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Abstract

A variant of Erdős’s distinct distances problem considers two sets of points in Euclidean
space P1 and P2, both of cardinality n, and asks whether we can find a superlinear bound
on the number of distinct distances between all pairs of points with one in P1 and the other
in P2. In 2013, Sharir, Sheffer, and Solymosi [8] showed a lower bound of Ω(n4/3) when P1

and P2 are both collinear point sets in R2, where the two lines defined by P1 and P2 are
not orthogonal or parallel. Here, we contain P1 in a line l and P2 in a hyperplane in Rd. We
prove that the number of distinct distances in this case has a lower bound of Ω(n6/5) given
some restrictions on l and P2.

Summary

In 1946, Erdős proposed his famous distinct distances problem in which he asked whether
we can determine the minimum number of distinct distances between some points on a plane.
Here we ask a slightly different question, where we consider some points on a line and some
points on a hyperplane in n-dimensional Euclidean space. We find a lower bound for the
number of distinct distances between all pairs of points with one on the line and one on the
hyperplane.



1 Introduction

In a 1946 paper, Erdős [3] proposed the following problem: Given a set of n points in the

plane, what is the minimum number of distinct distances between those points? In that

same paper he derived a lower bound of
√
n− 1/2− 3/4 and used a

√
n ×
√
n square lattice

to derive an upper bound of O(n/
√

log(n)). Since then, there has been a steady stream of

papers achieving successively better lower bounds. The most recent improvement by Guth

and Katz [7] gives a lower bound of Ω(n/log(n)), leaving a gap of O(
√

log(n)) between the

lower and upper bounds. Recently, people have begun to pose distinct distance problems

with additional restrictions or in higher dimensions.

One version of the distinct distances problem asks what happens when we look for distinct

distances between two sets of points P1, and P2 which both contain n points, such that all

points in P1 lie on a line l1 and all points in P2 lie on a line l2. In 2013, Sharir, Sheffer,

and Solymosi [8] showed that with this restriction, given that the lines are not orthogonal or

parallel, the lower bound is Ω(n4/3). Shortly after, Charalambides [1] showed that m points

on a real algebraic curve of degree d in Rn determine at least cn,dm
5/4 distinct distances,

given some restrictions on the shape of the curve, where cd,n is a constant that depends on

the degrees of the curves. In 2015, Pach and de Zeeuw [5] examined the specific case where

two sets of points P1 and P2 in R2 were each contained on an irreducible plane algebraic

curve of degree at most d, and showed that the number of distinct distances is at least cdn
4/3,

again with some restrictions on the shapes of the curves.

The proofs of these results follow a general framework of converting the problem to one

using incidence geometry by inversely relating the number of distinct distances to the number

of incidences between a set of points and a set of curves, and using an upper bound on the

number of such incidences to obtain a lower bound for the number of distinct distances. This

method was first conceived by Elekes and Sharir [4] and was used by Guth and Katz [7] to
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prove the Ω(n/log(n)) lower bound on distinct distances in the plane. In both [8] and [5], the

n4/3 bound comes from the fact that the symmetry of the problem allows the set of curves C

to have only two degrees of freedom, because the roles of P1 and P2 can be reversed in those

situations. A full survey of distinct distance problem variants was compiled by Sheffer [9].

We consider the following extension of the distinct distances problem in Rd. If there are

two sets of points P1 and P2 such that the points of P1 are contained on a line and the

points of P2 are contained on a hyperplane of dimension d− 1 not containing that line, we

consider the number of distinct distances

D(P1,P2) :=
∣∣{‖p− q‖ | p ∈ P1, q ∈ P2}

∣∣
where ‖p − q‖ denotes the distance between p and q. In order to set up the framework for

the proof of our main result and to gain some intuition for the special configurations of P2

in higher dimensions, we first prove the following superlinear lower bound on the number of

distinct distances between points on a line and plane in R3.

Theorem 1.1. Let P1 and P2 be two sets of points in R3 of cardinalities m and n, respec-

tively, such that P1 is contained on a line l and P2 is contained on a plane Π, and l and Π

are neither parallel or orthogonal. Also, let O be the intersection of l and Π. If no two points

of P2 define a line that is perpendicular to the projection of l onto Π, and no two points of

P2 can lie on the same ellipse centered at O with eccentricity csc(α) whose semi-major axis

lies along the projection of l onto Π, we have

D(P1,P2) = Ω(min(m4/5n2/5,m2, n2)) .

We then prove the following extension on the number of distinct distances between points

on a line and a hyperplane in Rd given some restrictions on the line and on P2.
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Theorem 1.2 (Main Result). Let l be a line and Π be a hyperplane in Rd, d > 3, such that l

is not orthogonal to Π and l does not lie in any hyperplane with the same unit normal vector

as Π. Also, let O be the intersection of l and Π. Then for any two sets of points P1 and P2

with cardinalities m and n, respectively, such that P1 is contained on l, P2 is contained on

Π, and

• No two points in P2 can lie on the same flat of codimension 2 defined as the intersection

of Π with a hyperplane orthogonal to l, and

• No two points in P2 can lie on the same manifold of degree 2 that is defined as the

locus of points on Π that are some fixed distance R away from the line,

we have

D(P1,P2) = Ω(min(m4/5n2/5,m2, n2)) .

The proofs of both Theorem 1.1 and Theorem 1.2 use a similar framework to those

implemented in [8] and [5], examining quadruples of points and using Cauchy-Schwarz to

transform the problem into one pertaining to incidences between curves and points. Note

that our configuration is asymmetrical; that is, the objects that contain P1 and P2 are of

different types. In that aspect our result differs strongly from past work done on distinct

distances between points on two objects in Euclidean space, such as [8] and [5].

Theorems 1.1 and 1.2 immediately implies the following corollary.

Corollary 1.3. If P1 lies on a line and P2 lies on a hyperplane in Rd, and the cardinalities

of P1 and P2 are both n, given the same conditions listed in Theorem 1.2, we have

D(P1,P2) = Ω(n
6
5 ) .

The above corollary is the first superlinear bound on the number of distinct distances

between points on a line and hyperplane in Rd.
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In Section 2 we introduce the incidence bound that is crucial to the proof of our main

result. In Section 3, we prove Theorem 1.1, and in Section 4 we prove Theorem 1.2, our main

result. In the Appendix, we will show work towards a superlinear bound on distinct distances

between a parametric polynomial curve in R3 and a plane to help provide direction to future

research on this type of distinct distance problem.

2 Incidence Bound

To prove Theorems 1.1 and 1.2, we use an incidence bound from Pach and Sharir [6]. Given

a finite set of points P ⊂ R2 and a set of curves C in R2, we define

I(P, C) = {(p, γ) ∈ P × C | p ∈ γ}

to be the set of incidences between P and C. We say that P and C form a system with k

degrees of freedom and multiplicity-type s if for any k points in P , there are at most s curves

of C passing through them, and any pair of curves from C intersect at at most s points of P .

In this paper, we cannot acheive two degrees of freedom in our system of points and curves

because this problem lacks the symmetry found in the cases where P1 and P2 are contained

on two lines or two plane algebraic curves, so we use the general theorem instead of the

specific statement for two degrees of freedom.

Theorem 2.1 (Pach and Sharir [6]). Let P be a finite set of points and C be a finite set of

simple curves all lying in the plane. If C has k degrees of freedom and multiplicity-type s,

then the number of incidences |I(P , C)| between the two has an upper bound of

|I(P , C)| ≤ c(k, s)
(
|P|k/(2k−1)|C|(2k−2)/(2k−1) + |P|+ |C|

)
where c(k,s) is a constant that depends on k and s.
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3 Proof of Theorem 1.1

Before proving Theorem 1.1, we consider the cases where the line is either orthogonal or

parallel to the plane. In addition, we show why we restrict two specific configurations of the

points in P2, as they allow for a relatively small amount of distinct distances. In both the

orthogonal and parallel cases, we note that

D(P1,P2) = Ω(m),

as any point in P2 gives at least dm
2
e distinct distances to the points in P1. Also, let d(m,n)

denote the minimum possible number of distinct distances between |P1| = m points on l and

|P2| = n points on Π.

O

Figure 1: Orthogonal Case

BA C

Figure 2: Parallel Case
(see Figure 3 for P2 configuration)

3.1 Bound on d(m,n) for l orthogonal to Π

Let O be the point of intersection between l and Π. If l is normal to Π, then we can arrange

P2 in a circle of arbitrary radius centered at O. From this we obtain d(m,n) = θ(m). If

we add the restriction that any subset of P2 can have at most k points that are mutually

equidistant from l, where k is some constant, then we have d(m,n) = θ(m + n) as we can

put k points on each of dn/ke circles of arbitrary distinct radii centered at O.
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3.2 Bound on d(m,n) for l parallel to Π

This case can be simplified to R2 as l can be placed or projected onto Π without changing

the number of distinct distances. For m = 1, we have the following proposition.

Proposition 3.1. If l is parallel to Π, we have d(1, n) = 1.

Proof. P2 can be arranged in a circle of arbitrary radius whose center is the projection of

the sole point in P1 onto Π. That gives us d(1, n) = θ(1).

For m ≥ 2, the lower bound on d(m,n) is
√
n, as each point in P2 is one of the two points

determined by a pair of distances from two corresponding points.

Proposition 3.2. If l is parallel to Π, we have d(2, n) = d(3, n) = θ(
√
n).

Proof. For m = 2, denote the two points in P1 as A,B and let the circles of radius r centered

at A and B be ar and br, respectively. Consider

{ax ∩ by | x = d+ pε, y = d+ qε, 1 ≤ p, q ≤ d
√
ne} ,

where

d >
dist(A,B)

2

and this gives us d(2, n) = θ(
√
n).

For m = 3 we use an idea reminiscent of circle grids from [2]. If we let the three points

in P1 be A,B,C and use the same convention for ar, then if we place A,B,C in arithmetic

progression in that order, we can consider

{ax ∩ by ∩ cz | x = d
√
p, z = d

√
q, y = d

√
p+ q

2
− 1, 1 ≤ p, q ≤ d

√
ne} ,

where d = dist(A,B) (Figure 3). This gives us d(3, n) = θ(
√
n).
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BA C

Figure 3: Example for m = 3

For m > 3, we have d(m,n) = O(m + n), as we can always put the m points in an

arithmetic progression and the n points in an arithmetic progression with the same difference

in a line parallel to l.

3.3 Other Special Configurations

For the remainder of the proof of Theorem 1.1, we assume that l and Π are neither orthogonal

nor parallel. We now discuss two specific constructions of P2 that achieve D(P1,P2) =

θ(m+ n) in order to show the necessity of the restrictions put forth in Theorem 1.1.

Proposition 3.3. If P2 lies on a line perpendicular to the projection of l onto Π, we have

d(m,n) = θ(m+ n) .

Proof. Here we may ignore the distance between l and the line on which P2 lies, as it

does not affect the number of distinct distances. We can then treat this problem as two

perpendicular lines in R2 and set the lines as the axes in the Cartesian plane, and let
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P1 = {(
√

1, 0), (
√

2, 0), ..., (
√
m, 0)} and P2 = {(0,

√
1), (0,

√
2), ..., (0,

√
n) and we obtain

d(m,n) = θ(m+ n).

Recall that O is defined as the intersection of l and Π. Throughout the rest of this paper

we let ‖u‖ denote the distance from O to u, and we let ‖u− v‖ denote the distance between

u and v, where u, v are any two points in Rd.

Proposition 3.4. If P2 lies on an ellipse of arbitrary semi-major axis centered at O and

eccentricity csc(α) whose semi-major axis lies along the projection of l onto Π, we have

d(m,n) = θ(m+ n) .

α
r

A

O
B

x

Figure 4: Ellipse case

Proof. Let r be the length of the semi-minor axis of our ellipse with eccentricity csc(α)

centered at O (Figure 4). Take two points A ∈ P1, B ∈ P2 and define (x, y) as the coordinates

of B on the ellipse if O = (0, 0) and the semi-major axis is oriented along the x-axis. By the
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Law of Cosines,

‖A−B‖2 = ‖A−H‖2 + ‖H −B‖2 = ‖A‖2 + x2 − 2‖A‖xcos(α) + y2 .

As the ellipse has eccentricity csc(α), we see that y2 = r2 − x2sin2α, which gives us

‖A−B‖2 = (‖A‖ − xcos(α))2 + r2 .

So now if we place the points in P1 in arithmetic progression with common difference d

and place the points in P2 along this type of ellipse with sufficiently large r such that the

x-coordinates of those points form an arithmetic progression with common difference
d

cos α
,

then it follows that d(m,n) = θ(m+ n) .

Remark 3.5. This ellipse is the intersection of the plane Π and a cylinder of arbitrary

radius r centered on l. This construction is therefore analogous to the parallel lines case in

[8], as the cylinder is the locus of points with some constant distance to l. Note that as α

tends to 0 we have exactly the two parallel lines case as ‖A − B‖ will depend on ‖A‖ − x,

and if α = π
2

we arrive at the orthogonal case, where ‖A−B‖ =
√
‖A‖2 + r2, a constant.

Now that we have shown the necessity of certain restrictions on l and P2, we are ready

to prove Theorem 1.1.

Proof of Theorem 1.1. Let O be the point of intersection between l and Π. Without loss of

generality, we may assume that all m points in P1 are on one side of O. Otherwise we can

partition P1 into two subsets on either side of O and remove the subset that yields fewer

distinct distances, reducing the total number by at most a constant factor of 2. Similarly, we

may assume without loss of generality that all n points in P2 lie in one of the four quadrants

determined by l′, the projection of l onto Π, and the line on Π going through O that is
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perpendicular to l′, because otherwise we can remove the three that yield fewer distinct

distances to reduce by a constant factor of at most 4.

Consider quadruples of points (a, b, p, q) such that a, b ∈ P1, p, q ∈ P2. We would like

to relate the minimum number of distinct distances to occurrences of quadruples of points

(a, b, p, q) such that ‖a− p‖ = ‖b− q‖. Now, let

S := {di ∈ R | p ∈ P1, q ∈ P2, di = ‖p− q‖} .

Let N = |S|, and let the sets Ei, where i ranges from 1 to n, contain all pairs of points (u, v)

with u ∈ P1, v ∈ P2 such that ‖u − v‖ = di. Let Q be the set of all quadruples (a, b, p, q)

with a, b ∈ P1, p, q ∈ P2 such that ‖a − p‖ = ‖b − q‖, and (a, p) 6= (b, q). Now we use

Cauchy-Schwarz in order to relate the number of these quadruples to m,n and the number

of distinct distances. We have

|Q| = 2
∑(

|Ei|
2

)
≥
∑

(|Ei| − 1)2 ≥ 1

N

(∑
(|Ei| − 1)

)2
=

(mn−N)2

N
. (1)

Let ∠aOp = β and ∠bOq = γ for some element of Q (Figure 5). We have by Law of

Cosines

‖a− p‖2 = ‖a‖2 + ‖p‖2 − 2‖a‖‖p‖rp

‖b− q‖2 = ‖b‖2 + ‖q‖2 − 2‖b‖‖q‖rq ,

where rp = cos(β), rq = cos(γ). Since (a, b, p, q) ∈ Q, we must have

‖a‖2 + ‖p‖2 − 2‖a‖‖p‖rp = ‖b‖2 + ‖q‖2 − 2‖b‖‖q‖rq .

The above equation can be rewritten to give
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a

p

b

q

β
O

γ

Figure 5: General case

(‖a‖ − ‖p‖rp)2 − (‖b‖ − ‖q‖rq)2 = ‖q‖2(1− r2q)− ‖p‖2(1− r2p) . (2)

Let V1 and V2 be the sets of all ordered pairs of distinct points in P1 and P2, respectively.

For every (p, q) ∈ V2 such that p 6= q, there is a curve γp,q corresponding to that pair of the

form

(x− ‖p‖rp)2 − (y − ‖q‖rq)2 = ‖q‖2(1− r2q)− ‖p‖2(1− r2p) ,

where the values of ‖p‖, ‖q‖, rp, rq are fixed. Note that ‖p‖rp is equivalent to the distance

between O and the projection of p onto l. Because no two points define a line on Π perpen-

dicular to the projection of l onto Π, we have that all values of ‖p‖rp are distinct. From here

we see that all curves γp,q are distinct, and in fact are hyperbolas unless

‖q‖2(1− r2q)− ‖p‖2(1− r2p) = 0 ,

which gives us a degenerate hyperbola. However, because ‖p‖2(1− r2p) is exactly the square
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of the distance from p to the line l we see that we can only arrive at a degenerate hyperbola

if both p, q lie on the same ellipse of eccentricity csc(α) centered at O with semi-major axis

on the projection of l onto Π, which is forbidden. Now, let C be the set of non-degenerate

hyperbola C = {γp,q|(p, q) ∈ V2, p 6= q}. Any curve γp,q in C is incident to a point (a, b) ∈ V1

if and only if (a, b, p, q) satisfies the condition in (2). First, let us examine the number of

elements of Q not counted by incidences between C and V1, which happens when p = q. If

we consider that there are at most 2bm
2
c ordered pairs of points equidistant to some point

in P2, we obtain an upper bound of 2mn on the missing elements.

Because the curves in C are hyperbolas, and the coefficients of x2, y2, xy are fixed, C has

3 degrees of freedom and multiplicity-type 2. Now, applying Theorem 2.1 to V1 and C with

k = 3, s = 2 and adding in the missing elements gives us

‖q‖ = O(m
6
5n

8
5 +m2 + n2 +mn) . (3)

Combining this with (1) gives us

(mn−N)2

N
= O(m

6
5n

8
5 +m2)

if m ≥ n, and a similar expression for n ≥ m.

Since N ≤ mn this gives us

N = Ω(min(m
4
5n

2
5 , n2))

and combining this with the version for n ≥ m gives us Theorem 1.1.
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4 Proof of Theorem 1.2

Set the origin of the vector space Rd to be the intersection of l and Π, and let Π be the

hyperplane xd = 0. Let the unit direction vector of l be l̂ = (a1, a2, ..., ad). We consider

separately the cases where l orthogonal to Π, which happens iff ad = 1, or where l is

contained in a hyperplane with the same unit normal vector as Π, which happens iff ad = 0.

Similarly to the R3 case, we must also consider special configurations of the points in P2

that give relatively few distinct distances.

4.1 Special Configurations

Recall that d(m,n) denotes the minimum possible number of distinct distances between

|P1| = m points on l and |P2| = n points on Π. Note that for any m,n, we must have

d(m,n) = Ω(m) as any point in P2 gives at least dm
2
e distinct distances to the points in P1,

since there can be at most two points on l that are some fixed distance R away from a point

on Π.

Proposition 4.1. If l is orthogonal to Π, we have d(m,n) = θ(m).

Proof. If ad = 1, we can place all n points of P2 in a (d − 2)-sphere of arbitrary radius

centered at O that lies in Π. From this we obtain d(m,n) = θ(m).

Proposition 4.2. If l is contained in a hyperplane with the same unit normal vector as Π,

we have d(m,n) = θ(m).

Proof. If ad = 0, we can simplify this case as we did in Subsection 3.2 by placing or projecting

l onto Π, which does not change the number of distinct distances. Label the m points of P1

v1, v2, ..., vm. If we treat l as the real number line, and place vi at (−1)i
√
b i
2
c, we can contain

P2 in the (d− 3)-sphere defined as the intersection of the (d− 2)-spheres with one centered

at each vi with radius
√
b i
2
c+ 1 to obtain d(m,n) = θ(m).

13



For the remainder of this paper, we assume l and Π are neither orthogonal nor parallel.

Now, we examine special constructions of P2 that give few distinct distances.

Proposition 4.3. If P2 lies on a flat of codimension 2 that is defined as the intersection of

Π and a hyperplane % orthogonal to l, then we have d(m,n) = O(m+ n).

Proof. Let p be the intersection of l and %, and let l0 be the image of l under the projection

ψ : Rd → Rd−1 given by (x1, x2, ..., xd) 7→ (x1, x2, ..., xd−1). Define p′ = l0∩Π∩%, and let l′ be

the image of l under a translation that sends p to p′. We can then use the same construction

as in the proof of Proposition 3.4, using l′ and some line perpendicular to l′ in Π ∩ % going

through p′ to obtain d(m,n) = O(m + n), as our translation does not affect the number of

distinct distances.

Proposition 4.4. If P2 lies on the locus of points on Π that are some fixed distance R away

from the line, and we forbid more than two points of P2 from lying in the flat of codimension

2 that is defined as the intersection of Π and a hyperplane orthogonal to l, then we have

d(m,n) = O(m+ n).

Proof. The distance R from l to a point p on Π defined as (x1, x2, ..., xd−1, 0) is given by

R2 =
d−1∑
1

(1− a2i )x2i − 2
∑

1≤i<j≤d−1

aiajxixj

If we fix R, we see that this is a surface of degree 2 and codimension 2 contained in Π.

Note that this surface, defined as the locus of points on Π that are the same distance R

from l, is equivalent to the intersection of Π and the Cartesian product of l with a (d − 2)

sphere of radius R centered at O in the hyperplane orthogonal to l containing O. This is

true because a (d − 2) sphere of radius R centered at some point s on l in the hyperplane

orthogonal to l containing s is also the locus of points at a distance R from l such that the

foot of the perpendiculars from those points to l is s. Define Sp as the (d − 2) sphere of
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radius R centered at p in the hyperplane orthogonal to l containing p. Now, to achieve few

distinct distances, let us define a sequence of points p1, p2, ..., pmax(m,n) that lie in arithmetic

progression on l. Let P1 = {p1, p2, ...pm} and P2 = {q1, q2, ..., qn} such that qi ∈ Spi ∩Π. This

construction gives us d(m,n) = O(m+ n).

Proof of Theorem 1.2. Without loss of generality, we may assume that P1 lies on one side of

O for the same reasoning given in the proof of Theorem 1.1. We again consider quadruples

(a, b, p, q) with a, b ∈ P1, p, q ∈ P2, such that ‖a − p‖ = ‖b − q‖, and (a, p) 6= (b, q). If Q is

the set of all such quadruples and N is the number of distinct distances, we have already

seen that

|Q| ≥ (mn−N)2

N
.

Let the vector p̂ = (x1, x2, ..., xd−1, 0) be the vector associated with a point p on Π. Now,

recall that ‖p‖ denotes the distance from O to the point p, and let rp = cos(∠aOp) =
l̂ · p̂
‖l̂‖‖p‖

where a is some point on l that is not O. Since ‖a− p‖ = ‖b− q‖, we have

‖a‖2 + ‖p‖2 − 2‖a‖‖p‖rp = ‖b‖2 + ‖q‖2 − 2‖b‖‖q‖rq

by Law of Cosines, and this can be rewritten to give

(‖a‖ − ‖p‖rp)2 − (‖b‖ − ‖q‖rq)2 = ‖q‖2(1− r2q)− ‖p‖2(1− r2p) . (4)

Let V1 and V2 be the sets of all ordered distinct pairs of points in P1 and P2, respectively.

For every (p, q) ∈ V2 such that p 6= q, there is a curve γp,q corresponding to that pair of the

form

(x− ‖p‖rp)2 − (y − ‖q‖rq)2 = ‖q‖2(1− r2q)− ‖p‖2(1− r2p) ,
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where the values of ‖p‖, ‖q‖, rp, rq are fixed. Now, since

‖p‖rp =
l̂ · p̂
‖l̂‖

=
d−1∑
i=1

aixi ,

if we have two points p and p′ such that ‖p‖rp = ‖p′‖rp′ , then by the above equation we

see that they must lie in the same flat of codimension 2 defined as the intersection of Π

and a hyperplane % of the form
d−1∑
i=1

aixi = C for some real constant C. Because no two

points of P2 can lie on this type of flat, all curves γp,q are distinct and are hyperbolas unless

‖q‖2(1− r2q)− ‖p‖2(1− r2p) = 0, giving us a degenerate hyperbola. We see that

‖p‖2(1− r2p) = ‖p‖2sin2(∠aOp)

is equivalent to the square of the distance from the point p to the line l, so we can only

arrive at a degenerate hyperbola if p and q both lie on the locus of points on Π that are some

fixed distance R from l, which is forbidden. Now, let C be the set of curves C = {γp,q|(p, q) ∈

V2, p 6= q}. Any curve γp,q in C is incident to a point (a, b) ∈ V1 if and only if (a, b, p, q)

satisfies the condition in (2). First, let us examine the number of elements of Q not counted

by incidences between C and V1, which happens when p = q. If we consider that there are

at most 2bm
2
c ordered pairs of points equidistant to some point in P2, we obtain an upper

bound of 2mn on the missing elements.

We now finish the proof of Theorem 1.2 in exactly the same fashion as the proof of

Theorem 1.1.
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5 Conclusion and Direction for Future Research

We considered the number of distinct distances between elements of two sets of points, P1

and P2. We proved a superlinear lower bound of Ω(n6/5) for the number of distinct distances

between points of P1 and P2 when P1 is contained in a line and P2 is contained in a plane in

R3, given some restrictions on the line and P2. This required showing that the configurations

we restricted led to relatively few distinct distances. Furthermore, we generalized this result

to obtain the same lower bound when P1 is still contained in a line but P2 is instead contained

in a hyperplane in Rd. Our results can most likely be improved upon, as we believe that this

bound can be improved to Ω(n2−ε) for any ε > 0.

Future work on asymmetrical bipartite distinct distance problems may include showing

superlinear bounds for the generalizations where P1 is contained on an algebraic curve of

degree d and P2 is contained on a hyperplane in Rn, or where P1 is contained on a line and

P2 is contained on a hypersurface of degree d in Rn. To effectively use the Elekes-Sharir

framework to solve those problems, it is necessary to show that the resulting curves γp,q

cannot have infinite intersection very often. This could be done by considering under what

conditions our curves can have infinite intersection and partitioning the set of curves to

achieve finite degrees of freedom, or by examining the conditions that many curves having

infinite intersection impose on the curve or hypersurface containing P1 or P2 and using those

to reach a contradiction.
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Appendix A Parametric Polynomial Curves

If we have two sets of points P1 and P2 such that the points of P1 lie on a parametric

polynomial curve C in R3 and the points of P2 lie on a plane Π, we look at the number

of distinct distances from a point in P1 to a point in P2. We aim to use the same general

framework for this situation.

Let C(t) = (fx(t), fy(t), fz(t)), where each of fx, fy, fz are polynomials, and let the plane

Π be the one defined by the equation ax+by+cz = D. Also, let p = (px, py, pz), q = (qx, qy, qz).

We examine quadruples of points (t1, t2, p, q) such that ‖C(t1)− p‖ = ‖C(t2)− q‖. Any such

quadruple must satisfy

(fx(t1)−px)2 + (fy(t1)−py)2 + (fz(t1)−pz)2 = (fx(t2)− qx)2 + (fy(t2)− qy)2 + (fz(t2)− qz)2 .

If we let

fx(t) = adt
d + ad−1t

d−1 + ...+ a0

fy(t) = bdt
d + ...+ b0

fz(t) = cdt
d + ...+ c0

f(t) = fx(t)
2 + fy(t)

2 + fz(t)
2

then we can construct curves γp,q in the xy-plane of the form

f(x)−f(y)+2
d∑
i=0

(
(aiqx+biqy+ciqz)t

i
2−(aipx+bipy+cipz)t

i
1

)
+p2x+p2y+p2z−q2x−q2y−q2z = 0

If these curves are not distinct, then there must be points p, q, p′, q′ such that γp,q = γp′,q′ ,
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with (p, q) 6= (p′, q′). We then must have

aipx + bipy + cipz = aip
′
x + bip

′
y + cip

′
z

aiqx + biqy + ciqz = aiq
′
x + biq

′
y + ciq

′
z

for all i such that 1 ≤ i ≤ d. If p 6= p′ and q 6= q′, this implies that for two vectors

û = 〈p′x − px, p′y − py, p′z − pz〉 and v̂ = 〈q′x − qx, q′y − qy, q′z − qz〉, we have û · 〈ai, bi, ci〉 =

v̂ · 〈ai, bi, ci〉 = 0 for 1 ≤ i ≤ d. It follows that C(t) is actually a line, unless û = kv̂ for some

non-zero scalar.

If we can figure out under what conditions the curves γp,q have infinite intersection, we

conjecture that we will be able to make the instances of infinite intersection bounded to a

small number so that we can again apply the incidence bound result to obtain

N = Ω(min(m4d/4d+1n2/4d+1,m2, n2))

or

N = Ω(n4d+2/4d+1)

when m = n.

Remark Appendix A.1. If the parametric polynomial curve (which could also be general-

ized to an irreducible plane algebraic curve) lies in a plane, then we can use the same methods

as in [5] to acheive some superlinear bound.
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