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Angela Deng

under the direction of
Guangyi Yue

Department of Mathematics
Massachusetts Institute of Technology

Research Science Institute
August 2, 2016



Abstract

Representations of quivers are frequently used to classify algebras and describe their
structure, and so they have a wide range of applications across mathematics and theoretical
science. A quiver is a set of vertices connected by arrows, similar to a directed graph, and a
representation of a quiver assigns a vector space to each vertex and a map to each arrow. For
a quiver Q, the Auslander-Reiten quiver of Q is a quiver with each vertex corresponding to
a unique indecomposable module of the path algebra of Q. We study the dimensions of the
indecomposable modules assigned to each vertex of the infinite Auslander-Reiten quivers of
D̃n and Ẽ6,7,8 type quivers. We prove that the dimensions are bounded linearly for both D̃n

and Ẽ6,7,8 type quivers.

Summary

A quiver is a set of points and a set of arrows, with every arrow pointing from one point
to another. Quivers have diverse applications in mathematics and particle physics, and are
especially useful in proving special properties in abstract algebra. In this project, we study
a family of special quivers frequently used to represent abstract algebraic structures and
obtain information about their structures. In quivers of this family, each point is assigned
an algebraic structure that has an integer dimension. Our goal is to determine how those
dimensions increase as we move down each quiver, and we show that the dimensions are
bounded linearly for certain infinite cases.



1 Introduction

The term quiver was first used in mathematics by the French mathematician Peter Gabriel

[1] in a 1972 article on irreducible representations. He described a set of points and a set of

arrows, with each arrow having a start and an end in the set of points. Instead of calling

this a directed graph, he suggested the name quiver, to distinguish it from other concepts

attached to the term graph.

Since then, quivers have become a distinct concept expanding far beyond the conven-

tional applications of graphs in mathematics. Representations of quivers in particular have

applications across a diverse range of fields; beyond representation theory and linear algebra,

they have been used to describe moduli spaces in algebraic geometry [2] and interactions in

particle physics [3], and are often studied in association with cluster algebras [4].

Figure 1: Dynkin diagrams types [5]

Figure 2: Euclidean graph types [6]

Quivers may be classified by the structures of their underlying graphs as either Dynkin,

Euclidean, or wild. The relevant Dynkin and Euclidean types of graphs are shown in Figures

1 and 2. Dynkin diagrams are a family of graphs that represent root systems of Lie algebras,
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and Euclidean graphs similarly represent affine Lie algebras. Euclidean graphs are categorized

as Ãn, D̃n, or Ẽ6,7,8 (Figure 2). We study quivers with underlying graphs of type D̃n or Ẽ6,7,8.

The Auslander-Reiten quiver of the quiver Q has indecomposable modules of the path

algebra kQ of Q at its vertices. Gabriel’s theorem [1] tells us that the Auslander-Reiten

quivers of Dynkin type quivers are finite and well-defined. However, the Auslander-Reiten

quivers of Euclidean type quivers are infinite and much more complex, and less is known

about their structures. We study the dimensions of the indecomposable kQ-modules in such

Auslander-Reiten quivers and their relationship with the locations of the modules in the

quiver. We find that the dimensions are bounded linearly in Auslander-Reiten quivers of D̃n

or Ẽ6,7,8 type quivers.

In Section 2, we provide the necessary definitions and notations and describe the knitting

algorithm, which we use frequently in the proofs of the lemmas and main results. In Section

3, we introduce the D̃n and Ẽ6,7,8 type quivers and present several lemmas important to

the main theorems. In Section 4, we prove our first main theorem, that the dimensions of

the modules in the Auslander-Reiten quivers of D̃n quivers are linearly bounded. In Section

5, we similarly prove that dimensions in the Auslander-Reiten quivers of Ẽ6,7,8 quivers are

linearly bounded.

2 Definitions and Notations

We begin with the definition of a quiver.

Definition 2.1. A quiver Q is composed of a set Q0 of vertices {1, 2, . . . , n} and a set Q1

of arrows that connect pairs of vertices.

An example of a quiver can be seen in Figure 3.

Given a quiver Q, a path is a sequence of arrows ρ1ρ2 . . . ρm in Q such that the start s(ρi)

of each arrow is the tail t(ρi+1) of the next. The product of two paths xy is their composition
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Figure 3: A quiver with five vertices

if the start of x is the tail of y, and is 0 otherwise. For example, for the quiver in Figure 3 if

x = ρ2ρ3 and y = ρ4, then xy = ρ2ρ3ρ4 and yx = 0.

The paths of Q generate an associative algebra.

Definition 2.2. Given a quiver Q and a field k, the path algebra kQ is the vector space

which has the paths of Q as its basis and multiplication given by the products of paths.

Elements of kQ are linear combinations of the paths, and are of the form λ1x1+λ2x2+. . .,

where λ1, λ2, . . . ∈ k and x1, x2, . . . are paths in Q. The elements can be added or multiplied

together. For example, given two elements λ1x + λ2y and λ3x + λ4y of kQ, where x, y are

paths, we have

(λ1x+ λ2y) + (λ3x+ λ4y) = (λ1 + λ3)x+ (λ2 + λ4)y,

(λ1x+ λ2y)(λ3x+ λ4y) = (λ1λ3)xx+ (λ1λ4)xy + (λ2λ3)yx+ (λ2λ4)yy.

We study the dimensions of modules of the path algebra. First, we recall the standard

definition of a left-module.

Definition 2.3. Given an algebra R, a left-module M over R is an abelian group (M,+)

and an operation · : R×M →M .

A left-module M over R satisfies the following four equations for all r, s ∈ R and x, y ∈M :

1. r · (x+ y) = r · x+ r · y,

2. (r + s) · x = r · x+ s · x,
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3. (rs) · x = r · (s · x),

4. 1 · x = x.

A left-module M is indecomposable if M 6= 0 and M = M1

⊕
M2 implies M1 = 0 or

M2 = 0.

Definition 2.4. The Auslander-Reiten quiver Γ of a quiver Q is the quiver with vertices cor-

responding to indecomposable left-modules of the path algebra kQ and arrows corresponding

to irreducible morphisms between those modules.

We wish to bound the dimensions of the modules in the Auslander-Reiten quivers of

D̃n and Ẽ6,7,8 type quivers. Crawley-Boevey [7] stated that the category Rep(Q) of finite

representations of Q is equivalent to the category of left kQ-modules. Therefore, we may

associate a unique indecomposable representation to each vertex of the Auslander-Reiten

quiver of Q. Each indecomposable representation X has a unique dimension vector dim X =

〈a1, a2, . . . , an〉, where each ai is the dimension of the vector space assigned to vertex i of

Q. The sum of the components of dim X is equal to the dimension of the kQ-module that

corresponds to X. Therefore, we may study the dimension vectors in the Auslander-Reiten

quiver instead of the modules themselves.

2.1 The knitting algorithm

The knitting algorithm [8] allows us to recursively construct successive rows of the Auslander-

Reiten quiver and calculate the dimension vector corresponding to a vertex from the dimen-

sion vectors corresponding to neighboring vertices. The algorithm is as follows:

Consider a vertex A with its corresponding dimension vector. Let D = {d1, d2, . . . , dk}

be the set of dimension vectors corresponding to vertices in the set B = {b1, b2, . . . , bk} for

which there exists an arrow in the Auslander-Reiten quiver pointing from A to bi for each
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1 ≤ i ≤ k. Then the dimension vector corresponding to the vertex A′ two rows below A is

d′0 =
k∑

j=1

dj − d0, (1)

and there exist arrows from the vertices B to the vertex A′ (see Figure 4). Equation (1) is

true for all vertices in an Auslander-Reiten quiver.

d0

d1 d2 dk−1 dk

d′0

Figure 4: A sample application of the knitting algorithm

Crawley-Boevey [9] showed that the structure of the Auslander-Reiten quiver is indepen-

dent of arrow orientation; if two quivers Q1 and Q2 have the same underlying graph, then

there exists some finite k1 and k2 such that the Auslander-Reiten quiver of Q1 after the k1-

row is identical in structure to the Auslander-Reiten quiver of Q2 after the kth2 row (although

the dimension vectors at each vertex are not necessarily equal). We consider only this general

graph structure of the Auslander-Reiten quiver. Then the recursive system of equations that

the knitting algorithm yields is identical between quivers with the same underlying graph.

2.2 Notation of dimensions

We denote the total dimensions of each dimension vector in an Auslander-Reiten quiver as

follows: the total dimension of the vector corresponding to the kth from left vertex in the jth

row of the Auslander-Reiten quiver is xi,k if j is odd and is yi,k otherwise, where i =
⌈
j
2

⌉
(see

Figure 7). We define the first row to be the uppermost row such that the Auslander-Reiten

quiver after and including that row has only the general structure described previously.

In addition, we denote the sequences x1,k, x2,k, x3,k, . . . and y1,k, y2,k, y3,k . . . for all k in an
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Auslander-Reiten quiver to be the dimension sequences in that quiver. Our goal is to bound

the dimension sequences in every Auslander-Reiten quiver of a D̃n or Ẽ6,7,8 quiver.

3 Preliminaries

In this section, we describe the D̃n and Ẽ6,7,8 quivers in greater detail and give examples of

Auslander-Reiten quivers of each type. We also prove several lemmas that are used to prove

linear bounds for dimension sequences in Auslander-Reiten quivers of D̃n and Ẽ6,7,8 quiver.

We first show that all dimensions sequences in the Auslander-Reiten quiver of a D̃n or

Ẽ6,7,8 quiver are linearly bounded if the dimension sequences x1,k, x2,k, x3,k, . . . are linearly

bounded. Then it suffices to bound the only dimension sequences x1,k, x2,k, x3,k, . . . in our

later proofs.

Proposition 3.1. If the dimension sequences x1,k, x2,k, x3,k, . . . in the Auslander-Reiten

quiver of a D̃n or Ẽ6,7,8 quiver are linearly bounded, the dimension sequences y1,k, y2,k, y3,k . . .

are also linearly bounded.

Proof. Given any integer k such that y1,k, y2,k, y3,k . . . is a dimension sequence in the Auslander-

Reiten quiver, we may use the knitting algorithm to find a set of positive integers Sk such

that yi,k =
∑

j∈Sk
xi,j − yi−1,k for all i. Then we have that yi,k <

∑
j∈S xi,j, so the dimension

sequence y1,k, y2,k, y3,k, . . . is linearly bounded.

3.1 D̃n quivers

A D̃n quiver exists only for n ≥ 4 and has n+ 1 vertices. An example of a D̃6 quiver can be

seen in Figure 5.

The general graph structure of the Auslander-Reiten quiver of D̃n depends on its parity,

as can be seen in Figures 8 and 9. We define a new variable m =
⌈
n
2

⌉
− 2 for convenience of

notation.
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Figure 5: A D̃6 quiver
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Figure 6: Auslander-Reiten quiver of the D̃6 quiver in Figure 5

First, we show that every dimension in the Auslander-Reiten quiver can be expressed in

terms of xi,1.

Lemma 3.1. Given the dimension sequences x1,k, x2,k, x3,k, . . . and y1,k, y2,k, y3,k . . . in the

Auslander-Reiten quiver of a D̃n quiver, we have

xi,k = xi+k−1,1 − xi+k−2,1 + xi+k−3,1 − . . .+ xi−k+1,1 (2)

and

yi,k+1 + yi−1,k+1 = xi+k−1,1 + xi−k+1,1 (3)

for all 1 ≤ i and 1 ≤ k ≤
⌊
n
2

⌋
− 1.
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x1,2 = 3

y1,3 = 7y1,1 = 2 y1,5 = 2y1,4 = 2

x1,1 = 3

y1,2 = 2

x2,2 = 8

y2,5 = 5

x2,1 = 8

y2,1 = 5 y2,2 = 5 y2,3 = 9 y2,4 = 5

Figure 7: Total dimensions in the Auslander-Reiten quiver of the D̃6 quiver in Figure 5

xi,2

yi,4

xi,3

yi,3

xi,1

yi,2

xi,m
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yi,m+3

xi+1,m+1xi+1,2 xi+1,3xi+1,1 xi+1,m

yi,1 yi,m+4

yi+1,1 yi+1,m+3yi+1,m+2yi+1,2 yi+1,3 yi+1,m+4yi+1,4

Figure 8: Auslander-Reiten quiver of D̃n for even n

Proof. We proceed with induction. We have xi,1 = yi,1+yi−1,1 = yi,2+yi−1,2 from the knitting

algorithm. Also,

xi+1,1 = yi,1 + yi,2 + yi,3 − xi,1,

xi,1 = yi−1,1 + yi−1,2 + yi−1,3 − xi−1,1,

so yi,3 + yi−1,3 = xi+1,1 + xi−1,1.

Then since yi,3 = xi,1 + xi,2 − yi−1,3, we have xi,2 = xi+1,1 − xi,1 + xi−1,1.
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xi,2

yi,4yi,3

xi,1

yi,2

xi,m

yi,m+2

xi,m+1

xi+1,m+1xi+1,2xi+1,1 xi+1,m

yi,1

yi+1,1 yi+1,m+2yi+1,2 yi+1,3 yi+1,4
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xi+1,m+2

yi+1,m+1
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Figure 9: Auslander-Reiten quiver of D̃n for odd n

If Equations (2) and (3) are true for some k ≤ m, then we have

yi,k+2 = xi,k + xi+1,k − yi,k+1 = xi+k,1 + xi−k,1,

xi,k+1 = yi,k+2 + yi−1,k+2 − xi,k = xi+k,1 − xi+k−1,1 + xi+k−2,1 − ...+ xi−k,1,

so by induction Equations (2) and (3) are true for all k ≤ m+ 1.

We wish to show that all dimension sequences in the Auslander-Reiten quiver are linearly

bounded. In fact, it suffices to bound only the dimension sequence x1,1, x2,1, x3,1, . . ..

Lemma 3.2. Consider the dimension sequences x1,k, x2,k, x3,k, . . . and y1,k, y2,k, y3,k . . . in

the Auslander-Reiten quiver of a D̃n quiver. If there exists constants A and B such that

Ai−B ≤ xi,1 ≤ Ai+B for all i ≥ 1, then all dimension sequences x1,k, x2,k, x3,k, . . . and all

dimension sequences y1,k, y2,k, y3,k . . . are linearly bounded.

Proof. Consider first when n is even. We have −2B ≤ xi,1 − xi−1,1, so from (2) we have

xi,k = xi+k−1,1 − xi+k−2,1 + xi+k−3,1 − . . .+ xi−k+1,1 ≤ xi+k−1,1 + 2B(2k − 3)
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for all k. Therefore, all dimension sequences of the form x1,k, x2,k, x3,k, . . . are linearly bounded.

Now let n be odd. From (2) we have

xi,k ≤ xi+k−1,1 + 2B(2k − 3)

for all k ≤ m. If xi,1 is linearly bounded, then by symmetry yi,m+2 is also linearly bounded.

Then xi,m+1 = yi−1,m+2 − xi−1,m+1 < yi−1,m+2 and xi,m+2 = yi−1,m+2 − xi−1,m+2 < yi−1,m+2

are also linearly bounded.

Therefore, all dimension sequences of the form x1,k, x2,k, x3,k, . . . are linearly bounded for

both odd and even n. By Proposition 3.1, all dimension sequences of the form y1,k, y2,k, y3,k, . . .

are also linearly bounded.

3.2 Ẽ6, Ẽ7, Ẽ8 quivers

The three types of Ẽ graphs are Ẽ6 (Figure 10), Ẽ7 (Figure 12), and Ẽ8 (Figure 14).

Figure 10: An Ẽ6 quiver

Lemma 3.3. If Q is an Ẽ6, Ẽ7, or Ẽ8 quiver, then The dimension sequence x1,2, x2,2, x3,2, . . .

in the Auslander-Reiten quiver of Q is bounded linearly.

Proof. For each 6 ≤ k ≤ 8, applying the knitting algorithm to the Auslander-Reiten quiver

of an Ẽk quiver gives us k + 1 recursive equations in terms of the labelled total dimensions.

The complete list of these equations can be found in Appendix A. For each k, there exists

a recursive equation in terms of only elements of the dimension sequence x1,2, x2,2, x3,2, . . .
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Figure 11: Auslander-Reiten quiver of the Ẽ6 quiver in Figure 10

Figure 12: An Ẽ7 quiver

that can be found through algebraic manipulation of the equations given by the knitting

algorithm.

When k = 6, the recursive equation is

xi+1,2 + xi−3,2 = xi,2 + xi−2,2, (4)

so the characteristic polynomial of the dimension sequence x1,2, x2,2, x3,2, . . . in the Auslander-

Reiten quiver of an Ẽ6 quiver is

P (z) = (z + 1)(z − 1)2.

Then there exists integer constants c0, c1, c2, and C = c1 + |c2| such that

xi,2 = c0i+ c1 + (−1)ic2 ≤ c0i+ C. (5)
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Figure 13: Auslander-Reiten quiver of the Ẽ7 quiver in Figure 12

Figure 14: An Ẽ8 quiver

When k = 7, the recursive equation is

xi+3,2 + xi−2,2 = xi+1,2 + xi,2, (6)

so the characteristic polynomial of the dimension sequence x1,2, x2,2, x3,2, . . . in the Auslander-

Reiten quiver of an Ẽ7 quiver is

P (z) = (z3 − 1)(z2 − 1).

The distinct roots r1, . . . , r4 of P (z) are roots of unity, with r1 = 1 having multiplicity 2 and

all other roots having multiplicity 1. Then we have

xi,2 =
4∑

j=1

cj(rj)
i + c0i
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Figure 15: Auslander-Reiten quiver of the Ẽ8 quiver in Figure 14

for some constants c0, . . . , c4. We may define a constant C such that C =
∑4

j=1 |cj|, and so

xi,2 ≤ c0i+ C.

When k = 8, the recursive equation is

xi+1,2 + xi−2,2 = xi+3,2 + xi−4,2, (7)

so the characteristic polynomial of the dimension sequence x1,2, x2,2, x3,2, . . . in the Auslander-

Reiten quiver of an Ẽ8 quiver is

P (z) = (z5 − 1)(z2 − 1).

The distinct roots r1, . . . , r6 of P (z) are roots of unity, with r1 = 1 having multiplicity 2 and

all other roots having multiplicity 1. Then we have

xi,2 =
6∑

j=1

cj(rj)
i + c0i

for some constants c0, . . . , c6. We may define a constant C such that C =
∑6

j=1 |cj|, and so

xi,2 ≤ c0i+ C.
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4 Proof of linear bounds for D̃n quivers

We show our main result for dimension sequences in the Auslander-Reiten quivers of D̃n-type

quivers.

Theorem 4.1. If Q is a D̃n-type quiver, then all dimension sequences x1,k, x2,k, x3,k, . . . and

y1,k, y2,k, y3,k, . . . in the Auslander-Reiten quiver of Q are linearly bounded.

Proof. We consider the cases of n even and n odd separately. First, let n be even.

From Lemma 3.1, we have

xi,m+1 = xi+m,1 − xi+m−1,1 + xi+m−2,1 − · · ·+ xi−m,1

for all i ≥ 1. Since the Auslander-Reiten quiver of D̃n is symmetric for even n, we may

similarly state

xi,1 = xi+m,m+1 − xi+m−1,m+1 + xi+m−2,m+1 − · · ·+ xi−m,m+1.

Substitution yields the following:

xi,1 = xi+2m,1−2xi+2m−1,1+3xi+2m−2,1−· · ·+(2m+1)xi,1−. . .+3xi−2m+2,1−2xi−2m+1,1+xi−2m,1.

The characteristic polynomial of xi,k is therefore

P (z) = (z2m − z2m−1 + z2m−2 − · · ·+ 1)2 − z2m.

We can simplify P (z) into

P (z) =
(zm+1 + 1)(zm+1 − 1)(zm + 1)(zm − 1)

(z + 1)2
. (8)
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Note that the roots of zm+1 + 1, zm+1 − 1, zm + 1, and zm − 1 are distinct, with the

exception of z = 1 and z = −1. Also, exactly two of those four polynomials have z = −1 as

a root with multiplicity 1, so z = −1 is not a root of P (z). Therefore, we have that z = 1 is

the only root of P (z) with multiplicity greater than 1, and its multiplicity is 2.

Let r1, r2, . . . , r4m−1 be the distinct roots of P (z), with r1 = 1. Then we have

xi,1 =
4m−1∑
j=1

cj(rj)
i + c0i

for some constants c0, c1, . . . , c4m−1. The roots are complex numbers satisfying |rj| = 1, so

c0i− C ≤ xi,1 ≤ c0i+ C (9)

for C =
∑4m−1

j=1 |cj|.

Then by Lemma 3.2, the other dimensions in the Auslander-Reiten quiver are also linearly

bounded.

Now let n be odd. From Lemma 3.1, we have yi,m+2 + yi−1,m+2 = xi+m,1 + xi−m,1 and

xi+1,1 + xi−1,1 = yi,3 + yi−1,3 = yi+m−1,m+2 + yi−m,m+2. (10)

The right-hand side of Equation (10) can be expressed as

2m−1∑
j=1

(−1)j+1(yi+m−j,m+2 + yi+m−1−j,m+2) =
2m−1∑
j=1

(−1)j+1(xi+2m−j,1 + xi−j,1).

Then we have

xi+1,1 + xi−1,1 = xi+2m−1,1 − xi+2m−2 + · · · − xi+2,1 + xi+1,1 + xi−1,1 − · · ·+ xi−2m+1,1,
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and so the characteristic polynomial of xi,1 is

P (z) = (z2m+1 − 1)(z − 1)(z2m−4 + z2m−6 + · · ·+ 1) =
(z2m+1 − 1)(z2m−2 − 1)

z + 1
.

The 4m − 2 roots of P (z) are the (2m + 1)th and the (2m − 2)th roots of unity, not

including z = −1.

If 3 - 2m + 1, then the only root with multiplicity is z = 1, which has multiplicity 2.

Therefore, as in the n even case, there exists some constants c0 and C such that c0i− C ≤

xi,1 ≤ c0i + C. If 3|2m + 1, then the other two third roots of unity also have multiplicity

2. Let r1, . . . , r4m−5 be the distinct roots of P (z), with r1 = 1 and r2, r3 the third roots of

unity. Then we have

xi,1 =
4m−5∑
j=1

cj(rj)
i + (b1 + b2r2 + b3r3)i

for some constants c1, . . . , c4m−5 and b1, b1, b2. Since xi,1 is always real, the two values

Im (
∑4m−5

j=1 cj(rj)
i) and Im (b1 + b2r2 + b3r3) are always equal in magnitude. Then for all i,

there exists real constants c′0 = Re (b1 + b2r2 + b3r3) and Ci = Re (
∑4m−5

j=1 cj(rj)
i) such that

xi,1 = Ci + c′0i. (11)

We also have |Ci| ≤ C ′ =
∑4m−5

j=1 |cj| for all i, so

c′0i− C ′ ≤ xi,1 ≤ c′0i+ C ′. (12)

Then by Lemma 3.2, all dimension sequences x1,k, x2,k, x3,k, . . . and all dimension sequences

y1,k, y2,k, y3,k, . . . in the Auslander-Reiten quiver are linearly bounded.
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5 Proof of linear bounds for Ẽ6,7,8 quivers

We now consider the dimension sequences in the Auslander-Reiten quivers of Ẽ6,7,8-type

quivers.

xi,2

yi,2 yi,3yi,1

xi,1 xi,4xi,3

xi+1,2 xi+1,3 xi+1,4xi+1,1

yi+1,1 xi+1,3yi+1,2

Figure 16: General structure of the Auslander-Reiten quiver of Ẽ6

Theorem 5.1. If Q is an Ẽ6-type quiver, then the dimension sequences x1,k, x2,k, x3,k, . . .

and y1,k, y2,k, y3,k, . . . in the Auslander-Reiten quiver of Q are all linearly bounded.

Proof. We know that the dimension sequence x1,2, x2,2, x3,2, . . . is bounded linearly by Lemma

3.3.

From the knitting algorithm, we have yi−1,1 = xi,1 + xi−1,1 > xi,1. Then xi,2 = yi,1 +

yi−1,1− xi,1 > yi,1, so the dimension sequence y1,k, y2,k, y3,k, . . . is linearly bounded for k = 1,

and also for k = 2 and k = 3 by symmetry. Similarly, we have yi,1 = xi+1,1 + xi,1 > xi,1, so

the dimension sequence x1,k, x2,k, x3,k, . . . is bounded linearly for k = 1, and also for k = 3

and k = 4 by symmetry.

Theorem 5.2. If Q is an Ẽ7-type quiver, then the dimension sequences x1,k, x2,k, x3,k, . . .

and y1,k, y2,k, y3,k, . . . in the Auslander-Reiten quiver of Q are all linearly bounded.

Proof. We know that the dimension sequence x1,2, x2,2, x3,2, . . . is bounded linearly by Lemma

3.3.
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xi,2

yi,2 yi,3 yi,4

xi,3

yi,5

xi,1

yi,1

yi+1,4

xi+1,2xi+1,1 xi+1,3

yi+1,3 yi+1,5yi+1,2yi+1,1

Figure 17: General structure of the Auslander-Reiten quiver of Ẽ7

Consider Equations (1), (2), and (5) in Appendix A.2. Substitution yields xi,2 = xi+1,1 +

xi−1,1 > xi−1,1, so the dimension sequence x1,1, x2,1, x3,1, . . . is bounded linearly. Similarly,

the dimension sequence x1,3, x2,3, x3,3, . . . is bounded linearly. Then by Proposition 3.1, the

dimension sequence y1,k, y2,k, y3,k, . . . is linearly bounded for each integer 1 ≤ k ≤ 5.

yi+1,2yi+1,1 yi+1,5yi+1,3 yi+1,4

xi+1,3xi+1,2xi+1,1 xi+1,4

yi,3yi,1 yi,5yi,2 yi,4

xi,3xi,1 xi,2 xi,4

Figure 18: General structure of the Auslander-Reiten quiver of Ẽ8

Theorem 5.3. If Q is an Ẽ8-type quiver, then the dimension sequences x1,k, x2,k, x3,k, . . .

and y1,k, y2,k, y3,k, . . . in the Auslander-Reiten quiver of Q are all linearly bounded.

Proof. We know that the dimension sequence x1,2, x2,2, x3,2, . . . is bounded linearly by Lemma

3.3. The dimension sequence x1,1, x2,1, x3,1, . . . is bounded linearly by the argument used in
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the proof of Theorem 5.1. Substitutions with Equations (3), (4), (7), (8), (9) in Appendix A.3

yield

xi,2 = xi+2,4 + xi,4 + xi−2,4 > xi,4,

xi,2 = xi+2,4 + xi−1,3 > xi−1,3.

Then the dimension sequences x1,k, x2,k, x3,k, . . . are linearly bounded for all integers 1 ≤ k ≤

4. By Proposition 3.1, the dimension sequences y1,k, y2,k, y3,k, . . . are also linearly bounded

for integers 1 ≤ k ≤ 5.

6 Conclusion

We studied the growth of module dimensions in the Auslander-Reiten quivers of D̃n-type and

Ẽn-type quivers. The goal was to determine if dimension sequences in the Auslander-Reiten

quivers were linearly bounded. We constructed and solved systems of recursive equations

using the knitting algorithm. We proved that all dimension sequences in Auslander-Reiten

quivers of D̃n-type and Ẽn-type quivers have linear bounds.

Euclidean quivers may be categorized into three disjoint types: Ãn-type, D̃n-type, and

Ẽ6,7,8-type quivers. A natural direction for future research is therefore to complete the inves-

tigation of Auslander-Reiten quivers of Euclidean quivers by studying the growth of module

dimensions in the Auslander-Reiten quivers of Ãn-type quivers. This problem is complicated

by the existence of cycles, oriented or not, in Ãn-type quivers. Another future step might

include extending the results of this study to wild quivers with underlying graphs that lack

cycles or multiple edges. It is likely that a linear bound may be similarly found for certain

cases of wild quivers.
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Appendix A Recursive Equations for Ẽn

Appendix A.1 Ẽ6 Equations

1. xi,1 + xi−1,1 = yi−1,1

2. xi,2 + xi−1,2 = yi−1,1 + yi−1,2 + yi−1,3

3. xi,3 + xi−1,3 = yi−1,2

4. xi,4 + xi−1,4 = yi−1,3

5. yi,1 + yi−1,1 = xi,1 + xi,2

6. yi,2 + yi−1,2 = xi,3 + xi,2

7. yi,3 + yi−1,3 = xi,4 + xi,2

Appendix A.2 Ẽ7 Equations

1. xi,1 + xi−1,1 = yi−1,1 + yi−1,2

2. xi,2 + xi−1,2 = yi−1,2 + yi−1,3 + yi−1,4

3. xi,3 + xi−1,3 = yi−1,4 + yi−1,5

4. yi,1 + yi−1,1 = xi,1

5. yi,2 + yi−1,2 = xi,1 + xi,2

6. yi,3 + yi−1,3 = xi,2

7. yi,4 + yi−1,4 = xi,3 + xi,2

8. yi,5 + yi−1,5 = xi,3
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Appendix A.3 Ẽ8 Equations

1. xi,1 + xi−1,1 = yi−1,1

2. xi,2 + xi−1,2 = yi−1,1 + yi−1,2 + yi−1,3

3. xi,3 + xi−1,3 = yi−1,3 + yi−1,4

4. xi,4 + xi−1,4 = yi−1,4 + yi−1,5

5. yi,1 + yi−1,1 = xi,1 + xi,2

6. yi,2 + yi−1,2 = xi,2

7. yi,3 + yi−1,3 = xi,3 + xi,2

8. yi,4 + yi−1,4 = xi,3 + xi,4

9. yi,5 + yi−1,5 = xi,4
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