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Abstract

The Schnirelmann density of a set X of non-negative integers containing 0 is defined as
d(X) = inf

n≥1
X(n)
n

. Mann’s theorem states that for sets A,B of non-negative integers, we have

d(A+B) ≥ d(A)+d(B). We consider a modified density that accounts for the global average

density dlim(X) = lim
n→∞

inf
m≥n

X(m)
m

and establish an analogue to Mann’s Theorem which holds

for this modified density: dlim(A + B) ≥ max{dlim(A), dlim(B)} + min{dlim(A),dlim(B)}
2

. We also
show that this bound is sharp.

Summary

The focus of this paper is on properties of infinite sets of integers and in particular on
how dense they are: the proportion of natural numbers that belong in the set. Schnirelmann
offered a formula that gives a quantitative measure of density, much like how temperature
is a measure of how hot or cold something is. A remarkable property is that when we sum
multiple sets together, the density of the sumset is basically given by the sum of the density
of each constituent set. However, as it turns out, the Schnirelmann density was susceptible
to local fluctuations and may not capture the “big picture” density of an infinite sequence.
Thus, we adjusted his definition to capture the global picture. We may then ask: can we find
tight bounds on the density of sumsets for the asymptotic density? This is the focus of the
paper. We solved this problem for sets having positive asymptotic density. A second question
we answered is: what happens when one of our constituent sets is extremely sparse? It turns
out that should these sets satisfy certain properties, the sumset constructed from it results
in a set of large density – an almost magical result!



1 Introduction

Historically, the birth of additive combinatorics was from examination of classical number

theoretic problems through a more combinatorial lens. In the last fifty years, the field of

additive combinatorics has blossomed. This is because it has become increasingly clear that

it is extremely effective to use combinatorial methods to attack often deep number theory

and asymptotic group theory results. In classical number theory it is often the case that one

begins with a set of integers – very often the set of primes – and tries to understand how

other integers can be written as a sum of elements of the aforementioned set. However, we do

the opposite in additive combinatorics: we provide an assumption on the additive properties

of a set and then attempt to understand the structure of such sets.

The turning point in the history of additive combinatorics is Schnirelmann’s [1] approach

to Goldbach’s conjecture. Goldbach conjectured that any integer greater than 3 can be

expressed as the sum of at most three primes. Schnirelmann managed to show a weaker result

that every integer greater than 1 is a sum of a bounded finite number of primes. In more

technical terms, he essentially demonstrated that the set of primes form an additive basis for

the natural numbers. To this end he broke the problem into two steps: first he demonstrated

that sets of integers with positive density form a basis, and then he showed that the integers

which can be written as a sum of two primes have positive density. Schnirelmann’s work

on the weaker Goldbach problem rekindled the interest of the community in the additive

properties of sumsets of integers.

We define the sumset of A,B ⊆ N by A + B = {n ∈ N | n = a+ b, a ∈ A, b ∈ b}. Define

X(n) = |X ∩ [1, n]| for a set of non-negative integers X. Schnirelmann’s lemma states that

for d(X) = inf
n≥1

X(n)
n

,

d(A+B) ≥ d(A) + d(B)− d(A)d(B) (1)

which gives a relationship between the density of the sumset and the densities of its compo-
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nents.

The following year, L.G. Schnirelmann and L.D. Landau [5] conjectured that the inequal-

ity can be strengthened to a much more elegant form

d(A+B) ≥ d(A) + d(B), (2)

provided that d(A) + d(B) ≤ 1. Notice that by induction, Inequality (2) can be generalized

to an arbitrary number of summands: if
n∑
j=1

d(Xj) ≤ 1, then d

(
n∑
j=1

Xj

)
≥

n∑
j=1

d(Xj).

The simplicity and elegance of this problem attracted the attention of many scholars.

The biggest breakthrough came through A.Y. Khinchin [2] who established the inequality

in the case d(A) = d(B) . Many fruitless attempts to generalise this special case followed.

Eventually in 1942, this problem was finally fully resolved by H.B. Mann [3], whose proof

builds upon the work of A.Y. Khinchin to prove Inequality (2), which then became known

as Mann’s Theorem. The following year in 1943, Artin and Scherk [4] found a different proof

of Mann’s Theorem that highlighted the structural properties of densities.

The Schnirelmann density has a strange property. Let X = N\{2, · · · , n} for some finite

value n. Intuitively, X contains almost all the natural numbers and should therefore be

dense. However, by definition we compute d(X) = 1
n
. We therefore define a new density that

is not susceptible to such local fluctuations. In this paper we consider density from a global

viewpoint by taking the limit to obtain a new density function dlim(X) = lim
n→∞

inf
m≥n

X(m)
m

.

The focus of this paper is to identify properties of dlim in the hopes of stimulating further

research into similarly defined densities.

Unless otherwise mentioned, all sets consists infinitely many non-negative integers and

the element 0. In Section 2, we begin by establishing the neccessary conditions for certain

special sequences to satisfy the equality case in Mann’s Theorem. In Section 3.1, we work on

understanding how Mann’s Theorem should be modified through a series of special sequences.
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In section 3.2 we prove a sharp bound for our modified density and explore the surprising

claim that for arbitrary sets A with dlim(A) > 0 and certain sets X such that dlim(X) = 0,

dlim(A+X) > dlim(A).

2 Equality in Mann’s Theorem

We begin by defining our notation. Notice that for an infinite set of integers A, A(n)
n

can

be thought of as an average gauge of the local density of the sequence in the interval [1, n].

For the whole sequence, recall that the Schnirelmann density is defined as

d(A) = inf
n≥1

A(n)

n
.

We consider sets of non-negative integers X such that d(X) > 0. In particular, by defini-

tion of the Schnirelmann density, this assumption mandates that 1 ∈ X. Szeméredi’s Theo-

rem states that in any sequence with positive upper density – defined for a set of non-negative

integers X as dupper(X) = lim sup X(m)
m

– there exists an infinite arithmetic progression. In

the case of dlim, observe that if A = B = {0, 1} ∪ {iq}∞i=0 then d(A + B) = d(A) + d(B).

Indeed, it is immediate to see that d(A) = d(B) = 1
q

while A+B consists of elements ≡ 0, 1

(mod q) and as such d(A + B) = 2
q

= d(A) + d(B). Therefore, we explore if translations on

arithmetic progressions would still satisfy the equality case in Mann’s Theorem.

Proposition 1. Suppose A = {0, 1, a+x, 2a+x, 3a+x, . . .} and B = {0, 1, b+y, 2b+y, 3b+

y, . . .} are such that d(A+B) = d(A) + d(B) where x, y ∈ Z+. Then a = b and x = y.

Proof. The proof is fairly elementary, and due to space constraints can be found in Appendix

A.

However, if we instead consider arithmetic progressions given by consecutive integers,

then we restrict our sets to be a union of intervals.
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Definition 1. A draco sequence of size α is of the form A =
∞⋃
i=0

[
ii + 1, ii + xi+1 −

xi
]

where xi = dαiie.

Claim 1. If A is a draco sequence of size α and B is a draco sequence of size β, then

d(A+B) = d(A) + d(B).

Proof. Let A+B = C. We prove Claim 1 in two steps. First, we establish that d(A+B) =

α + β. Second, we show that d(A) = α and d(B) = β.

1. For an element c ∈ C ∩ [1, nn], decompose it as c = a + b for some a ∈ A and

b ∈ B. Because A is composed of intervals of the form [ii + 1, ii + xi+1 − xi], then

we have a ≤ (n − 1)n−1 + xn − xn−1. Similarly, b ≤ (n − 1)n−1 + yn − yn−1. Thus

c ≤ 2(n− 1)n−1 + (xn + yn)− (xn−1 + yn−1) ≤ 2(n− 1)n−1 + (xn + yn). This gives

d(C) ≤ C(nn)

nn
=

2(n− 1)n−1 + xn + yn
nn

.

As n→∞, 2(n−1)n−1+xn+yn
nn → α + β. Thus,

d(C) ≤ α + β. (3)

2. Next, let us verify that the densities of A,B as constructed are respectively α, β. By

assumption x1 = 1 so we have

d(A) ≤ A(nn)

nn
=

n−1∑
i=0

(xi+1 − xi)

nn
=
xn
nn
.

As n→∞, we have that

d(A) ≤ α.
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By the consecutive interval construction, for any n we derive a lower bound as follows:

A(n)

n
≥ A(ii)

ii
≥ α, (4)

where ii is the smallest number of its form larger than n. By taking n to be sufficiently large,

it follows that d(A) = α. Analogously, we derive d(B) = β. Combining Equation (4) with

Equation (3) gives us the desired claim.

We also notice an interesting relation to dlim in the draco sequence construction.

Remark 1. If A and B are draco sequences, dlim(A+B) = d(A+B) , dlim(A) = d(A) and

dlim(B) = d(B). In other words, we have dlim(A+B) = dlim(A) +dlim(B) which draws a nice

parallel to d(A+B) = d(A) + d(B).

3 On Asymptotic Schnirelmann Density

3.1 Preliminaries

We notice that by Remark 1, because the draco construction gives us sets A,B such that

dlim(A + B) = dlim(A) + dlim(B), it is natural to ask whether Mann’s Theorem is still valid

for dlim. It turns out that the answer to the previous statement is negative.

Definition 2. A n-bly AP(a) sequence is given by {0, 1} ∪
{
n−1⋃
i=0

{ka+ i}∞k=1

}
.

Claim 2. There exists sets A,B such that dlim(A+B) < dlim(A) + dlim(B).

Proof. We construct A = B to be two identical 2-bly AP(a) sequences. Then A + B =

{0, 1, 2} ∪ {ka}∞k=1 ∪ {ka+ 1}∞k=1 ∪ {ka+ 2}∞k=1. It follows that dlim(A) = dlim(B) = 2
a

and

dlim(A+B) = 3
a

and 2
a

+ 2
a
> 3

a
.
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As such, it is natural to guess that perhaps the weaker form of Mann’s Theorem in the

form of Schnirelmann’s Lemma given by Inequality (1) is true. However, we demonstrate

that this is not the case; Schnirelmann’s Lemma does not hold for dlim.

Claim 3. There exists sets A,B such that dlim(A+B) < dlim(A) +dlim(B)−dlim(A)dlim(B).

Proof. We construct A = B to be two identical 2-bly AP(a). Notice that as a→∞, 2
a
× 2

a
→

0. Thus, by taking sufficiently large a,

3

a
<

2

a
+

2

a
− 2

a
× 2

a
.

Thus, we explore the question: to what extent is the asymptotic density of a sumset de-

pendent on its summands? In particular, can we find the sharpest bound for this correlation?

3.2 Sharp Mann-like bounds for dlim

We find an analogue for Mann’s Theorem in the case of dlim. One unique property of

dlim is that it is invariant under finite translations. As such, we can utilize translations to

transform our sets A,B to some sets whose Schnirelmann densities approximate respectively

dlim(A), dlim(B).

Without loss of generality, we assume that dlim(A) ≥ dlim(B). In addition, we also assume

that 1 ∈ A,B and dlim(A), dlim(B) > 0.

Theorem 1. For any sets, A,B ⊂ N,

dlim(A+B)


≥ dlim(A) + dlim(B)

2
if 0 < dlim(A) + dlim(B) ≤ 1

= 1, otherwise.
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The following three lemmas will facilitate our proof of Theorem 2.

Lemma 1. If A(n) +B(n) > n− 1, then n ∈ A+B.

Proof. This lemma holds by the pigeonhole principle. A full proof is provided in Appendix

B.

Lemma 2. For any X ⊂ N, dlim(X) ≥ d(X).

Lemma 3. For any positive integer c, dlim(X + c) = dlim(X).

Proof. The proofs of Lemmas 2 and 3 are fairly elementary, and due to space constraints

can also be found in Appendix B.

For sake of clarity, we recall the statement of Mann’s Theorem

Theorem (Mann’s Theorem). For any sets A,B ⊆ N,

d(A+B) ≥ min{1, d(A) + d(B)}.

Now we prove Theorem 1.

Proof of Theorem 1. Let dlim(A) = α, dlim(B) = β and A+B = C.

Case 1: By Lemma 1 we can show that dlim(A+B) = 1 when dlim(A)+dlim(B) > 1. Suppose

α+β = 1+η where η is some positive constant. Write η = η1+η2 with η1, η2 ∈ R+. Note

that there exists a constant cA such that for all x ≥ cA, A(x)
x
≥ α − η1. Analogously,

there exists cB such that for all y ≥ cB, B(y)
y
≥ β − η2. Let c = max {cA, cB}. Then for

any z > c, A(z)+B(z) ≥ (α+β−η1−η2)z = z > z−1 so by Lemma 1, z ∈ A+B. That

means A+B contains all sufficiently large integers. This implies that dlim(A+B) = 1.

Case 2: Now we assume dlim(A) + dlim(B) ≤ 1. In particular, α, β < 1. For any sufficiently

small positive constant ε, note the following properties of the set A of x such that

A(x) ≤ x(α− ε):
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– A is of positive cardinality. Indeed, 0 ∈ A as A(0) ≤ 0(α− ε).

– A is of finite cardinality. Notice that there exists a finite constant K(ε) such that

for all x > K(ε), A(x)
x

> α− ε. As such, it follows that all the elements in A can

only be integers from the interval [1, K(ε)] which demonstrates that it is a finite

set.

In particular, this allows us to take k to be the largest element of A. By the maximality

of k, it follows that k+1 ∈ A; otherwise, A(k+1)
k+1

= A(k)
k+1

< A(k)
k
≤ α−ε giving k+1 ∈ A,

contradicting the maximality of k.

Define the set A′ = {{A − k} ∩ N} t {0}. In particular, since k + 1 ∈ A, 1 ∈ A′.

When computing the Schnirelmann density of A′, notice that d(A′) = inf
n

|A∩[k+1,n+k]|
n

=

inf
n

A(n+k)−A(k)
n

≥ α − ε. Intuitively we constructed the set A′ to approximate dlim(A)

and since k might not be an element of A, we append 0 if neccessary to the set A

to apply Mann’s Theorem. Analogously, there exists a positive integer ` such that

by doing a similar operation on B we get a set B′ such that d(B′) > α − ε. Since

α + β ≤ 1 by assumption, we can apply Mann’s Theorem to A′ and B′ to obtain

d(A′ +B′) ≥ d(A′) + d(B′) ≥ (α + β)− 2ε.

By Lemma 2, dlim(A′+B′) ≥ d(A′+B′). We also have by Lemma 3 that C ′ = A′+B′+

k+`+1 is such that dlim(C ′) = dlim(A′+B′). Thus, dlim(C ′) ≥ d(A′+B′) ≥ (α+β)−2ε.

However, we can observe that A′+B′ consists elements of the form {ai−k}ai>k∪{bj−

`}bj>` ∪{ai + bj − k− `}ai>k,bj>` ∪{0}. As such, A′+B′+ (k+ `+ 1) consists elements

of the form {ai + `+ 1}ai>k ∪ {bj + k + 1}bj>` ∪ {ai + bj + 1}ai>k,bj>` t {k + `+ 1}.

Since k+ 1 ∈ A and `+ 1 ∈ B by prior arguments, it follows that ai + (`+ 1) ∈ C and

bj + k + 1 ∈ C. This demonstrates that

{A′ +B′ + (k + `+ 1)}\{k + `+ 1} ⊂ {C ∪ (C + 1)}.
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Denote by P = {ai + bj + 1 | ai + bj + 1 /∈ C} = C\C ′. Fix x to be a sufficiently large

integer. We can derive the lower bound of C(x)
x

from C ′ – since dlim(C ′) can be lower

bounded – in the following two ways.

In order to better visualise the counting technique, we represent the sets in a Venn

Diagram. In the diagram, we are only looking at the elements of the sets that fall in

the interval [1, n] for sufficiently large n. This is a summary and proof sketch in tandem

with the visual representation in Figure 1:

Figure 1: Venn Diagram representing the relationship between the sets in consideration. Here
Q = C ′ ∩ C and P ′ is the image of a map (described later) on P .

1. We construct sets A′, B′ to be such that d(A′), d(B′) are good approximations

of dlim(A), dlim(B) up to some small factor ε. From which, we construct the set

C ′ = {A′+B′+ (k+ `+ 1)} which we can find a lower bound d(C ′) = α+β− 2ε.
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We would like to use this bound on d(C ′) to estimate dlim(C). Now decompose C ′

into P and Q as shown in Figure 1.

2. On one hand, we consider the set Q that is C ∩ C ′ as a lower bound for C.

3. On the other hand, consider the mapping from C + 1 to C which send P to P ′

(the bijection is represented by the arrow). P ′ turns out to be disjoint from A,

and thus we can bound C from below by P ′ t A.

We also make the following remark that k + ` + 1 is the only potential element of C ′

that is disjoint from A′ and B′.

– As seen in Figure 1, on one hand, we can bound C by C ∩ C ′ = C ′\{{C\C ′} t

{k + `+ 1}} = C ′\{P t {k + `+ 1}}. Thus,

C(x)

x
≥ C ′(x)− P (x)− 1

x
. (5)

– There exists a bijection from C+1 to C. Let P map to P ′ in this bijection. Notice

that since all elements ai+bj+1 of P are not in C, this means ai+bj /∈ A as 1 ∈ B.

Thus, P ′ is disjoint from A. This allows us to estimate C(x) as P ′(x)+A(x). Thus,

C(x)

x
≥ A(x) + P ′(x)

x
≥ A(x) + P (x)− 1

x
. (6)

Summing Equations (5) and (6), we get

2
C(x)

x
≥ C ′(x)

x
+
A(x)

x
− 2

x
. (7)

Taking the lim inf in Equation 7 gives

dlim(C) ≥ α +
β

2
− ε
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which proves the theorem as we can take ε to be arbitrarily small.

Remark 2. It is fruitful to remark that this bound is sharp. Indeed, let A be a 3-bly AP(a)

sequence and B be a 2-bly AP(a) sequence. So C is a 4-bly AP(a) sequence. Now, dlim(A) = 3
a
,

dlim(B) = 2
a

and dlim(A+B) = 4
a

= 3
a

+ 1
2
· 2
a
.

Remark 3. One might be tempted to believe that Artin and Scherk’s proof generalizes. But

as we have seen in Section 3.1, in fact we cannot claim that an exact equivalent Mann-like

bound to d holds in the case of dlim. In their proof, Artin and Scherk repeatedly used the

fact that for any y, A(y)
y
≥ d(A). Thus, the reason why their proof cannot be replicated for

dlim is because at a particular finite instance, inf
1≤x≤k

X(k)
k

> lim
n→∞

inf
m≥n

X(m)
m

which renders most

discrete arguments fruitless.

On the other hand, Theorem 1 does not tell us anything about the density of sumsets

A + B when the density of one of the summands is 0. In this case, consider the set Q of

square integers. Indeed, dlim(Q) = lim
n→∞

inf
m≥n

1√
m

= 0. Since 0 ∈ Q, for any set A, it is evident

that A + Q ⊃ A which gives dlim(A + Q) ≥ dlim(A). However, by utilizing Lagrange’s Four

Squares Theorem, we are able to obtain a more non-trivial bound.

Proposition 2. For A ⊂ N and Q = {n2}∞n=0

dlim(A+Q) ≥
(

1 +
dlim(A)(1− dlim(A))

8

)
dlim(A) (8)

In what follows, let C = A+Q and dlim(A) = α.

Let q ∈ Q. A method for estimating the density of C is to study how the set {A+ q}\A

behaves. Intuitively, because C contains A ∪ {A + q} = A t {{A + q}\A}, we are able to

form a lower bound on the density of C. Define a sequence of holes {hi} where hi is the

ith smallest positive integer not in A. Let the set of holes be denoted H. This gives us the
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notation to formalise our intuition of maximizing |{A+ q}\A|. Let a hole hi be covered by a

translate of q if there exists some a ∈ A such that a+ q = hi.

As a precursor to the proof, we study some properties of such translations. We begin

with an overview of what we establish about covering holes.

Find x∗ so that a large proportion of holes is covered by x∗.

Write x∗ as a sum of elements of Q, say {qωi
}∞i=1

Average over all qωi
so that a large proportion of holes is covered by qωi

Figure 2: A general roadmap for demonstrating that |{A+ q}\A| is large.

To get a good measure for the proportion of holes that can be covered by a translate, we

need one additional variable: δc =
∑

hi∈{H∩[1,c]}
(hi − i).

Lemma 4. There exists some x ∈ [1, c] such that at least δc
c

holes in the interval [1, c] are

covered by a translate of x.

Proof. When we examine elements in A of the form hj − x, notice that when we take x = j,

there are hj−j elements of A in the interval [1, hj] as there are exactly j holes in this interval.

For an example, refer to Figure 3.

Figure 3: The set represented in this case is given by the black dots; only these natural
numbers belong to the set. The grey dots on the number-line represents the holes in the
interval [1, c] = [1, 15]. In this case, h1 = 4, h2 = 8, h3 = 11, h4 = 13. The only elements of
A which are coloured in black that can satisfy a + x = hi for i = 1, 2, 3, 4 are those in the
interval [1, 13] and there are 9 = 13− 4 = h4 − 4 of them.
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In particular, this allows us to count the number of solutions W to a = hj − x in

two different ways: first, we count by a. Suppose that for each x there are θx values of

a ∈ A such that hj − x = a. On one hand, W is given by
c∑
i=1

θi. On the other hand,

we can count by x = hj − a, which is equivalent to counting the number of a ∈ A that

are less than hj. By our previous observation, this is given by
∑

hi∈{H∩[1,c]}
(hi − i). Thus

c∑
i=1

θi = W =
∑

hi∈{H∩[1,c]}
(hi− i) = δc. By the average principle, there exists some x such that

θx ≥ δc
c

holes in the interval [1, c] are covered by a translate of x, as desired.

We fix c. Let x∗ be the value of x achieving the bound in Lemma 4. We relate this x∗ to

elements of Q. For this, we need the following well-known result.

Theorem 2 (Lagrange’s Theorem). Every integer can be written as the sum of at most 4

squares.

By Theorem 2, x∗ can be written as a sum of finitely many elements of Q, say
4∑
i=1

qωi
= x∗.

Let the number of holes covered by qωi
be denoted κi.

Lemma 5. The number of holes covered by qω1 + qω2 is at most κ1 + κ2.

Proof. Firstly, by definition qω1 covers κ1 holes. We can decompose the set A+qω1 as follows:

A+ qω1 =


ai ∈ A

hj, with exactly κ1 of this

It follows therefore that:

A+ qω1 + qω2 =


ai + qω2 which generates at most κ2 holes

hj + qω2 , with at most κ1 holes
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Summing gives the desired.

Now we show that we can average the number of holes covered by x∗ over each κ.

Lemma 6. There exists an index sc such that κsc ≥ δc
4c

.

Proof. As a corollary of Lemma 5, it is not difficult to see that the number of holes covered

by x∗ = qω1 + qω2 + qω3 + qω4 is at most κ1 + κ2 + κ3 + κ4. By the definition of x∗, it follows

that:

κ1 + κ2 + κ3 + κ4 ≥
δc
c
. (9)

Apply the average principle in Equation (9) to show that there exists an index sc such that

κsc ≥ δc
4c

.

Now we can proceed back to our main proof of Proposition 2.

Proof of Proposition 2. We begin by bounding δc. Observe that because the density of A is

known, we intuitively are able to describe how the density of N\A – that is, the set of holes –

behaves. This allows us to form a crude bound on how hi− i behaves. Note that there exists

a postive finite constant λ such that A(x) ≥ xα − xε for all x > λ. Then for any hj ≥ λ,

hj − j = A(hj) ≥ hj(α− ε). This rearranges to

hj ≥
j

1− α + ε
. (10)

Another quick remark is that the set of indices J such that hj < λ(ε) is finite. This im-

plies that if we bound all the hi using Inequality 10, we incur at most a finite error term.

Additionally, write δc =
f(c)∑
i=1

(hi − i) where f(c) = c− A(c). Now, we can bound δc as
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δc =

f(c)∑
i=1

(hi − i) ≥
(

1

1− α + ε
− 1

) f(c)∑
i=1

i− T

=
a− ε

1− α + ε

(c− A(c))(c− A(c) + 1)

2
− T

≥ K(c− A(c))2 − T

where we absorb all the terms independent of the variable c into the constant term K and

T is some finite value from the overestimation of hj − j for indices j ∈ J . Utilizing this, for

a sufficiently large fixed n,

C(n)

n
≥ A(n) + ({A+ qωc}\A) (n)

n
=
A(n) + δn

4n

n
=
nA(n) + K(n−A(n))2

n

4n
. (11)

Now we find a lower bound for this gargantuan expression. Recall that A(n) ≥ n(α− ε).

If we treat A(n) + K(n−A(n))2
n

as a quadratic function g of A(n) on the interval [n(α− ε),∞),

notice that

g′(x) = 1− 2K(n− x)

n
≥ 1− α− ε1− α + ε(n− n(α− ε))

n
= 1 + ε− α > 0.

So the function g is increasing on the interval [n(α− ε),∞) meaning that g(x) takes its

minimum value when x = n(α− ε). Substituting this into Equation (11), with n sufficiently

large and taking ε to be sufficiently small, we can reduce our equation to

dlim(C) ≥
(

1 +
α(1− α)

8

)
α

as desired.

15



4 Conclusion

We study an asymptotic density by adding a limit to the Schnirelmann density and derive

sharp bounds of this asymptotic density on the sumset. Additionally, we remark that one

case of equality in our theorem is when we take a union of several arithmetic progressions.

This motivates us to conjecture the following.

Conjecture 1. Suppose sets A and B are equality cases in Theorem 1. Then there exists

arithmetic progressions XA and XB as well as positive constants ca depending on A and cb

depending on B such that

lim
n→∞

inf
m≥n

(XA ∩ A)(m)

m
≥ cadlim(A), and (12)

lim
n→∞

inf
m≥n

(XB ∩B)(m)

m
≥ cbdlim(A). (13)

The core of the conjecture is the problem of given a good estimate about the sumset,

what structural properties of the constituent sets can we identify? Arithmetic progressions

are fundamentally indestructible structures; not only are these sequences preserved by trans-

lation operations on sets, we also usually find their existence in sets for simple congruence

reasons.

Another point is that in the proof for Theorem 1 on dlim, we drew parallels to and utilized

Mann’s Theorem. It would be interesting to further investigate the properties of dlim to devise

a proof independent of Mann’s Theorem; while the proof of Mann’s Theorem is precise and

constructive, the properties of dlim – particularly that given by Lemma 3 – affords us a lot

more flexibility to work with.
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Appendix A Equality Case in Mann’s Theorem

The following is the proof of Proposition 1.

Proof. Without loss of generality, b+y−1 > a+x−1. Note that d(A) = 1
a+x−1 , d(B) = 1

b+y−1 .

The first few elements of C are (in some order):

0, 1, 2, a+ x, a+ x+ 1, 2a+ x, 2a+ x+ 1, b+ y, b+ y + 1.

Notice that d(C) = min
{
C(a+x−1)
a+x−1 , C(b+y−1)

b+y−1

}
. Consider the following two cases :

1. 4
b+y−1 <

2
a+x−1 which rearranges to 4a + 4x − 2b − 2y < 2. Thus, 4a + 4x − 2b − 2y

being a non-negative even integer, must be 0. That is, b+ y = 2(a+ x). But then the

fact that a+ x > 2 means that

3

b+ y − 1
=

3

2(a+ x)− 1
>

1

a+ x− 1
.

Thus, d(C) = 4
b+y−1 = 1

b+y−1 + 3
b+y−1 >

1
a+x−1 + 1

b+y−1 = d(A) + d(B).

2. When 2
a+x−1 > 4

b+y−1 , notice that d(C) = 2
a+x−1 ≥

1
a+x−1 + 1

b+y−1 = d(A) + d(B)

Equality holds when a+ x = b+ y.

Appendix B Lemmatas in Preliminaries

The following is the proof of Lemma 1.

Proof. Consider the elements of A in the interval [1, n− 1]. Suppose these are a1, a2, . . . , ak.

Similarly define b1, b2, . . . , b`. Consider the at least n numbers a1, a2, . . . ak, n−b1, n−b2, . . . , n−

b`. They all belong in the interval [1, n − 1] so by the pigeonhole principle there exists two
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elements that are equal. That is, since all the ai (respective bj) are distinct from each other,

there exists indices s, t such that as = n− bt ⇒ as + bt = n.

The following is the proof of Lemma 2.

Proof. Let the local infimum density of X in [n,∞) be dn(X) = inf
m≥n

X(m)
m

. The increasing

property of dj(x) implies that

d(X) = d1(X) ≤ d2(X) ≤ · · · ≤ di(X) ≤ · · · ≤ lim
n→∞

dn(X) = dlim(X) (14)

as desired.

The following is the proof of Lemma 3.

Proof. Let X + c = X ′. Then for any positive integer n, it follows that X ′(n + c) = X(n).

As such X′(n+c)
n+c

= X(n)
n+c

. Notice that as n → ∞, we have |X
′(n+c)
n+c

− X(n)
n
| = |X(n)

n+c
− X(n)

n
| =

| cX(n)
n(n+c)

| ≤ | cn
n2 | = | cn | → 0, which proves the lemma.
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