see that, for each α,⌊
n

pα

⌋
= 2

⌊
n/2

pα

⌋
if bn/pαc is even. If bn/pαc is even for all α, we conclude that vpi(n!) = 2vpi((n/2)!),
and hence pi does not divide

(
n
n/2

)
. However, if bn/pαc is odd, then⌊
n

pα

⌋
= 2

⌊
n/2

pα

⌋
+ 1.

Therefore, vpi(n!) is greater than 2vpi((n/2)!).

Corollary 5.5. Let Spi(n) be the base pi representation of n. If n−Sp(n)

p−1 is odd then

pi divides
(
n
n/2

)
.

Corollary 5.5 is shown using Legendre’s formula.

Corollary 5.6. If any of the digits in the base pi representation of n/2 is larger
than bpi/2c, then the binomial coefficient

(
n
n/2

)
is divisible by pi.

Corollary 5.7. If one of the digits in the base pi representation of n is odd, then
the prime pi divides

(
n
n/2

)
.

Proof. The proofs of Corollaries 5.6 and 5.7 are similar. If a digit of n/2 is larger
than bpi/2c, when we add n/2 to itself in base pi to obtain n there at least one carry.
Similarly, if n has an odd digit in base pi, it means that there has been a carry when
adding n/2 and n/2 in base pi. By Kummer’s Theorem with k = n/2, if there is
at least one carry when adding n/2 to itself in base pi, then pi divides the binomial
coefficient

(
n
n/2

)
.

Corollary 5.8. If p

⌊
log(n)
log(pi)

⌋
i > n/2 and n − q > paii > n − 2q2, then pi divides

(
n
n/2

)
and therefore n satisfies Condition 1 with pi and q2.

Proof. The largest α such that pαi < n < pα+1
i is

⌊
log(n)
log(pi)

⌋
. Therefore, in Proposi-

tion 5.4, α is bounded by 1 ≤ α ≤
⌊

log(n)
log(pi)

⌋
. Also note that α ≥ ai, where ai is the

exponent of pi. If p

⌊
log(n)
log(pi)

⌋
i > n/2 then bn/pαi c = 1. Because this is odd, pi divides(

n
n/2

)
by Proposition 5.4.
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5.4 Some cases in which 2n implies n

In this section we denote by paiik and qk any prime power factor of k and the largest
prime smaller than k respectively. For integers that satisfy the inequality n − q >
paii > n−2q2, we observe three cases in which if 2n satisfies Condition 1 and pi2n 6= 2,
then n also satisfies Condition 1. Note that since pi is not 2, then pi2n = pin . Also,
q22n = qn. Therefore we claim:

Claim 5.9. If 2n satisfies the inequality 2n − 2q22n < 2n − q2n < p
ai2n
i2n

, then n
satisfies Condition 1 with pi and q.

Proof. We rewrite the inequality above as n − qn < 2(n − qn) < 2n − q2n < p
ain
in

.
Therefore, n − qn < p

ain
in

, and, by Theorem 4.2, n satisfies Condition 1 with the
primes pi and q.

Claim 5.10. If 2n satisfies the inequality 2n − q2n < 2n − q22n < p
ai2n
i2n

, then n
satisfies Condition 1 with pi and q.

Claim 5.11. If 2n satisfies the inequality 2n − 2q22n < p
ai2n
i2n

< 2n − q2n, then n
satisfies Condition 1 with pi and q.

The proofs of Claims 5.10 and 5.11 follow the same steps as the one of Claim 5.9.

6 Large multiples of n satisfying Condition 1 with

prime gap conjectures

In this section we always denote the tth prime as p̂t.

6.1 Cramér’s Conjecture

Conjecture 6.1. (Cramér [5]) There exist constants M and N such that if p̂t ≥ N
then p̂t+1 − p̂t ≤M(log p̂t)

2.

We claim the following:

Proposition 6.2. If Cramér’s conjecture is true, then for every positive integer n
and every prime p dividing n, the number npk satisfies Condition 1 for all sufficiently
large values of k.

Proof. LetM andN be the constants given by Cramér’s conjecture. Given a positive
integer n which is not a prime power and a prime divisor p of n, we write n = mpa

where p does not divide m, and compare M(log nx)2 with pax as x goes to infinity.
Using L’Hôpital’s rule, we find that

lim
x→∞

pax

M(log nx)2
= lim

x→∞

panx

2Mn log nx
= lim

x→∞

pax

2M log nx

= lim
x→∞

panx

2Mn
= lim

x→∞

pax

2M
=∞.
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Therefore, pax is bigger than M(log nx)2 when x is sufficiently large. Hence we can
choose any k large enough so that pa+k > M(log npk)2 and furthermore, if q denotes
the largest prime smaller than npk, then q ≥ N . Now, if r denotes the smallest prime
larger than npk, we infer that, if Cramér’s conjecture holds, then, since q ≥ N ,

npk − q ≤ r − q ≤M(log q)2.

Moreover
M(log q)2 < M(log npk)2 < pa+k.

Hence npk − q < pa+k and, since pa+k is the highest power of p dividing npk, Theo-
rem 3.4 implies that npk satisfies Condition 1.

Cramér’s conjecture also proves the following proposition:

Proposition 6.3. Let m denote the number of distinct prime factors of n. If
Cramér’s conjecture is true and n grows sufficiently large keeping m fixed, then
n satisfies Condition 1.

Proof. If n has m distinct prime factors, we define the average prime factor of n
as m
√
n because if n were formed by m equal prime factors each one would equal

m
√
n. It is true that m

√
n ≤ p

aj
j , where p

aj
j denotes the largest prime power divisor

of n. Hence we must see if M(log n)2 < m
√
n for large values of n. We apply again

L’Hôpital’s rule to compute the limit

lim
x→∞

m
√
nx

M(log nx)2

and we obtain that M(log n)2 < m
√
n holds when n is sufficiently large.

6.2 Oppermann’s Conjecture

A weaker conjecture on prime gaps by Oppermann states the following:

Conjecture 6.4. (Oppermann [12]) For some constant M , p̂t+1 − p̂t ≤M
√
p̂t.

Proposition 6.5. If Oppermann’s conjecture is true, then for every positive inte-
ger n and every prime p dividing n, the number npk satisfies Condition 1 for all
sufficiently large values of k.

Proof. The proof is similar to the proof of Proposition 6.2. We apply L’Hôpital’s
rule once to solve the indetermination in

lim
x→∞

pax

M
√
nx
,

where pa is the highest power of p dividing n. Since the ratio goes to infinity our
inequality is satisfied, and by choosing x = pk with k large enough the proof is
complete.
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6.3 Riemann’s Hypothesis

The following conjecture is a consequence of Riemann’s Hypothesis.

Conjecture 6.6. (Riemann [6]) For some constant M , p̂t+1 − p̂t ≤M(log p̂t)
√
p̂t.

This bound can be used to prove the following:

Proposition 6.7. If Riemann’s conjecture is true, then for every positive integer n
and every prime p dividing n, the number npk satisfies Condition 1 for all sufficiently
large values of k.

Proof. We apply again L’Hôpital’s rule to solve the indetermination in

lim
x→∞

pax

M(log nx)
√
nx

The limit goes to infinity and hence, by choosing x = pk with k large enough,
the proof is complete.

Due to the similarities of the inequalities, we skip the calculations of Propositions
6.5 and 6.7.

7 Using other primes to satisfy Condition 1

In Sections 3 and 5 we analyzed inequalities involving n− q and n− 2q2. In general,
for any positive integer d, we can study the function n− dqd, where qd refers to the
largest prime smaller than n/d (when writing q1 we omitted the subindex 1).

We consider the integers n that do not satisfy the inequality paii > n − 2q2.
Up to 1,000,000 there are only 88 integers that do not satisfy paii > n − 2q2. The
On-Line Encyclopedia of Integer Sequences (OEIS) has accepted our submission of
these numbers [3] with the reference A290290. Up to 1,000,000, there are 25 integers
that do not satisfy the inequality paii > n − 3q3; 7 integers that do not satisfy the
inequality paii > n− 4q4; 5 integers that do not satisfy the inequality paii > n− 5q5,
and only 1 integer that does not satisfy the inequality paii > n−6q6. Figure 1 shows
the number of integers up to 1,000,000 that do not satisfy the inequality paii > n−dqd
depending on d.

We also observe that the function n−dqd tends to 0 as d increases, which means
that it is likely that at some point the inequality is achieved. This is explained with
the properties of the function n/d, which behaves in the same way as the function
1/x except for the constant n. As d grows large, the difference between n/d and
n/(d + 1) grows smaller. Hence, the closest prime to n/d is the same one for all
the n/d that are close. Then, when d increases, pd decreases much more slowly, and
because it is multiplied by d, which grows linearly, dpd tends to n. Figure 2 shows
how n − dpd tends to 0 as d increases taking 330 as an example. All the points
correspond to values of d such that pd satisfies Condition 1 with another prime.
Note that if n− dpd is exactly zero then d is a divisor of n such that n/d is a prime.

Then there are two conditions that we use for pi and qd to satisfy Condition 1.

Condition 2. For any integer n to satisfy Condition 1 with pi and qd we require
that paii > n− dqd and n− dqd < qd.
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Figure 1: Number of integers up to 1,000,000 that do not satisfy the inequality
paii > n− dqd as a function of d.

Figure 2: Decrease of n− dpd for n = 330.

When k is larger than paii , we rely on the fact that k is larger than n − dqd
to justify that the binomial coefficient

(
n
k

)
is divisible by qd using Lucas’ Theorem

unless if k is a multiple of qd. However, if n− dqd were larger than qd, when writing
n in base qd the inequality paii > n− dqd would not hold.

Lemma 7.1. If n ≥ 30 and d < 5, then n− dqd < qd.

Proof. By Lemma 4.2, if n ≥ 25, 5n/6d < qd < n/d. Therefore, n/6 > n − dqd.
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Now we need to show that qd > n − dqd. It follows that n < qd + dqd and thus
n < qd(1 + d). Using Lemma 4.2,

n <
5n(d+ 1)

6d
< qd(1 + d).

Therefore, 6d < 5d+ 5 and we get that d < 5.

Lemma 7.2. If n ≥ 2,010,882 and d < 16,597, then n− dqd < qd.

The proof is the same one as the one for Lemma 7.1, except that by Lemma 4.3,
the initial inequality is 16,597n/16,598d < qd < n/d.

Corollary 7.3. The integer bd/2c qd is the largest multiple of qd smaller than or
equal to n/2.

Proof. We apply the definition of qd to obtain that n ≥ dqd. Assume, towards a
contradiction, that n > qd(d+1). By Lemmas 7.1 and 7.2, n−dqd < qd and therefore
n < qd(d+ 1). This contradicts the inequality n > qd(d+ 1).

7.1 The 3-variation of Condition 1

In Section 5 we proved that many integers that satisfy the inequalities

n− q > paii > n− 2q2

also satisfy Condition 1 with pi and q2. In this section we prove some cases in which
an integer n satisfies the 3-variation of Condition 1 (as stated in Definition 1.2 in
the Introduction).

Theorem 7.4. If an even integer n satisfies the inequality n − q > paii > n − 2q2
and pi 6= 2, then n satisfies the 3-variation of Condition 1 with pi, q2 and any prime
that divides

(
n
n/2

)
.

Proof. In Section 5.2 we show that if n satisfies the inequality n− q > paii > n− 2q2
and pi is not 2, the only binomial coefficient we could not prove that was divisible
by either pi or q2 is the central binomial coefficient. Thus, for such n to satisfy the
3-variation of Condition 1 it suffices to add an extra prime that divides the central
binomial coefficient.

7.1.1 Regarding the two highest prime powers of n

For any n, let q be the largest prime smaller than n, let pj be the prime factor of n
such that p

aj
j is the largest prime power of n, and let pr be the prime factor of n such

that parr is the second largest prime power divisor of n. We then claim the following:

Proposition 7.5. If p
aj
j p

ar
r > n/6, then n satisfies the 3-variation of Condition 1

with pj, pr and q.

12



Proof. By Lucas’ Theorem, for any k such that 1 ≤ k ≤ p
aj
j , the binomial coefficient(

n
k

)
is divisible by pj. For the same reason, by Lucas’ Theorem, for any k such that

n−q < k ≤ n/2 the binomial coefficient
(
n
k

)
is divisible by pj. Then we need a prime

that divides at least the binomial coefficients
(
n
k

)
with p

aj
j ≤ k ≤ n− q such that k

is a multiple of p
aj
j . Now take pr as the third prime such that n might satisfy the

3-variation of Condition 1 with pj, q and pr. For the same reasoning, in this interval
we only consider the k that are multiples of parr . The only k such that the binomial
coefficient

(
n
k

)
is not divisible by either pj of pr are those k that are multiples of both

p
aj
j and parr . The least k that is multiple of both prime powers is p

aj
j p

ar
r . By Lemma

4.2 we know that n− q < n/6. Therefore, if p
aj
j p

ar
r > n/6, this integer is larger than

n− q and hence it is not part of the interval that we are considering. Thus, all the
k lying in the interval p

aj
j ≤ k ≤ n− q are such that the binomial coefficient

(
n
k

)
is

divisible by either pj or pr.

Moreover, using the bounds described in Lemma 4.2, we use the primes pj, q
and qd for n to satisfy the 3-variation of Condition 1.

Proposition 7.6. Let qd be the largest prime smaller than n/d. If qd > n/6, then
n satisfies the 3-variation of Condition 1 with pj, q and qd.

Proof. The prime q fails to divide
(
n
k

)
only if 1 ≤ k ≤ n − q. Similarly, by Lucas’

Theorem, the prime qd fails to divide
(
n
k

)
only if cqd ≤ k ≤ cqd+(n−dqd), where cqd

refers to any positive multiple of qd. This is because n− dqd is the last digit of the
base qd representation of n. But because by assumption qd > n − pj, the intervals
[1, n− q] and [cqd, cqd + (n− dqd)] are disjoint.

8 Bounds on the number of primes needed to

satisfy the N -variation of Condition 1

For each positive integer n, we are interested in the minimum number N of primes
such that n satisfies the N -variation of Condition 1. In this section we provide four
upper bounds for N . Because in all four bounds N is a function of n, the suitability
of each bound depends on n; some bounds may be better for certain values of n.

8.1 First upper bound with prime factors of n

Claim 8.1. If n has m different prime factors, then these prime factors satisfy the
m-variation of Condition 1.

Proof. The proof is similar to the one described when n is a product of two prime
powers. The smallest integer divisible by all the m prime powers of n is n. The base
p representation of all k < n has less zeroes than the base p representation of n for
at least one prime factor p of n. Using Lucas’ Theorem, Claim 8.1 is proven.

13



8.2 Second upper bound with d

Proposition 8.2. Let qd be the largest prime smaller than n/d and let paii be any
prime power divisor of n such that paii > n − dqd. If paii > qd + n − dqd, then n
satisfies the N-variation of Condition 1 with N = 2 + bd/2c.

For the subsequent proofs we use the following definition:

Definition 8.3. Let cqd be any multiple of qd and let β be n − dqd. We call the
interval [cqd, cqd + β] a dangerous interval.

Note that for every time that paii falls into a dangerous interval we need to add
an extra prime.

Proof. By Lucas’ Theorem all the binomial coefficients
(
n
k

)
are divisible by qd except

if k lies in a dangerous interval. In these dangerous intervals we only consider the
integers that are multiples of paii because if k is not a multiple of paii , then by Lucas’
Theorem the binomial coefficient

(
n
k

)
is divisible by pi. Because paii > β we know

that in any dangerous interval there is at most one multiple of paii . This means
that the worst case is the one in which there is a multiple of paii in every dangerous
interval until c ≤ bd/2c. Thus we need at most one extra prime each time that there
is a multiple of paii in a dangerous interval.

Claim 8.4. If d < 5 and paii > qd + β, then n satisfies Condition 1 with qd and pi.

Proof. If d < 5, then bd/2c equals either 1 or 2. If it equals one, then by assumption
paii > qd + β, which means that no multiple of paii falls in any dangerous interval
until n/2. If d equals 2, then we need to check that 2paii > 2qd +β. This means that
we want to see that the next multiple of paii does not fall into the second dangerous
interval. The minimum value of paii such that our assumption paii > qd + β holds is
qd + β + 1. The next multiple of qd + β + 1 is 2qd + 2β + 2. This last expression is
greater than 2qd + β, which means that 2paii does not fall into the second dangerous
interval.

8.3 Third upper bound

In this subsection we consider the generalization of the cases that have been discussed
so far. Let d be a natural number and let qd be the largest prime number smaller or
equal to n/d. Let β denote n− dqd, let paii be any prime power divisor of n, and let
γ = paii − cqd. In Sections 8.3 and 8.4 we do not consider the cases in which qd = pi
because the proofs hold by taking any other prime factor of n that is not pi.

Theorem 8.5. For all c ≥ 0, n satisfies the N-variation of Condition 1 with

N = 2 +

⌊
kγqd − (c− 1)

γqd

⌋
β,

where k =

⌊
d

2qdγ

⌋
.

14



Proof. We first consider the case in which paii = qd + γ and γ ≤ β. This means
that paii falls in the first dangerous interval. Any subsequent multiple of paii is of the
form rpaii = rqd + rγ. Note that we only need to analyze rγ because this is what
determines if paii falls in a dangerous interval.

Lemma 8.6. The prime power divisor paii falls into a dangerous interval if and only
if rγ (mod qd) ≤ β.

The proof of Lemma 8.6 comes from the definition of a dangerous interval (see
Definition 8.3). Now consider all the possible values of rγ modulo qd from γ until
γqd. Note the following:

Remark 8.7. The numbers γ and qd are always coprime.

For the proof of the remark it suffices to see that qd is a prime number. This
means that all the numbers from 1 to qd − 1 appear exactly once in the interval
[γ, γqd). Therefore, by Lemma 8.6 the number of integers that fall into a dangerous
interval are those such that rγ (mod qd) ≤ β. By Remark 8.7 we know there are
only β such integers in the interval [γ, γqd). Thus, if γqd > d/2, we only need 2 + β
primes. We add 2 to β because we also need to count qd and pi. Note that this is
an upper bound and therefore in some cases several of the primes that we use for
the dangerous intervals are repeated.

Now we consider the general case in which paii = cqd + γ. We need to count the
multiples of γqd from cqd until kγqd (k has the same definition as in Theorem 7.1).
This gives us the bound stated in Theorem 8.5.

Note that, in Theorem 8.5, γ cannot be 0 because otherwise by definition pi
would be equal to qd. This is a case that we are not considering (see the beginning
of Section 8.3).

8.4 Fourth upper bound with Diophantine equations

We consider the Diophantine equation paii k1−qdα = δ, where 0 ≤ δ ≤ β. Let x = k1
and let y = α. The general solutions of these Diophantine equation depending on
the particular solutions x1 and y1 are well-known:

x = x1 − rqd
y = y1 + rpaii

Let ŷ(δ) denote the largest y ≤ bd/2c depending on δ. Note that for all y1(δ) we
can add or subtract a certain number of paii until we reach ŷ(δ).

Theorem 8.8. All integers n satisfy the N-variation of Condition 1 with

N = 2 +

β∑
δ=0

⌊
ŷ(δ)

paii

⌋
≤ 2 + (β + 1)

⌊
d

2paii

⌋
.

Proof. Note that the solutions of the Diophantine equation correspond to all the
cases in which a multiple of paii falls in some dangerous interval. It is known that a
Diophantine equation ax+by = c has infinitely many solutions if gcd(a, b) divides c.
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Therefore, for all δ such that 0 ≤ δ ≤ β there exists a particular solution y1(δ) for
y in Equation 6 because gcd(paii , qd) = 1 (recall that we do not consider the case
in which pi = qd). Thus, for each ŷ(δ) we count the number of multiples of paii in
the interval [1, ŷ(δ)]. This is the number of times that paii falls into a dangerous
interval and hence we need to add an extra prime. We also add 2 to count pd and pi.
Moreover, note that by definition ŷ(δ) ≤ bd/2c. This gives us the expression stated
in Theorem 8.8.

9 Computational results

In order to obtain more information about which primes make n satisfy Condition 1
we wrote some C++ programs. The results are presented in this section.

9.1 When we fix a prime

In the original article of Shareshian and Woodroofe [13], the authors computed the
percentage of integers below 1,000,000 that satisfy Condition 1 if p1 is fixed to be 2,
and they found a percentage of 86.7%. We compute the percentage of integers until
10,000 that satisfy Condition 1 fixing one prime to be not only 2 but also 3, 5,
7 and 11. Table 2 shows the number of integers below 10,000 that do not satisfy
Condition 1 fixing one prime to be 2, 3, 5, 7 and 11 respectively. It also shows the
percentage of integers satisfying Condition 1 fixing each prime. Figure 3 shows the
percentage of integers until 10,000 that satisfy Condition 1 depending on the fixed
prime.

Fixed prime 2 3 5 7 11
Number of integers not satisfying 1 1144 1633 2626 3259 4180
Percentage of integers satisfying 1 88.56% 83.67% 73.74% 67.41% 58.20%

Table 2: Number of integers that do not satisfy Condition 1 and percentage of
integers that do satisfy Condition 1 fixing one prime until 10,000.

9.2 How many pairs of primes satisfy Condition 1

Given a positive integer n, multiple pairs of primes p1 and p2 can satisfy Condi-
tion 1. We have found computationally all the possible pairs of primes that satisfy
Condition 1 with a given n ≤ 3,000. This findings helped us conjecture and then
prove Theorem 3.4. Figure 4 shows the data for n up to 3,000. We note four main
tendencies. The one with the greatest slope corresponds to the one formed with
prime numbers and prime powers. This is explained by Proposition 3.1. Because
only one prime is needed to satisfy the 1-variation of Condition 1 if n is a prime
power, the other prime can be any prime smaller than n. Thus, this first tendency
follows the function f(n) = n/ log n disregarding the prime powers [7]. The second
greatest slope is formed with even numbers that satisfy Condition 1 with one prime
being 2. The third one is formed by numbers that satisfy Condition 1 with one
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Figure 3: Percentage of integers until 10,000 that satisfy Condition 1 fixing one
prime to be 2, 3, 5, 7 and 11 respectively.

prime being 3 and the following one with numbers that satisfy Condition 1 with one
prime being 5.

Figure 4: Number of pairs of primes that satisfy Condition 1 depending on the
integer n until 3,000.

In order to fit a function for each curve, we approximated the function n/ log n
for each branch using Matlab, and we obtained the following functions:
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First branch:
0.97n0.96

(log n)0.75
Second branch:

0.80n0.96

(log n)0.84

Third branch:
3.30n1.14

(log n)2.27
Fourth branch:

35.48n1.47

(log n)4.81

Figure 5 shows a plot of each separate branch with its corresponding curve.

Figure 5: The four branches of Figure 4 separated and fitted with a curve.

10 Multinomials

We also consider a generalization of Condition 1 to multinomials. We investigate
the following condition that some integer n might satisfy:

Condition 3. For a given fixed integer m there exist primes p1 and p2 such that
whenever k1 + · · · + km = n for 1 ≤ ki ≤ n− 1,

(
n

k1,k2,...,km

)
is divisible by either p1

or p2.

A very natural question follows:

Question 10.1. Does Condition 3 hold for all positive integers n?

Here we show that Condition 1 implies Condition 3. We claim the following:

Proposition 10.2. If n satisfies Condition 1 with p1 and p2, then n also satisfies
Condition 3 with these two primes and any m ≤ n.

Proof. We assume that p1 and p2 satisfy Condition 1 for a given n. We then take
the multinomial (

n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!
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with the same n and any m ≤ n. We see that we can decompose the multinomial
into a product of m binomials:

n!

k1!k2! · · · km!
=
n(n− 1) · · · (n− k1 + 1)

k1!
.

(n− k1)(n− k1 − 1) · · · (n− k1 − k2 + 1)

k2!
· · · (km−1 + km)(km−1 + km − 1) · · · 1

(km−1!km!

=

(
n

k1

)(
n− k1 − 1

k2

)
· · ·
(
km−1 + km

km

)
.

Because by assumption
(
m
k1

)
is divisible by either p1 or p2, the previous multino-

mial coefficient is also divisible by at least one of them. This decomposition can be
used for any m and the first binomial coefficient can be

(
n
ki

)
, ki being any of the k

in the denominator.

Therefore, if Condition 1 is proven for binomial coefficients, then it automatically
holds for multinomial coefficients.

11 Conclusions

In this paper we have obtained results that significantly contribute to the unsolved
conjecture that motivated our research (see Condition 1 in the Introduction), which
was proposed in a recent article by Shareshian and Woodroofe [13]. After having
obtained all these research results, we have analyzed how much we have contributed
to the open problem addressed in this paper. Up to 1,000,000, there are less than
50 numbers that do not fit into any of the cases that we have solved. We consider
this to be a very substantial outcome. Moreover, our proofs concerning prime gap
conjectures potentially have stronger implications, as we believe that we are very
close to proving that all integers larger than a fixed constant satisfy Condition 1.
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12 Appendix

12.1 Sequences of integers that do not satisfy the
inequality for n − dpd

In Section 7 we mentioned that the set of integers that do not satisfy the inequality
for n− dpd becomes smaller when d increases. In this appendix we display the first
terms of the sequence of integers that do not satisfy the inequality n − dpd < paii
when d equals 1, 2, 3, 4 and 5. The On-Line Encyclopedia of Integer Sequences
has published our sequence in the cases when d equals 1 (see A290203) and when d
equals 2 (see A290290).

When d = 1: 126, 210, 330, 630, 1144, 1360, 2520, 2574, 2992, 3432, 3960, 4199,
4620, 5544, 5610, 5775, 5980, 6006, 6930, 7280, 8008, 8415, 9576, 10005, 10032,
12870, 12880, 13090, 14280, 14586, 15708, 15725, 16182, 17290, 18480, 18837, 19635,
19656, 20475, 20592, 22610, 24310, 25296, 25300, 25520, 25840, 27170, 27720, 27846,
28272, 28275, 29716, 30628, 31416, 31450, 31464, 31465, 32292, 34086, 34100, 34580,
35568, 35650, 35670, 35728, 36036, 36432, 37944, 37950.

When d = 2: 3432, 5980, 12870, 12880, 13090, 14280, 14586, 20475, 28272,
28275, 31416, 31450, 34580, 35650, 39270, 45045, 45220, 72072, 76076, 96135, 97812,
106080, 106590, 120120, 121992, 125580, 132804, 139230, 173420, 181350, 185640,
191400, 195624, 202275, 203112, 215050, 216315, 222768, 232254, 240240, 266475,
271320, 291720, 293930, 336490, 338086, 350064, 351120, 358150, 371280, 388455,
408595, 421600, 430236, 447051, 447304, 471240, 480624.

When d = 3: 3432, 31416, 34580, 35650, 39270, 96135, 121992, 125580, 139230,
215050, 222768, 291720, 358150, 388455, 471240, 513590, 516120, 542640, 569296,
638001, 720720, 813960, 875160, 891480, 969969, 1046175, 1113840, 1153680, 1227600,
1343160, 1448655, 1557192, 1575860, 1745424, 1908816.

12.2 C++ code for finding all the possible pairs

Here we provide the C++ code that we used to find all the possible pairs of primes
that satisfy Condition 1 for each integer. This code has been used to plot Figure 4.

The code for the data on how many integers satisfy Condition 1 if we fix one
prime is quite similar and is therefore not included.
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[1] J. Bertrand. Mémoire sur le nombre de valeurs que peut prendre une fonc-
tion quand on y permute les lettres qu’elle renferme. Journal de l’École Royale
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