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Abstract

Much research has been done to study swimming cell motility in bulk fluids. How-

ever, many swimming cells’ environments are rife with porous, microstructured ma-

terials and boundaries. The goal of the overarching project (which this study is a

part of) is to establish a quantitative framework that models microbial locomotion in

porous media. In this study, we focus on an analytic approach that complements the

overarching project’s lab experiments and computer models.

In the low particle density case, we consider the microscopic model of a random

walk with one-step memory on the dual graph defined by a porous media’s fluid pockets

and tunnels. We study the long-term macroscopic particle distribution and present an

analytic solution to our generalization of the overarching project’s computer-generated

numerical solutions. We present properties of our analytic solution that can be tested

in an experimental setting to determine the microscopic model’s accuracy and validity.

Our approach uses Markov analysis to prove that the stationary distribution of a

large class of n-dimensional porous media can be split into n+ 1 probability classes, so

that the ratio of interior particles to boundary particles is proportional to the number
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of interior tunnels. We also prove that the stationary distribution of uniform merged

media is determined by the placement of connecting tunnels.

For the mid-density case, we present our preliminary work in constructing a micro-

scopic model to consider shifts in the density distribution rather than the motion of

individual particles. We consider a simple microscopic model and prove that it yields

unexpected results for the stationary distribution.

1 Introduction

Swimming cells play important roles in many fields of biology: for example, in human health

through reproduction and the spread of infection from biomedical devices [14, 10] and in

ecology through the recycling of organic matter [4, 9, 11]. With thin actuated flagella that

typically range in length from 5-50 microns on 1-10 micron individual cells, swimming cells

actively seek out nutrients, light, and mates, unlike their passive counterparts [2]. Much

research has been done to study cell motility in the simplified situation of cells in bulk fluid

without any boundaries or interior obstructions. For example, Guasto presents an extensive

analysis of this situation in his 2004 review article [6]. In bulk fluids, swimming cells are

generally assumed to diffuse outward in a fashion similar to passive cells [8].

However, in many cases, the realistic environments of swimming cells are often rife with

porous, microstructured materials and boundaries, which significantly affect cell motion.

For example, marine bacteria which are involved in biogeochemical cycling live in porous

environments such as marine snow [4, 11]. In addition, swimming bacteria are used for

bioremediation of oils and chemicals in porous soils [10]. Human parasites swim through
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complex vascular networks to spread infection [13]. Motile sperm in the female reproductive

tract swim through biopolymer networks in cervical mucus and complex tissue topology

[5]. Microalgae cells use porous glass microstructures for light distribution and efficient cell

growth [7]. Thus, developing a model for cell motion in porous media would enhance our

understanding of many natural and manmade systems. This could foster the development

of technologies that stifle bacterial infection, mediate infertility, and provide clean drinking

water.

The goal of the overarching project (which this study is a part of) is to establish a

quantitative framework that accurately models key aspects of microbial locomotion in porous

media. There are three components to the project: lab experiments, a computer model, and

a mathematical analysis. The lab experiments track the motion of cells in a media with

complex boundary structures (Figure 1 [3]). Organisms, also referred to as particles hereafter,

can travel around pillars, which are placed in various symmetric patterns. The computer-

generated numerical model computes the long-term macroscopic distribution associated to

a specific microscopic model for a small class of porous media. In this study, we focus on

a complementary analytic approach, presenting an analytic solution for a generalization of

the computer-based numerical solutions to a significantly larger class of porous media. We

present properties of our analytic solution that can be tested in experimental settings to

determine the validity and accuracy of the microscopic model.

The microscopic models considered in the overarching project are derived from a graph

theory-based model. Cell motion is conventionally modeled as either a simple random walk,

where organisms move independently at each step, or as run-and-tumble motion, where or-

ganisms such as flagellated bacteria migrate stochastically towards a more favorable location
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Figure 1: Schematic of experimental set-up

[1, 12]. In order to simulate cell motion in porous media in the case of low particle density,

we consider an intermediate model: a random walk with one-step memory, where particles

move according to their current position and direction of their previous move. For example,

in a persistent random walk, each particle is more likely continue in the direction that it

came from with a probability associated to the persistence value. The random walk with

memory takes place on a dual graph, which we construct by placing vertices in the fluid

pockets between the obstructions and placing edges through the channels between the fluid

pockets. We mostly consider finite dual graphs that simulate a boundary. Particles are

modeled to travel from vertex to vertex, through the fluid pocket channels. To investigate

the long-term behavior of the cells, we study the stationary distribution of the associated

Markov chain of a random walk with one-step memory of a single particle, ignoring the effect

of particle-particle interactions.

In Section 2, we present definitions and notation. In Section 3 and 4, we analytically prove

that for a large number of types of n-dimensional porous media, the stationary distribution

can be broken into n+1 classes. Within each class, the stationary distribution is local, while

between classes, there can be global shifts in probability density. In the case of 2-dimensions,
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these classes are vertices in the interior, on the boundary edges, and on the corners. We

compute the stationary distribution in terms of the reflection coefficient, persistence value

at the boundaries, and the local degree of vertices. This solution generalizes the numerical

solutions of the overarching project’s computer model.

Biologically, it is also interesting to consider the amount of information about the struc-

ture of the interior of the porous medium that can deduced from information about the

boundary and boundary concentration. For example, this is applicable to a 3D-medium

where only the boundary is visible. We find that the boundary ratio - the ratio of the

percentage of particles in the interior to the percentage of particles on the boundary - is

proportional to the number of edges in the interior. This result can be verified in the exper-

imental setting through the addition of edges (tunnels in a known medium).

In Section 5, we study the merging of multiple porous media through tunnel connections

between some of the fluid pockets of each medium. We consider the case where the original

media have uniform stationary distributions and outline the constraints for the stationary

distribution of the merged porous media to be splittable into classes. We prove that for a

large number of types of porous media whose transition probabilities satisfy a set of sym-

metry constraints, the stationary distribution is determined by the structure of the tunnel

connections between the original media. Notably, these stationary distributions are inde-

pendent of the transition probability values. In an experimental setting, this means that

the long-term distribution of particles in merged media is determined by placement of the

connecting tunnels, rather than any properties about cell motion in and out of the tunnels.

In Section 6, we present our preliminary work for the mid density case in constructing

a microscopic model to consider shifts in the density distribution rather than the motion
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of individual particles. We also consider a simple microscopic model that takes place on

the dual graph of a porous medium and whose transition probabilities are based on the

neighboring densities. We prove that this model yields unexpected results for the stationary

distribution in the one-dimensional case. For a dual graph with 7 vertices, no stationary

distribution exists. For many other small values, the particle densities in the stationary

distribution increase up and down unpredictably along the media.

2 Dual Graph, Embedding, and Markov Chains

To each porous medium we associate a dual graph G and an embedding G∗ of G into R2 or

R3 depending on the dimension of the medium. The vertices are defined by the fluid pockets

of the medium and the edges are defined by the tunnels between fluid pockets. We define

two ways of expressing each vertex: v, to represent the vertex in G, and v∗ to represent

the embedded vertex in R2 or R3. We let V be the set of all v and V ∗ be the set of all v∗.

We similarly define two ways of expressing each edge. Suppose that an edge connects the

vertices v1, v2 ∈ V in the graph G and connects v∗1, v
∗
2 ∈ V ∗ in the embedding G∗. We let

e = (v1, v2), and we let e∗ be the line segment between v∗1v
∗
2. We let E be the set of all e and

E∗ be the set of all e∗.

We now define the set of possible states of our Markov process, corresponding to particle

states. Our random walk with memory model requires that we keep track of both the vertex

position of each particle and the direction that it came from. We define the state space S(G)

to be {(v, e) | v ∈ e ∈ E(G)}, where v represents the current position and e represents the

memory direction. We often abbreviate S(G) as S. We define certain quantities associated
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to each state s ∈ S. Since s is an ordered pair of a vertex and an edge, we refer to the

associated vertex as vs and the associated edge as es. Notice that es ∈ E is an ordered pair

(w, vs) for some w ∈ V which is the position of the state s during the previous time step.

We thus define the preceding vertex of s, to be p(s) = w.

We now define a Markov chain D to model a random walk with memory on the porous

medium by representing the probability distribution P̃ of a single particle in the medium.

We first consider the case of low density in which particle-particle interactions are negligible.

We assume that P̃ represents the macroscopic particle distribution, with the probabilities

representing percentage of particles in each state. The state space of D is defined to be

S(G). The transition matrix P has the property that for s1, s2 ∈ S(G), the probability

P (s1, s2) > 0 if and only if vs1 ∈ es2 . The stationary distribution at vertices SDD
V of the

porous medium represents the long-term distribution of P̃ . In order to study SDD
V , we study

the stationary distribution of the states SDD. Notice that SDD is related to SDD
V , according

to the following equation

SDD
V (v) =

∑
s∈S,vs=v

SDD(s).

3 Two Dimensions

First, we focus on the case where the porous medium is in two-dimensional space. (The re-

sults of this section can be generalized to n-dimensional porous media using similar methods.

In Section 5, we present the generalization in the case of three dimensions.) We work with a

large class of Markov chains and dual graphs where we can study the stationary distribution

of the vertices in the following classes: the vertices in the interior, I, the vertices of the
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Figure 2: A graph and embedding that satisfies the constraints in Section 3

boundary edges BE, and the verticles on the corners, C. Within each class, the stationary

distribution is local, but globally, the probability density can shift between classes.

We first outline certain restrictions on the dual graph G and embedding G∗ in R2. The

general idea is that G must be a three-class graph with vertex sets I, BE, and C such that

there do not exist any edges between I and C. We will use the following definitions in our

constraints. We let the boundary vertices B be BE ∪ C. We partition the edges E into

boundary edges EB and interior edges EI so that EB = {(v, w) | v, w ∈ B} and EI = E \EB.

Figure 2 shows an example of a graph and embedding that satisfies the constraints.

These are the precise constraints on G and G∗:

• The graph G is connected.

• The set B∗ is exactly the set of vertices on the boundary of the convex hull of V ∗ in

G∗.

• The set E∗B exactly forms the non-self intersecting, simple convex polygon boundary

of the convex hull.
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• For v ∈ BE, the degree of v in G is 3.

• For v ∈ C, the degree of v in G is 2.

We define the following partition of S(D) which will help us calculate SDD:

• Sα = {s ∈ S | es ∈ EI}

• Sβ = {s ∈ S | es ∈ EB}

Now, we outline constraints on the transition matrix for us to be able to study the SDD
V in

the classes I, BE, and C. We translate this into constraints on SDD.

Definition 1. We call the stationary distribution SDD of the states of a Markov Chain

D(G) splittable if the following conditions are satisfied:

• There exists α such that for all s ∈ Sα, SDD(s) = α.

• There exists β such that for all s ∈ Sβ, SDD(s) = β.

We denote the splittable stationary distribution as (α, β).

For simplicity of calculation, given an irreducible Markov Chain D, we define SDD∗ to

be an unnormalized stationary distribution of D if it is a scalar multiple of SDD. In the

case that SDD is splittable, we refer to SDD∗ as (α∗, β∗).

Lemma 2. A Markov chain D has an unnormalized splittable stationary distribution (α∗, β∗)

if and only if the following conditions are satisfied:

For s ∈ Sα such that p(s) ∈ I,

∑
s1∈S,vs1=p(s)

P (s1, s) = 1. (1)
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For s ∈ Sβ such that p(s) ∈ C,

∑
s1∈S,vs1=p(s)

P (s1, s) = 1. (2)

For s ∈ Sα such that p(s) ∈ BE,

β
∑

s1∈Sβ ,vs1=p(s)

P (s1, s) + αP (s2, s) = α, (3)

where s2 is the only state in Sα such that vs2 = p(s). For s ∈ Sβ such that p(s) ∈ BE,

β
∑

s1∈Sβ ,vs1=p(s)

P (s1, s) + αP (s2, s) = β, (4)

where s2 is the only state in Sα such that vs2 = p(s).

Proof. This follows from the definition of splittable coupled with the conditions on the

graph.

We outline a more specific set of sufficient constraints on the transition matrix for SDD

to be splittable, defining parameters q and r that we will later relate to the unnormalized

splittable stationary distribution, (α∗, β∗).

Definition 3. We call a Markov Chain D[q, r] of a random walk on (V,E) travellable if

its transition matrix P satisfies (1), (2), and the following conditions:

For all s ∈ Sα such that p(s) ∈ BE,

P (s1, s) = q,

for all s1 ∈ Sβ such that vs1 = p(s).

For all s ∈ Sα such that p(s) ∈ BE,

P ((p(s), es), s) = r.
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For all s ∈ Sβ such that p(s) ∈ BE,

∑
s1∈Sβ ,vs1=p(s)

P (s1, s) = 1− q.

For s ∈ Sβ such that p(s) ∈ BE,

P (s1, s) = (1− r)/2,

for the one and only s1 ∈ Sα such that vs1 = p(s).

It is important to note that all of these conditions are local and do not impose any

additional constraints on the structure of the graph.

Notice that the first condition of the travellable definition imposes certain constraints on

the transition probabilities of the states of each vertex v ∈ V . We thus define the following

matrix for each vertex:

Definition 4. Given a vertex v ∈ G, we define the vertex transition matrix M [v] to be

a deg(v) by deg(v) square matrix defined by the rows of P associated to s such that vs = v

and columns of P associated to s such that es \ vs = v.

Notice that each row of M [v] must sum to 1. The condition imposes the additional con-

straint that the each column of M [v] must sum to 1. Combined, these two conditions imply

that M [v] must be doubly stochastic. It is important to note that the other conditions of the

travellable definition do not affect the matrix M [v] for any v ∈ I. Furthermore, the values

of one vertex transition matrix do not influence the values of any other vertex transition
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matrix. Thus, the values of each vertex transition matrix can be chosen independently. This

means that the only constraint imposed on the vertex transition matrices by the travellable

condition is the doubly stochastic property.

These observations are closely related to the well-known fact that the transition matrix

of an irreducible Markov chain with a finite state space is doubly stochastic if and only if its

stationary distribution is uniform over S.

Theorem 5. Every travellable Markov Chain D[q, r] has an unnormalized splittable station-

ary distribution (α∗, β∗) = (2q, 1− r).

Theorem 5 essentially demonstrates that the unnormalized stationary distribution of the

states of D(G) is a function of these two local parameters and completely independent of

the structure of the graph.

Proof. Substituting the conditions from Definition 3 into Lemma 2 causes all the equations

except (3) and (4) to be satisfied. We are left with the following two equations:

2qβ + rα = α. (5)

β(1− q) + α(1− r)/2 = β. (6)

Notice that (5) can be rearranged into (6). Solving yields that (2q, 1− r) is an unnormalized

simple stationary distribution of D.

We will translate our result to the stationary distribution at the vertices.

Corollary 6. Given a travellable Markov Chain D, the unnormalized stationary distribution
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SDD∗
V is defined as follows: 

deg(v)α v ∈ I

α + 2β v ∈ BE

2β v ∈ C.

This demonstrates that the stationary distribution of the vertices is a function of only

the interior degrees and the local parameters q and r. We now define certain ratios that are

associated to the stationary distributions at the vertices and have experimental applications.

The boundary ratio represents the ratio of the percentage of particles in the interior to the

percentage of particles on the boundary.

Definition 7. For a travellable Markov Chain D, we define the boundary ratio Br(D) as∑
v∈I SD

D
V (v)∑

v∈B SD
D
V (v)

.

In the case of travellable Markov chains D, notice that Br(D) is a function of q, r, |C|,

and |BE|, and |EI |. In an experimental setting, it is interesting to consider what can be

deduced about the structure of the interior of the porous medium from information about the

boundary and boundary concentration. For example, this is applicable to a closed medium

where only the boundary is visible. We find that the boundary ratio - the ratio of the

percentage of particles in the interior to the percentage of particles on the boundary - is

proportional to the number of edges in the interior. For a fixed q, r, |C|, and |BE|, notice

that Br(D) is proportional to |EI |. This has two implications. First, Br(D) is independent

of the structure of the graph when |EI | is fixed. This means that adding edges to the

interior of the graph should cause Br(D) to increase linearly. This result can be verified in

the experiment through the addition of interior tunnels. Furthermore, in a situation where

13



only the boundary is visible, given Br(D) and the boundary-local parameters q, r, |C|, and

|BE|, the number of interior edges, |EI |, can be determined.

3.1 Example: Rectangular Grid

As an example, we apply the results of the previous section to particles travelling in an m

by n grid. This dual graph structure is particularly pertinent to the lab component of the

overaching project, since pillar patterns corresponding to a rectangular grid are used in the

experiment. We will let q = 1/3− p/3 where p is the persistence value, defined so that when

p = 0, the particles travelling along the boundary have a 1/3 probability of shifting to the

interior and as p → 1, these particles have a 0 probability of shifting to the interior. The

value r represents the probability that a particle that hits the boundary bounce back into

the interior.

The example of a square n by n grid also served as the motivation to guess the stationary

distribution in the previous section. It was initially computed by using the transition matrix

to create a system of equations to solve for the stationary distribution. The system can be

represented by the N + 1 by N + 1 matrix Q(i, j) which is defined as follows:

1 i = n+ 1

0 j = n+ 1, i 6= n+ 1

P (i, j)− 1 i = j < n+ 1

P (j, i) i 6= j, i, j 6= n+ 1.

Notice that the rows are linearly dependent, but upon the deletion of one of the first i − 1

rows, they become linearly independent. Taking the row reduced echelon form enabled us to
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find the the solution. This was computed for n = 4, 6 and the general solution was guessed

from these values.

By Corollary 6, we can compute that:

Theorem 8. The stationary distribution SDD of the travellable Markov Chain D[1/3 −

p/3, r] of an m by n grid is defined as follows:

8(−1+p)
2(−1+p)(4mn−6m−6n+8)+3(−1+r)(4m+4n−8) v ∈ I

2(−1+p)+6(−1+r)
2(−1+p)(4mn−6m−6n+8)+3(−1+r)(4m+4n−8) v ∈ BE

6(−1+r)
2(−1+p)(4mn−6m−6n+8)+3(−1+r)(4m+4n−8) v ∈ C.

The analytic solution was obtained by normalizing the values of α and β using the

properties of an m by n grid. Notice that the interior points all have the same percentage

of particles, regardless of the values of p and r. For a fixed r, in the limit as p → 1, the

interior cells become empty and the particles rest on the boundaries, with a slightly higher

concentration at the boundary edges than on the corners. This follows from the fact that

Sβ becomes the only essential communicating class of D in the limit. For a fixed p, in the

limit as r → 1, the corners become empty, and particles rest on the boundary edges and the

interior.

We now consider the special case where r = 1/3, where a particle on the boundary is

equally likely to travel in all three directions. In the case that p = 0, our Markov process now

corresponds to a classical random walk on a graph. In this case, the stationary distribution

of a vertex is proportional to its degree, meaning that there are more particles at vertices

in the interior than at vertices on the boundary. This is reflected in Theorem 8. As the

persistence value increases, the particles in the interior get pushed to the boundaries. An
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Figure 3: p = 0

equilibrium point occurs at p = 1/3, when SDD(v) for v ∈ I is equal to SDD(v) for v ∈ BE.

The particles in the interior continue to get pushed to the boundaries until at p = 1/2, we

have that SDD(v) for v ∈ I is equal to SDD(v) for v ∈ C when p = 1/2. For p > 1/2, there

are more particles at any point on the boundaries than at any point in the interior, and at

p = 1, there are no particles in the interior.

Figures 3-9 show the distribution of particles in a 5×5 grid for varying persistence values

in the case that r = 1/3. The two class distribution for p = 1/3, 1/2 is shown through the

two-color distribution in the plots. For other persistence values, the three class distribution

is reflected through the three color distribution.

Now, we will explore the boundary ratio for general p and r. The boundary ratio

Br(D) =
8(−1 + p)(m− 2)(n− 2)

2(−1 + p)(2m+ 2n− 8) + 3(−1 + r)(4m+ 4n− 8)
. (7)

We consider the situation where the porous media is a very long tube. To model this, we
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Figure 4: p = 1/6

Figure 5: p = 1/3
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Figure 6: p = 1/2

Figure 7: p = 2/3
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Figure 8: p = 5/6

Figure 9: p = 1
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take the limit as m→∞. Applying L’Hopital’s rule, we obtain the following:

Br(D)→ 8(−1 + p)(n− 2)

4(−1 + p) + 12(−1 + r)

Br(D)→ 2(−1 + p)(n− 2)

(−1 + p) + 3(−1 + r))

Br(D)→ (n− 2) · g(p, r).

This demonstrates the boundary ratio is proportional to n− 2. This can be experimentally

tested by measuring the boundary ratio for porous media (of a fixed material) with varying

widths.

Figure 3 shows the boundary ratio as a function of p and r in a 3 × 3 grid. For a fixed

r, the boundary ratio decreases as p increases, since particles get pushed out of the interior.

For a fixed p, the boundary ratio increases as r increases, since particles bounce off the

walls back to the interior with higher probability. Our analytic solution represented in (7)

is a generalized version of the numerical solutions of MIT graduate student Aden Forrow’s

computer model. Our analytic solution is plotted as the surface and the data from the

computer model is plotted as the scatter points. Notice the alignment of the scatter points

on the surface.

4 Three Dimensional Case

We present a generalization of Section 3 in the case of three-dimensions. We work with a

large class of Markov chains and dual graphs where we can study the stationary distribution

of the vertices in the following classes: the vertices in the corners, C, the vertices on the

boundary edges, BE, on the faces, F , in the interior, I. Within each class, the stationary
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Figure 10: Analytic and computer model calculations of Br(D) as a function of p and r in

a 3× 3 grid

distribution is local, but globally, the probability density can shift between classes.

We first outline certain restrictions on the dual graph G and embedding G∗ in R3. The

general idea is that G must be a four-class graph with vertex sets C, BE, F and I such

that there only exist edges within these sets and between C and BE, between BE and

F , and between F and I. We will use the following definitions in our constraints. We let

the boundary vertices B be F ∪ BE ∪ C. We define the sharp boundary vertices SB to

BE∪C. We define the boundary edges EB, the interior edges EI , the sharp boundary edges

ESB, and the face boundary edges EFB so that EB = {(v, w) | v, w ∈ B}, EI = E \ EB,

ESB = {(v, w) | v, w ∈ SB}, and EFB = EB \ ESB. These are the precise constraints on G

and G∗:

• The graph G is connected.

• The set B is exactly the set of vertices on the boundary of the convex hull of V .
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• For v ∈ BE, the degree of v is 4. There are two exactly two vertices w ∈ SB and

exactly two vertices w ∈ F such that (v, w) ∈ E.

• For v ∈ C, every edge (v, w) ∈ E must have w ∈ SB.

• The set SB is exactly the set of edges of the non self-intersecting, simple convex

polyhedron boundary of the convex hull of V .

• For v ∈ F , there exists exactly 1 edge (v, w) such that w ∈ I.

We now consider the Markov chain D(G). We define the following partition of S(D):

• Sα = {s ∈ S | es ∈ EI} .

• Sβ = {s ∈ S | es ∈ EFB} .

• Sγ = {s ∈ S | es ∈ ESB} .

Now, we outline constraints on the transition matrix for us to be able to study the stationary

distribution of the vertices in the desired classes. We translate this into constraints on the

stationary distribution of the states.

Definition 9. We call the stationary distribution SDD of the states of a Markov Chain D

splittable if the following conditions are satisfied:

• There exists α such that for all s ∈ Sα, SDD(s) = α.

• There exists β such that for all s ∈ Sβ, SDD(s) = β.

• There exists γ such that for all s ∈ Sγ, SDD(s) = γ.

We denote the splittable stationary distribution as (α, β, γ).
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Given an irreducible Markov Chain D, we will call SDD∗ an unnormalized stationary

distribution of D if it is a scalar multiple of SDD.

Lemma 10. A Markov chain D has an unnormalized splittable stationary distribution

(α, β, γ) if and only if the following conditions are satisfied:

For s ∈ Sα such that p(s) ∈ I:

∑
s1∈Sα,vs1=p(s)

P (s1, s) = 1. (8)

For s ∈ Sγ such that p(s) ∈ C:

∑
s1∈Sγ ,vs1=p(s)

P (s1, s) = 1. (9)

For s ∈ Sα such that p(s) ∈ F :

β
∑

s1∈Sβ ,vs1=p(s)

P (s1, s) + αP (s2, s) = α,

where s2 is the one and only state in Sα such that vs2 = p(s). For s ∈ Sβ such that p(s) ∈ F :

β
∑

s1∈Sβ ,vs1=p(s)

P (s1, s) + αP (s2, s) = β.

where s2 is the one and only state in Sα such that vs2 = p(s). For s ∈ Sβ such that p(s) ∈ BE:

β
∑

s1∈Sβ ,vs1=p(s)

P (s1, s) + γ
∑

s2∈Sγ ,p(s)=vs2

P (s2, s) = β.

For s ∈ Sγ such that p(s) ∈ BE:

β
∑

s1∈Sβ ,vs1=p(s)

P (s1, s) + γ
∑

s2∈Sγ ,p(s)=vs2

P (s2, s) = γ.

Proof. This follows from the conditions of a stationary distribution coupled with the condi-

tions imposed by the travellable condition.
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In order to simplify these equations, we now outline a set of sufficient constraints on the

transition matrix for the stationary distribution of the states to be splittable.

Definition 11. We call a quasi-travellable Markov Chain D[q, r1, r2, l] travellable if its tran-

sition matrix P satisfies (8), (9), and the following conditions:

For all s ∈ Sα such that p(s) ∈ F ,

∑
s1∈Sβ ,vs1=p(s)

P (s1, s) = q.

For all s ∈ Sα such that p(s) ∈ F ,

P (s2, s) = r2,

where s2 is the one and only state in Sα such that vs2 = p(s). For s ∈ Sβ such that p(s) ∈ F ,

∑
s1∈Sβ ,vs1=p(s)

P (s1, s) =
deg(p(s))− q

deg(p(s))
.

For all s ∈ Sβ such that p(s) ∈ F ,

P (s2, s) =
1− r2

deg(p(s))
,

where s2 is the one and only state in Sα such that vs2 = p(s). For all s ∈ Sβ such that

p(s) ∈ BE, ∑
s2∈Sγ ,p(s)=vs2

P (s2, s) = l.

For all s ∈ Sβ such that p(s) ∈ BE,

∑
s1∈Sβ ,vs1=p(s)

P (s1, s) = r1.

For all s ∈ Sγ such that p(s) ∈ BE,

∑
s1∈Sβ ,vs1=p(s)

P (s1, s) = 1− r1.
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For all s ∈ Sγ such that p(s) ∈ BE,

∑
s2∈Sγ ,p(s)=vs2

P (s2, s) = 1− l.

Theorem 12. Every travellable Markov Chain D[q, r1, r2, l] has an unnormalized simple

stationary distribution of the form (ql, (1− r2)l, (1− r1)(1− r2)).

Proof. Substituting the conditions from Definition 11 into Lemma 10 causes many of the

equations to be satisfied. After deleting repeated equations, we are left with the following

three equations in four variables:

αr2 + βq = α.

α
1− r2

deg(p(s))
+ β

deg(p(s))− q
deg(p(s))

= β.

βr1 + γl = β.

β(1− r1) + γ(1− l) = γ.

Solving yields that (ql, (1− r2)l, (1− r1)(1− r2)) is an unnormalized simple stationary dis-

tribution of D.

We will translate this result to stationary distribution at the vertices.

Corollary 13. Given a travellable Markov Chain D, the vector SDD∗
V is an unnormalized

stationary distribution of D: If v ∈ I,

SDD∗
V (v) = deg(v)α.

If v ∈ F ,

SDD∗
V (v) = (deg(v)− 1)β + α.
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If v ∈ BE,

SDD∗
V (v) = 2β + 2γ.

If v ∈ C,

SDD∗
V (v) = deg(v)γ.

Given travellable Markov chains D, notice that Br(D) is a function of q, r1, r2, and |ESB|,

|EFB|, |EI |. For a fixed q, r1, r2, and |ESB|, and |EFB|, notice that Br(D) is proportional to

|EI |. This has two implications. First, Br(D) is independent of the structure of the graph

when |EI | is fixed. This means that adding edges to the interior of the graph should cause

Br(D) to increase linearly according to this model. Furthermore, in a situation where only

the boundary is visible, given Br(D) and the boundary-local parameters q, r1, r2,, |ESB|,

and |EFB|, the number of interior edges, EI , can be determined.

5 Merging Multiple Media

Suppose that we merge the interiors of n media by adding tunnels between certain fluid

pockets. In this section, we consider the case where all of the original media have uniform

stationary distributions of the states. An example of a porous medium with a uniform

stationary distribution is a torous shaped medium with transition probabilities defined by

a persistent random walk. A natural question to ask is what constraints on the original

medium must exist so that we can split the states of the merged medium into n classes that

are divided in a way that is closely related to the divisions of the original media, such that

each class has a uniform stationary distribution of the states, but globally, the probability

density can shift between classes.
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Suppose that the n original media have dual graphs G1, G2, ... , Gn and embeddings G∗1,

G∗2, ... , G∗n. We assume that SDDi is uniform for all 1 ≤ i ≤ n Then, a dual graph G and

embedding G∗ must satisfy the following properties:

• V ∗ = ∪ni=1V
∗
i

• V = ∪ni=1Vi

• For all i ≤ n, the induced subgraph generated by Vi in G is Gi.

We define the following subsets of V :

• Bi = {v ∈ Vi | ∃j 6= i s.t. ∃w ∈ Vj s.t. (v, w) ∈ E}.

• Ii = Vi \Bi.

• I = ∪ni=1Ii.

• B = ∪ni=1Bi.

It can be shown that this means that the transition matrix is doubly stochastic. We now

study the state space S. We partition the state space into the following n classes:

• Si = {s ∈ S | vs ∈ Ii} ∪ {s ∈ S | vs ∈ B, p(s) ∈ Vi} .

We now define the n-splittable condition:

Definition 14. We call the stationary distribution SDD of the states of a Markov Chain

D n-splittable if for each i ≤ n, there exists αi such that for all s ∈ Si, SDD(s) = αi. We

denote the splittable stationary distribution as (α1, α2, ..., αi).
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We refer to an unnormalized n-splittable stationary distribution as (α∗1, α
∗
2, ..., α

∗
i ).

We will now outline the constraints on the transition matrix that must be satisfied for

the stationary distribution to be splittable with respect to the n classes S1, S2, ..., Sn.

Lemma 15. For a merged medium to be n-splittable, the following conditions must be sat-

isfied: For s ∈ S such that p(s) ∈ I,

∑
s1∈S,vs1=p(s)

P (s1, s) = 1. (10)

The probabilities P (s1, s) for p(s) ∈ B must be chosen such that the solution to the following

system of n equations in (α1, α2, ..., αn) must be exactly the infinite class of solutions of the

form (α1, α2, ..., αn) = m(k1, k2, ..., kn) where k1, ..., kn are fixed and m ranges over R.

For s ∈ S such that p(s) ∈ B, if s ∈ Sαi,

αi =
n∑
j=1

αj
∑

s1∈Sαj ,vs1=p(s)

P (s1, s). (11)

Proof. This follows from the definition of n-splittable and properties of a transition matrix.

Definition 16. We call a merged dual graph and embedding meshable if condition 2 on

System 11 is satisfied and for s1, s2 ∈ S such that vs1 ∈ Iαj ,

P (s1, s2) = Pαj(s1, s2).

The additional condition of the the meshable definition preserves the transition probabil-

ities coming from s ∈ Si with vs ∈ Ii. This makes sense in an experimental context, because

the transition probabilities of particles coming from fluid pockets that are not directly con-

nected to the other media should not be affected, since the composition of tunnels originated

from those fluid pockets will not be affected by the merging.
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Theorem 17. A meshable merged medium is n-splittable.

Proof. The additional condition of the definition guarantees that the conditions on System 10

holds. Thus, by Lemma 15, the medium is n-splittable.

5.1 Symmetric Case

We study the case where the Markov chain D associated to the meshable, merged medium

has transition probabilities that preserve sufficient symmetry to be experimentally relevant.

These constraints will not impose additional constraints on the transition probabilities de-

fined in the additional condition of the meshable definition, that is, probabilities P (s1, s2) for

s ∈ Si with vs ∈ Ii. We show that in many cases, the unnormalized stationary distribution

of a meshable, symmetric merged medium is determined by the structure of the connections

between the original media and is independent of the transition probability values.

We use the following notation. Let ECO be the set of connecting edges, so that ECO =

E \ (E1 ∪E2 ∪ ...∪En). We let degj,i be the number of connecting edges between Gi and Gj,

so that degj,i = | {(v, w) ∈ ECO | v ∈ Vi, w ∈ Vj} |. We let degi be the number of connecting

edges coming from the medium Gi, so that degi =
∑

j 6=i degj,i .

We now define the constraints imposed by the symmetric condition.

Definition 18. We call a merged medium symmetric if the following two conditions are

satisfied:

• Given a state s such that es ∈ ECO, we know that P (s1, s) is equal for all s1 such that

es1 /∈ ECO.
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• Given a state s such that es ∈ ECO, we know that P (s, s1) is equal for all s1 such that

es1 /∈ ECO.

Theorem 19. If a merged medium is meshable and symmetric, then its normalized station-

ary distribution (α∗1, α
∗
2, ..., α

∗
n) satisfies the following system of equations:

For 1 ≤ i ≤ n,

degi αi =
∑
j 6=i

degj,i αj (12)

We use the following notation in our proof. For a given i, pick a given vertex v ∈ Bi.

We let Ev
CO be {e ∈ ECO | v ∈ e} . We let degvj,i be | {(v, w) ∈ ECO | w ∈ Vj} |. We let degvi

be
∑

j 6=i degvj,i. We will use the following lemma in our proof:

Lemma 20. In a meshable and symmetric merged media of n original media, for a given

i ≤ n and a given v ∈ Bi, we have

degvi αi =
∑
j 6=i

degvj,i αj (13)

Proof. By the symmetry condition, for a given s ∈ Si such that es ∈ Ev
CO, we know that

P (s1, s) is equal for all s1 such that es1 ∈ ECO. We let this value be us.

By (11), we know that

αi = αi deg(v)us +
∑
j 6=i

αj
∑

s1∈Sj ,vs1=v

P (s1, s)

for all s ∈ Si such that es ∈ Ev
CO, where deg(v) is the degree of v in G. This simplifies to

αi(1− deg(v)us) =
∑
j 6=i

αj
∑

s1∈Sj ,vs1=v

P (s1, s)

for all s ∈ Si such that es ∈ Ev
CO.
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If we sum these equations for all s ∈ Si such that es ∈ Ev
CO, we obtain the following:

αi(degvi − deg(v)
∑

s∈Si s.t. es∈EvCO

us) =
∑
j 6=i

αj
∑

s1∈Sj ,vs1=v

∑
s∈Si s.t. es∈EvCO

P (s1, s). (14)

By the symmetry condition, for all j 6= i, for a given s1 ∈ Sj such that vs1 = v, we know

that P (s1, s) is equal for all s such that es /∈ ECO. We know this value is

1−
∑

s∈Si s.t. es∈EvCO
P (s1, s)

deg(v)
.

By (11) and the doubly stochastic condition on each of the original media, we know that

αi = αi(1−
∑

s∈Si s.t. es∈EvCO

us) +
∑
j 6=i

αj
∑

s1∈Sj ,vs1=v

1−
∑

s∈Si s.t. es∈EvCO
P (s1, s)

deg(v)
.

This simplifies to

αi deg(v)
∑

s∈Si s.t. es∈EvCO

us =
∑
j 6=i

αj
∑

s1∈Sj ,vs1=v

(1−
∑

s∈Si s.t. es∈EvCO

P (s1, s)). (15)

Adding (15) and (14), we obtain the following:

degvi αi =
∑
j 6=i

αj
∑

s1∈Sj ,vs1=v

(1).

This simplifies to the desired equation:

degvi αi =
∑
j 6=i

degvj,i αj.

Now, we prove Theorem 19.

Proof of Theorem 19. For a given i, we sum (13) over all v ∈ Bi to obtain the following:

∑
v∈Bi

degvi αi =
∑
v∈Bi

∑
j 6=i

degvj,i αj
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If we simplify and consider this equation for 1 ≤ i ≤ n, we obtain the following system of

equations:

For 1 ≤ i ≤ n,

degi αi =
∑
v∈Bi

∑
j 6=i

degj,i αj

Notice that equations of System 12 sum to 0, demonstrating that they are linearly de-

pendent. Upon deletion of one of the equations, if the remaining equations are linearly in-

dependent, then there will be an infinite class of solutions (α1, α2, ..., αn) = m(k1, k2, ..., kn).

If (k1, k2, ..., kn) are all nonzero and have the same sign, then there is one unnormalized

stationary distribution solution (α∗1, α
∗
2, ..., α

∗
n). In this case, the unnormalized stationary

distribution is a function of the connecting degrees degj,i and is independent of the transition

probability values. In an experimental setting, this means that the long-term distribution of

particles in the merged media is determined by placement of the connecting tunnels, rather

than any properties about cell motion in and out of the tunnels.

In the case of two-dimensions, Theorem 19 significantly limits the possible α and β values.

In fact, it follows that:

Corollary 21. In the case that n = 2, if a merged medium is meshable and symmetric, then

it has a uniform stationary distribution.

This corollary essentially states that the symmetry condition coupled with the meshable

condition renders impossible a 2-splittable stationary distribution with distinct classes. Thus,

our random walk with memory model predicts that if two porous media that each originally
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have uniform long-term particle distributions are connected by any number of tunnels, then

the long-term distribution of particles in the merged media is uniform.

6 Mid Particle Density Case

In this section, we present our preliminary work in constructing a microscopic model for mid

particle density that considers shifts in the density distribution rather than the motion of

individual particles.

First, we seek to calculate a rough estimate of a transitional density for a given porous

medium with dual graph G and associated Markov chain D at which the particle motion

leaves the low particle density limit. This is based on the minimum density that yields a

nonnegligible probability (say p∗) that a randomly chosen particle collides with one of the

other particles. For ease of calculation, we consider particles in the stationary distribution

and compute the minimum number of particles on the porous medium necessary for this to

occur. Then, it suffices to find the minimum n such that

∑
v∈V

SDD
V (v) · (1− (1− SDD

V (v))n−1) > p∗.

6.1 Simple Model

In this subsection, we consider a simple microscopic model takes place on the dual graph

G defined in Section 2. The particle clumps at a given fluid pocket break apart and move

to neighboring fluid pockets, so that the amount of flow to a neighboring fluid pocket is

inversely proportional to the density of that fluid pocket.

We define the state space to be V . For a given state v, we define the set of states n(v) ⊂ V
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to be the neighbors of v, so that

n(v) = {w ∈ V | (v, w) ∈ E} .

We model the process as a step-wise process that transforms the density function ρ :

V → R. At stage i, let the density function be ρi. Order V as
{
v1, v2, . . . , v|V |

}
. We can

represent ρi as a row vector ρ→i of length |V | so that the j’th element of ρ→i is ρi(vj). Then,

we obtain ρ→i+1 by ρ→i ·P ρi where P ρi is a |V | × |V | square matrix with P ρi(k, l) representing

the flow of particles from vk to vl from the stage i to the stage i+ 1. We define P ρi(k, l) so

that P (k, l) > 0 only if vk ∈ n(vl). In that case,

P ρi(k, l) =

1
ρi(vl)∑

v∈n(vk)
1

ρi(v)

.

Notice that
∑

v∈V P
ρi(vk, v) = 1, as desired. This flow distribution models a higher

percentage of particles moving into fluid pockets with a lower density.

We will focus on the case where G is a 1×n grid. Label the vertices v1, v2, v3, . . . , vn in or-

der. We will study the density distribution of the stationary distribution(s) associated to the

step-wise model described above. Notice that the stationary distributions are infinite classes

of vectors of the form α · v→ for α ∈ R. For a given stationary distribution S(G), we define

ρS to be the corresponding density distribution. Notice that P ρS(vi, vi+1) = P ρS(vi+1, vi)

for all 1 ≤ i ≤ n − 1 and P ρS(vi, vj) = 0 unless j − 1 = −1, 1. Also, notice that

ρS(vi) = P ρS(vi+1, vi) + P ρS(vi−1, vi), where P ρS(vi, vi+1) is taken to be 0 if i = n or i = 0.

We derive the following relation:

Lemma 22. In a stationary distribution of a dual graph that is a 1× n grid, we have

P ρS(vi, vi+1) · ρS(vi) = P ρS(vi+1, vi+2) · ρS(vi+2).
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for all 1 ≤ i ≤ n− 1.

Proof. We know that

P ρS(vi+1, vi) = ρS(vi+1) ·
1

ρS(vi)

1
ρS(vi)

+ 1
ρS(vi+2)

.

This means that

P ρS(vi+1, vi)

P ρS(vi, vi+1) + P ρS(vi+2, vi+1)
=

1
ρS(vi)

1
ρS(vi)

+ 1
ρS(vi+2)

.

Taking the inverse gives us,

P ρS(vi, vi+1) + P ρS(vi+2, vi+1)

P ρS(vi+1, vi)
=

1
ρS(vi)

+ 1
ρS(vi+2)

1
ρS(vi)

.

Hence,

P ρS(vi+2, vi+1)

P ρS(vi+1, vi)
=

1
ρS(vi+2)

1
ρS(vi)

=
ρS(vi)

ρS(vi+2)
,

which gives us the desired statement. This relation, coupled with the reflective symmetry

about the center of G, enables us to calculate the stationary distributions for small n. We

pick a single scalar value of α for each infinite class in the stationary distribution. We have

the following approximations (rounded to the nearest hundredth) for n = 1, 2, 3, 4, 5, 6, 7, 8, 9.
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n ρ→S

1 [1]

2 [1, 1]

3 [1, 2, 1]

4 [1.62, 2.62, 2.62, 1.62]

5 [1.41, 2.41, 2, 2.41, 1.41]

6 [1.28, 2.15, 1.87, 1.87, 2.15, 1.28]

7 no solution

8 [1.35, 2.28, 1.96, 2.04, 2.04, 1.96, 2.28, 1.35]

9 [1.34, 2.26, 1.95, 2.03, 2, 2.03, 1.95, 2.26, 1.34]

Notice that there is no stationary distribution in the case n = 7, but there is exactly one

stationary distribution (up to scalar multiplication) for all other n. Notice that each distri-

bution is non-monotonic towards the center and the values have no perceivable closed form.

This is unexpected given the simplicity of the microscopic model.

7 Conclusion

In this study, we conducted a mathematical analysis of a microscopic model of swimming cell

motion in porous media. We considered a random walk with one-step memory on the dual

graph defined by the fluid pockets on the medium. In the case of low particle density, we

presented an analytic solution that generalized the overaching project’s computer-generated

numerical solutions to a significantly larger class of porous media. We presented properties

of the analytic solution that can be implemented in an experimental setting to test the
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accuracy and validity of the random walk with memory model.

We proved that the splittability of the stationary distribution of porous media whose as-

sociated Markov chain is travellable. This implied that the boundary ratio was proportional

to the number of tunnels in the interior. We also proved that the long-term distribution

of particles in a symmetric, meshable merged media is determined by the placement of

connecting tunnels.

We also presented our preliminary work in constructing a microscopic model for mid

particle density that considers shifts in the density distribution rather than the motion of

individual particles. We considered a simple microscopic model where particle flow was

inversely proportional to the density. In the 1-dimensional case, we paradoxically found

this model had no stationary distribution for a 1× 7 dual graph and yielded an alternating

up/down stationary distribution for other small cases.
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