
A combinatorial interpretation of the h- and γ-vectors
of the cyclohedron
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Abstract

We give an overview of the theory of convex polytopes and focus our attention on the
family of graph-associahedra, constructed from connected graphs. We present a combinatorial
interpretation of the γ-vector of the cyclohedron and conjecture a descent-preserving bijection
between the B-trees of the cycle graph on n + 1 vertices and all lattice paths on the n × n
grid.

Summary

The mathematical area of combinatorics has a long history, and many branches of research
have emerged from it. We study a connection between graph theory and geometry which has
proven to be the source of many interesting phenomena. From a collection of vertices joined
by edges we follow a known procedure to construct its associated polyhedral shape: it is the
main focus of this type of research to find the number of faces of the generated shape. Every
collection of vertices and edges will generate a shape with certain properties, and we point
toward an interpretation for the number of faces of a particular kind of shape.



1 Introduction

Polytopes are the modern representation of convex shapes in an arbitrary number of dimen-

sions. The study of geometry is one of the oldest branches of mathematics, but the framework

in which polytopes are studied today was not fully introduced until 1967 [1]. The modern

approach to classical geometry provides new insight into old questions, while allowing the

pursuit of new paths of research.

A notable example of the relationship between polytopes and a seemingly unrelated

area of mathematics is the realization of a very interesting subset of polytopes: graph-

associahedra. These polytopes are a particular type of generalized permutohedra, as defined

by Postnikov [2], and their study relies on the analysis of combinatorial properties of graphs,

to provide insight into the combinatorial structure of the associated polytopes.

For well-understood graphs, results regarding the structure of their associated polytopes

are abundant (see [3, 2, 4]). For example, the path graph on n-vertices yields the associahe-

dron with vertices corresponding to the triangulations of the (n+ 2)-gon, and the complete

graph on n-vertices yields the permutohedron with vertices corresponding to permutations of

the vector (1, . . . , n). It is known that the number of k-dimensional faces of these polytopes is

defined as a function of Narayana and Eulerian numbers respectively, and similarly beautiful

results have been found for other popular graphs, such as the cycle on n vertices (see [4] for a

comprehensive survey). The study of the combinatorial structure of graph-associahedra relies

heavily on the symmetry of the graph chosen; removing an edge from the complete graph

or adding an edge between two vertices of the cycle dramatically increases the difficulty of

finding elegant formulas to describe the associated polytopes.

In Section 2 we introduce the theory of convex polytopes and graph-associahedra. In

Section 3 we construct a bijection between equivalence classes of the B-trees of the cycle on

n + 1 vertices and lattice paths on the n× n grid. We state a generalized conjecture of our
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bijection and present a combinatorial interpretation of the γ-vector of the graph-associahedra

of the cycle graph.

2 Definitions

We begin by defining the essential concepts used thorough this paper.

An n-dimensional polytope P is the convex hull of a finite set of points S ⊂ Rn. It is

equivalently defined as the bounded intersection of closed halfspaces (see Ziegler [1] for a

detailed explanation).

Figure 1: Equivalent realizations of a polytope.

We call an n-dimensional polytope simple if each of its vertices is adjacent to n edges. P ∗

is dual or polar to P if there is an inclusion-reversing bijection between the faces of the two,

that is, vertices of P correspond to facets of P ∗, and more specifically, k-dimensional faces

correspond to (n− k − 1)-dimensional faces. The dual of a simple polytope is simplicial ; all

of its facets are simplices. A polytope P is flag if any set of pairwise intersecting facets of P

has non-empty intersection.

For a given n-dimensional polytope P , we encode its combinatorial structure in several

different ways. First, we define fi(P ) to be the number of i-dimensional faces of P , with

f0(P ) the number of vertices, f1(P ) the number of edges joining vertices, and so on. Then

we define (f0(P ), ..., fn(P )) to be the f -vector, and fP (t) =
∑n

i=0 fi(P )ti the f -polynomial.
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For example, for the usual cube in three dimensions, its f -vector is f(Cube3) = (8, 12, 6, 1)

and its f -polynomial is fCube3(t) = 8 + 12t+ 6t2 + t3.

When P is simple, it is convenient to define the h-vector as the coefficient vector of the h-

polynomial, constructed from the relation fP (t) = hP (t+ 1). From Sommerville [5], we know

that the h-vector satisfies the Dehn-Sommerville symmetry hi(P ) = hn−i(P ). Furthermore,

Gal [6, Section 2] showed that if P is flag as well, the f and h-vectors can be equivalently

encoded in a shorter γ-vector (γ0(P ), ..., γbn
2
c(P )) and its corresponding γ-polynomial, de-

termined by the relation

hP (t) =

bn
2
c∑

i=0

γi(P )ti(1 + t)n−2i,

which follows from the expansion of the palindromic h-polynomial.

Thus, by finding the value of the very compact γ-vector of P , we can derive the value of

its f -vector. Gal [6] conjectured that all entries in the γ-vector of flag polytopes are positive.

Buchstaber et al. [7] proved the non-negativity of the γ-vector of all graph-associahedra. More

particular proofs have been described for some collections of polytopes (see Erokhovets [8],

for example), but the general question of γ-positivity remains open.

For a given connected graph G with labeled nodes {1, ..., n} we study its associated

polytope, the aptly named graph-associahedron.

Definition 2.1. [4, Definition 6.1] A building set B on S is a collection of subsets of S that

satisfy the following conditions:

1. If I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.

2. {i} ∈ B for all i ∈ S.

We specialize the building set to our connected graph G and its vertex set S. Given

a subset of vertices I, let G|I be the induced subgraph of G obtained by considering only

vertices i ∈ I. Note that B(G) consists of all subsets I ⊂ S such that the induced subgraph

3



G|I restricted by I is connected. The set of inclusion-maximal subsets of B(G) is simply

Bmax(G) = {S}, because S is connected by definition. For every building set, we define a

geometrical process that will generate its associated polytope.

Definition 2.2. [4, Definition 6.3] For every I ∈ B, let ∆I be the convex hull of the set of

standard basis vectors {ei : i ∈ I} in Rn. Define the nestohedron PB to be the Minkowski

sum of the simplices ∆I :

PB :=
∑
I∈B

∆I .

We specialize again the definition to the building set of our connected graph, and call

the associated polytope the graph-associahedron of G. Here follows a definition that allows

us to relate the structure of the building set of a graph to the combinatorial structure of its

associated nestohedra.

Definition 2.3. [2, Definition 7.3] Given a building set B, a subset N ⊂ B\Bmax is a nested

set if it satisfies the conditions:

1. For I, J ∈ N , either I ⊂ J or J ⊂ I or I ∩ J = ∅.

2. For any collection of k ≥ 2 disjoint sets I1, ..., Ik ∈ N , the union I1∪ ...∪ Ik is not in B.

We define the nested set complex ∆B as the collection of all nested sets of B. We finally

describe the important relationship between ∆B and PB:

Theorem 2.1. [2, Theorem 7.4] For a building set B, the associated nestohedron PB is a

simple polytope of dimension n − |Bmax|. Its dual simplicial complex is isomorphic to the

nested set complex ∆B.

Specializing to the case of a connected graph on n vertices, we note that its graph-

associahedron is (n− 1)-dimensional.
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It was further proven by Postnikov [2] that the vertices of PB are the inclusion-maximal

nested sets of ∆B, and the dimension of a given face in PB has dimension n− |N | − |Bmax|,

where N is its associated nested set.

We can define lower and upper bounds for the combinatorial information of nestohedra.

The largest possible building set is the set of all subsets of S; equivalently, we construct the

graphical building set B(Kn) = 2[n] \ {∅} from the complete graph and call it the complete

building set. Its f - and h-vectors define then the upper bounds for any nestohedra. The

smallest possible connected building set is the set of all singletons of [n] = {1, 2, . . . , n},

B = {{1}, ..., {n}}, which yields a nestohedron equivalent to the (n − 1)-simplex, defining

the lower bound for the f - and h-vectors.

Let us define the two constructions which allow Postnikov [4] to redefine the h-vector as

a function of the building set. For a rooted labeled tree T , let us define T≤i as the set of

nodes that are descendants of i. Two nodes are incomparable if neither i ∈ T≤j nor j ∈ T≤i.

Definition 2.4. [4, Definition 8.1] For a connected building set B on [n], define a B-tree to

be a rooted tree T on the node set [n] which satisfies the following conditions:

1. For all i ∈ [n], T≤i ∈ B.

2. For k ≥ 2 incomparable nodes i1, ..., ik ∈ [n],
⋃k

j=1 T≤ij /∈ B,

We interpret the construction of a B-tree of a graphical building set as follows: pick a

vertex i in G and consider it the root of the tree T . For each connected component of G\{i},

generate a subtree and join it from its root to i by an edge. Repeat this process for every

possible subtree sequence.

To help illustrate the process, consider the path graph Path3 on three vertices labeled

{1, 2, 3} with edges {(1, 2), (2, 3)}. To construct the B-trees of Path3, pick the vertex 1 and

generate all possible trees rooted on 1. We remove 1 fromG, leaving us with a single connected

component {2, 3}: we can now construct two subtrees, either 2 → 3 or 3 → 2. So all trees
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rooted on 1 are {1 : [2 : [3]]} and {1 : [3 : [2]]}. We repeat the same process but with root

2: remove it from the graph and we get two disconnected components, {1} and {3}. Since

there are no possible subtrees for any of the components, we find that the only tree rooted

on 2 is just {2 : [1, 3]}. Finally, choose 3 as the root and we get that all trees rooted on 3

are {3 : [1 : [2]]} and {3 : [2 : [1]]}. Figure 2 shows the generated trees described in this

construction process.
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Figure 2: Decomposition of Path3 in B-trees.

Figure 3 shows the process of constructing a single B-tree from the complete graph K4,

illustrating the concept of connectivity.
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Figure 3: The process of constructing a B-tree of Kn never disconnects it, therefore all nodes
of the tree have at most one child.

Definition 2.5. [4, Definition 8.7] For a building set B on [n], define the set Sn(B) ⊂ Sn

of B-permutations as the set of permutations w ∈ Sn such that for any i ∈ [n], w(i) and

max{w(1), ..., w(i)} are in the same connected component of B|{w(1),...,w(i)}.

Finally, we define a statistic that is used to describe the h- and γ-polynomials. The

descent number des(w) of a permutation w ∈ Sn is the number of indices i ∈ [n] such that
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w(i) > w(i + 1). Similarly, we define the descent number of a tree des(T ) as the number

of edges joining the vertex j to its parent i, satisfying i > j. Let Ŝn be the set of n-

permutations with no two consecutive descents w(i − 1) > w(i) > w(i + 1) and no final

descents w(n− 1) > w(n).

Postnikov [2] showed how to describe the h-vector of a building set B as the descent-

generating function of its B-trees.

Corollary 2.2. [2, Corollary 8.4] Given a connected building set B, the h-polynomial of PB

is given by

hB(t) =
∑

T∈B-trees

tdes(T ).

Let a connected building set B be chordal if for any I = {i1 < ... < ir} ∈ B, the set

{is, is+1, ..., ir} for all s ≤ r is also an element of B. Postnikov [4, Proposition 8.10] proved

that B-trees, B-permutations and the set of vertices of PB are all in bijective correspondence.

Furthermore, they proved the following:

Theorem 2.3. [4, Theorem 1.1] For a connected chordal building set B on [n], the h-vector

of the nestohedron PB is given by

∑
i

hit
i =

∑
w∈Sn(B)

tdes(w),

and the γ-vector of PB is given by

∑
i

γit
i =

∑
w∈Sn(B)∩Ŝn

tdes(w).

We specialize the result to graphical chordal building sets, constructed from chordal

graphs ; graphs in which every induced cycle has at most three vertices. Theorem 2.3 says

that for any chordal graph, the h- and γ-polynomials of its graph-associahedron can be
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described from a subset of permutations equivalent to the B-trees.

To describe the structure of PB(G) for a connected graph G, we must understand and

describe the structure of either its associated set of B-trees or the set of B-permutations.

We present the known h-polynomials of classical graph-associahedra. We shall abuse

notation by referring to the h-polynomial of the graph-associahedron of G as hG(t) instead

of hB(G)(t).

The path graph Pathn on n-vertices generates all Cn = 1
n+1

(
2n
n

)
binary trees on n vertices,

labeled by depth-first search. The descent of a tree is the number of right edges, and it is

counted by the Narayana numbers N(n, k) = 1
n

(
n
k

)(
n

k−1

)
. Thus, the h-polynomial is

hPathn(t) =
n−1∑
k=0

N(n, k + 1) · tk.

The complete graph on n-vertices Kn generates all linear trees, easily realized as permutations

on n words. The vertices of its graph-associahedron are exactly all permutations of the vector

(1, ..., n), and thus the descent of the trees is the usual Eulerian polynomial

hKn(t) =
n−1∑
k=0

A(n, k + 1) · tk.

3 Combinatorics of the cyclohedron

The graph-associahedron of the cycle graph Cyclen is known as the cyclohedron, with its

vertices corresponding to the triangulations of the (2n+ 2)-gon; see Simion [9].

Using the known h-polynomial of PCycle(n+1)
, we derive a combinatorial interpretation for

its γ-polynomial. The previous derivation by Reiner et al. [10] used hypergeometric series

transformations.
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3.1 Conjectural bijection between lattice paths and B-trees

Consider the set of B-trees of the Cycle(n+1) graph. To construct a tree T , we pick a vertex

i ∈ [n+1] and set it as the root of the T . When we remove i from Cycle(n+1), we are left with

a Pathn with labels shifted cyclically. Therefore, there are (n + 1)Cn B-trees, Cn of these

rooted at n + 1 such that T \ {n + 1} is the set of binary trees on n vertices. We define an

operation which characterizes this cyclic construction.

Definition 3.1. Let the operation Shiftk(T ) exchange the labels of T from i to i−k (mod n+

1), for a B-tree T of Cycle(n+1).

Lemma 3.1. The operation Shiftk(T ) defines a partition of the set of B-trees of the Cycle(n+1)

graph into Cn equivalence classes of size n+ 1.

Proof. Let T be a B-tree of Cycle(n+1) rooted on n+ 1. The operation Shiftk(T ) generates a

set of n + 1 trees with decreasing root labels when applied n + 1 times. We then define an

equivalence relation on B-trees. Consider all Cn binary trees rooted at n + 1. Note that for

a pair of non-equal such trees Ta and Tb, it is impossible to have Ta = Shiftk(Tb) for some k,

since the root of Ta has to be n+ 1, but it is generated from (n+ 1)−k ≡ n+ 1 (mod n+ 1)

which implies that k = 0, and thus Ta = Tb, a contradiction. Similarly, it is impossible that

Shiftk(Ta) = Shiftk
′
(Tb) for some k > k′, because then Shiftk−k

′
(Ta) = Tb, implying that

Ta = Tb.

Two trees T and T ′ are congruent under our equivalence relation if there exists some

k ∈ [n+ 1] such that T = Shiftk(T ′). Reflexivity is obvious, simply let k = 0. For symmetry,

if T = Shiftk(T ′), then Shiftn−1−k(T ) = Shiftk+n−1−k(T ′) = Shift0(T ′) = T ′. For transitivity,

if T = Shiftk(T ′) and T ′ = Shiftk
′
(T ′′), then T = Shiftk(Shiftk

′
(T ′′)) = Shiftk+k′(T ′′).

We take the representative tree of an equivalence class to be the binary tree rooted at

n+1. There is a natural bijection between binary trees on n vertices and lattice paths on the
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n×n grid. A binary tree can be expressed as a Dyck word, a string of balanced parenthesis.

Denote rep(i) as the Dyck word representation of a binary tree node. Given a node i, if it has

no children then rep(i) = (). If it has one children j such that j > i, then rep(i) = ()(rep(j)).

If it has one children j such that j < i, then rep(i) = (rep(i)). If it has two children j, j′

such that j > i > j′, then rep(i) = (rep(j′))(rep(j)).

A Dyck word also encodes a Dyck path, a type of path which does not cross the diagonal,

with opening parenthesis representing horizontal edges, and closing parenthesis representing

vertical edges. Note that a sequence “. . .)(. . .” in a Dyck word is equivalent to a peak in a

Dyck path, and to a descent in a binary tree. We thus have a map φ from all Cn binary trees

on n vertices rooted at n + 1 to all Dyck paths on the n × n grid, preserving the descent

number of the trees as the number of peaks of the paths.

To make this section self-contained, we include the following definition and lemma from

Chen [11].

Definition 3.2. The operation Shiftk(P ) generates a lattice path on the n×n grid as follows:

let e be the last horizontal edge in P stemming from the diagonal, let A be the subset of

edges below e and let B be the subset of edges above e. Then Shift1(T ) is the path obtained

by moving the first edge of B to (0, 0), adding e at its last edge and completing the path by

adding A at e. Shiftk(P ) repeats the operation Shift1(P ) k times.

Lemma 3.2. [11, Theorem 0.1] The set of lattice paths on the n×n grid from (0, 0) to (n, n)

is partitioned into Cn equivalence classes of size n+ 1 under the Shiftk(P ) operation.

By applying Shift1(P ) to a Dyck path P , we increase by one the number of vertical edges

above the diagonal. We take the representative lattice path of an equivalence class to be the

unique Dyck path contained in it, with no vertical edges above the diagonal.

We conjecture that the equivalence class [T ] = {Shiftk(T ) : k ∈ [n]} of a binary tree on n

nodes rooted at n+ 1 defines the same descent-generating function as the equivalence class

10



[P ] = {Shiftk(P ) : k ∈ [n]} of the Dyck path P = φ(T ).

Conjecture 3.3. For every binary tree T on n nodes rooted on n+1 and its equivalent Dyck

path P = φ(T ), we have ∑
T ′∈[T ]

tdes(T
′) =

∑
P ′∈[P ]

tdes(P
′).

We verified Conjecture 3.3 for all binary trees on n nodes for n ∈ {1, 2, . . . , 13}.

As a conditional corollary assuming Conjecture 3.3, it follows that all the B-trees of the

cycle graph Cycle(n+1) are in bijection with all lattice paths on the n × n grid, preserving

the descent number.

3.2 Combinatorial interpretation of the γ-vector of the cyclohe-

dron

The h-polynomial of the cyclohedron was computed by Simion [9]:

hCycle(n+1)
=

n∑
k=0

(
n

k

)2

.

Reiner [10] derived the γ-polynomial using hypergeometric series transformations on the

h-polynomial. We find a combinatorial description by following the approach first used in

Postnikov [4] to compute the γ-polynomials of chordal nestohedra.

Theorem 3.4. The γ-polynomial of the cyclohedron is given by

γCycle(n+1)
(t) =

bn
2
c∑

r=0

(
n

r, r, n− 2r

)
tr.

Recall that for a lattice path P with vertical edges V ⊂ P and horizontal edges H ⊂ P ,

the descent number of P is defined as the number of peaks peaks(P ) = |{i ∈ V : i+1 /∈ V }|.
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Consider the set S(k) = {P : peaks(P ) = k} of all lattice paths with k descents. Points on

the grid representing descents cannot be of the form (i, 0), (n, i) nor (n, n) for any i ∈ [n].

Given a set of k descent coordinates, there is only one path with the specified descent points,

and therefore |S(k)| =
(
n
k

)2
. Summing over all possible number of descents, we get the total

of
∑n

k=0

(
n
k

)2
=
(
2n
n

)
paths.

We separate the coordinates of the peaks in S(k) in two sets of x- and y-coordinates

R(P ), Q(P ) ⊂ [n] respectively, for a given lattice path P . We abuse notation by referring to

R(P ) and Q(P ) as R and Q. Let us define the following subsets of [n]:

• A(P ) = R \Q,

• B(P ) = Q \R,

• C(P ) = R ∩Q and

• D(P ) = [n] \ (R ∪Q).

We similarly refer to A(P ) as A, and so on. The four subsets defined partition [n],

therefore A∪B ∪C ∪D = [n] and |A|+ |B|+ |C|+ |D| = n. Since there is the same number

of x- and y-coordinates, let r := |A| = |B| and thus 2 · |A|+ |C|+ |D| = n.

We define the operation Hopm(P ) for certain m ∈ [n] as follows. If m ∈ A or m ∈ B, the

operation is undefined. If m ∈ C, then Hopm(P ) removes m from R and Q. If m ∈ D, then

Hopm(P ) adds m to R and Q.

The following technical properties of our operation ensure that we can use the method

discovered by Postnikov [2] to describe the γ-polynomial of a nestohedron.

Lemma 3.5. The operation Hopm(P ) has the following properties:

(1) Hopm(P ) is commutative.

(2) Hopm(P ) ◦ Hopm(P ) is the identity operation.
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(3) If peaks(P ) = k, we can generate a path P ′ such that peaks(P ′) = n − k through a

sequence of Hopm(P ) operations.

Proof. For (1), applying Hopm(P ) for a valid m ∈ [n] has no effect on a valid m′ ∈ [n].

For (2), say that m ∈ C. Then Hopm(P ) removes m from R and Q, and applying it again

moves m back to R and Q. The same argument holds if m ∈ D. For (3), first note that

peaks(P ) = |R| = |Q|. At most, we have that |D| = n − r when R = Q. At least, we have

that |D| = r when |C|. By applying Hopm(P ), the number of peaks of the path generated

fluctuates in that range.

Proof of Theorem 3.4. We define an equivalence relation under the Hopm(P ) operation which

partitions the set of all lattice paths on the n×n grid. Two lattice paths are congruent under

the Hop operation if we can generate one from the other through a sequence of Hopm(P ) for

some m ∈ [n]. By taking the representative path of each equivalence class such that |D| = r,

we find that there are
(

n
r,r,n−2r

)
possible elements in the equivalence class [P ].

From Postnikov [2], it follows that an operation that partitions the set of B-trees and

satisfies Lemma 3.5 fully defines the γ-polynomial.

4 Conclusion

We presented a combinatorial interpretation for the γ-polynomial of the graph-associahedra

of the cycle graph, based on the study of lattice paths on the n× n grid. We also presented

a conjecture which directly relates equivalence classes of the lattice paths on the n× n grid

with equivalence classes of the B-trees of the cycle graph on n+1 vertices. Finding a complete

bijection between lattice paths and B-trees is an interesting problem for future research.
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