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Abstract

If a graph G has v vertices, a copy of G inside a larger graph K is a subgraph H of

K on v vertices such that G is a subgraph of H. Similarly, we define an anticopy of G

to be a subgraph H of K on v vertices such that G is a subgraph of H̄. A graph F is

common if and only if the minimum density of copies and anticopies of F in any graph

G is 21−|E(F )|, where |E(F )| denotes the number of edges in the graph F. Note that

this minimum is attained when G is a random graph with edge density one-half. In this

paper, we propose a modern proof that the graph formed from any number of disjoint

copies of a common graph is itself common. This novel proof leads to innovative partial

results and opens other questions about the commonality of disjoint graphs. We then

prove that the graph obtained from a pentagon by adding a chord is common, resolving

a central open problem in the field of graph commonality.
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Summary

Social network-based companies like Twitter and Facebook rely on their ability to

analyze large networks and exploit structures within these networks for a profit. We

can study these large networks by analyzing what structures we are guaranteed to

find inside any large network with a minimum frequency. These small structures are

known as common graphs. This paper provides a modern proof of the existing result

that the structure formed from any number of disjoint copies of a common graph is

also common. The method of proof yields novel partial results and poses new questions

about the commonality of disjoint graphs. This paper also resolves the question of the

commonality of the pentagon with a chord, an outstanding open question in the field

of graph commonality.

The work in this research paper has applications to analysis of any large network,

like the Internet or a social network, by paving the road towards identifying substruc-

tures that are high-value research targets. This paper may even have applications in

ecology and urban planning by identifying common habitat patterns (like a forest with

two lakes, which can be modeled in a large graph by a pentagon with a chord). These

specific habitats can be given a priority for development or preservation depending on

their frequency and environmental impact.
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1 Introduction

For social network-based companies like Facebook and LinkedIn, the primary business model

is strongly dependent on the corporation’s ability to create new connections between pre-

viously unacquainted people. Social networks in general can be described by graphs, where

people are represented by vertices, with an edge between two vertices if and only if the two

corresponding people are acquaintances or friends on the social network in question.

This analysis of graphs as social networks has been around for decades, as a well-known

theorem in combinatorics known as the Party Theorem [1], which states that among any

six people at a dinner party, either three of them all know each other or three of them are

strangers. This problem can be formulated in terms of graph theory — any graph on six

vertices must either contain three vertices that are connected to each other (a triangle) or

three vertices all disconnected from each other (the complement of a triangle).

This problem can be further generalized; in 1930, Ramsey [2] proved that one can always

find any complete graph (a graph with every edge drawn in) inside a sufficiently large graph

K or its complement K̄. The complement of a graph, denoted by the graph with a bar on top,

is the graph obtained by replacing every edge in the graph with a non-edge, and vice-versa.

Ramsey’s Theorem naturally generalizes to any graph, as can be observed by noting that

any graph is a subgraph of the complete graph on its vertices.

For a graph G, V (G) is the set of vertices of G and E(G) is the set of edges of G. For a

set A, |A| refers to the cardinality, or size, of the set. Let us define a copy of a graph G inside

a larger graph K to be a subgraph H ⊂ K on |V (G)| vertices such that G is a subgraph of

H. Similarly, we define an anticopy of G to be a subgraph H of K on |V (G)| vertices such

that G is a is a subgraph of H̄. Note that an anticopy of G in K is a copy of G in K̄. We let

a presence of G in K be either a copy or an anticopy of G in K.

Combinatorialists wish to count the minimum number of presences of a particular graph
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G that we are guaranteed to find inside a large K. In a random large graph K, we expect

to see 21−e ·
(
n

v

)
presences of G, where e denotes the number of edges in G, v denotes

the number of vertices in G, and n denotes the number of vertices in K. The intuition for

this is that the probability that all e edges of G are present in K is 2−e, which is also the

probability that every edge of G is missing. It is known that for some graphs G, the frequency

of presences of G in a random K, which is 21−e ·
(
n

v

)
, ends up being minimal. Such graphs

G are called common graphs.

Applications for determining commonality of graphs include analysis of large networks,

such as social networks or the Internet. Another important application of determining which

graphs are common is that of property testing, where a large graph K is analyzed and

compared to a random graph on n vertices using metrics such as the number of presences of

particular graphs.

Currently, the mathematical community knows the commonality of only a few graphs

and classes of graphs. Goodman [1] showed that the triangle K3 is common. Thomason [3]

expanded the result to show that the complete graphs on n vertices are uncommon for n > 3.

Jagger, et. al. [4] generalized this to show that all graphs containing K4 as a subgraph are

uncommon. Furthermore, removing two edges from a K4 yields a triangle with a pendant

edge, which was proven by Sidorenko [5] to be uncommon (see Figure 1).

This result was further generalized by Fox [6] to show that any odd cycle (triangle, pen-

tagon, etc.) with a pendant edge attached is uncommon (see Figure 1). However, Sidorenko

[5] proved that all cycles are common. A few other classes of graphs have also had their

commonality verified or disproven, but the latest contribution to the field was by Hatami,

et. al. [7], who showed that the 5-wheel is common (see Figure 1).

This paper’s main result is a proof of the commonality of the pentagon with a chord1 (see

1The commonality of the pentagon with a chord was proposed by Jagger, et. al. in [4] as one of the most
important unsolved problems in the field of graph commonality.
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Figure 1: (from left to right) K4, the triangle with a pendant edge, and the 5-wheel, whose com-
monalities are determined. Lastly, the pentagon with a chord, whose commonality we prove in this
paper.

Figure 1), a graph belonging to the category of odd cycles with a chord, a class of graphs

whose commonality is completely undetermined until now. However, before that, we analyze

disconnected graphs, including a modern proof that a graph formed from any number of

disjoint clones of a common graph is common, originally proven by Jagger, et. al. [4].

2 An Analysis of Disconnected Graphs

Most commonality studies to date have focused on connected graphs. For instance, Jagger,

et. al. [4] disregarded the problem of determining the commonality of disconnected graphs.

However, interestingly, they immediately afterwards described the vast potential for research

in the area of disjoint graphs.

In particular, it is unknown in generality when the disjoint union of two common graphs

produces another common graph. It is known that the disjoint union of a triangle and a lone

edge, both of which are common graphs, is uncommon [4]. However, the disjoint union of

two triangles is common [8]. It is also undetermined whether the union of a common graph

and an uncommon graph must always be uncommon. Furthermore, the commonality of the

disjoint union of two uncommon graphs is undecided [4]. Disjoint graphs are so sparsely

studied that even the commonality of the graph composed of a disjoint triangle and square

has not yet definitively been established. However, my floating point calculations suggest

that the disjoint triangle and square is common, up to an error of order 10−32.
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However, in 1996, Jagger, et. al. [4] proved that any number of disjoint clones of a common

graph form a disconnected graph that is itself common. Here we propose a modern proof of

this theorem using Hölder’s Inequality.

2.1 A Modern Proof of Commonality of Disjoint Clones of Com-

mon Graphs

Let us define a homomorphism of a graph F inside another graph G as a map from the

vertices of F to the vertices of G that preserves edges, but not necessarily non-edges, between

vertices. We then define the homomorphism density t(F,G) of a graph F in another graph

G as the number of homomorphisms of F in G divided by

(
|V (G)|
|V (F )|

)
.

Note that, by definition, a graph F is common if and only if

t(F,G) + t(F, Ḡ) ≥ 21−|E(F )| (1)

for all graphs G, where Ḡ denotes the complement of G. Commonness is a particularly

interesting asymptotic property of graphs because it is a tight bound; it can be attained for

any graph F by taking G to be the random graph with edge density one-half.

Theorem 2.1 (Jagger, et. al., 1996). Let F be a common graph. Then, for all positive

integers n, the graph Fn composed of n disjoint clones of F is common.

Proof. Because all the clones of F are disjoint, t(Fn, G) = t(F,G)n. Similarly, t(Fn, Ḡ) =

t(F, Ḡ)n. Thus, we have

t(Fn, G) + t(Fn, Ḡ) = t(F,G)n + t(F, Ḡ)n.
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To prove our theorem, we use Hölder’s Inequality, which can be stated as

k∑
i=1

aibi ≤

(
k∑

i=1

api

)1/p( k∑
i=1

bqi

)1/q

,

where the ai and bi are non-negative reals, and p and q are positive reals such that 1
p

+ 1
q

= 1.

For our application of Hölder’s Inequality, we let k = 2 and plug in a1 = a2 = 1,

b1 = t(Fn, G), b2 = t(Fn, Ḡ), p = n
n−1 , and q = n. We verify that all the ai and bi are

non-negative because subgraph densities are non-negative, and that 1
p

+ 1
q

= n−1
n

+ 1
n

= 1.

Thus, by Hölder’s Inequality, we have

t(F,G) + t(F, Ḡ) ≤ 2(n−1)/n ·
(
t(F,G)n + t(F, Ḡ)n

) 1
n .

Because t(F,G) + t(F, Ḡ) ≥ 21−|E(F )|, we have (t(F,G) + t(F, Ḡ))n ≥ 2n−n·|E(F )|, yielding,

2n−n·|E(F )| ≤ (t(F,G) + t(F, Ḡ))n ≤ 2n−1 · (t(F,G)n + t(F, Ḡ)n).

Simplifying, we see that our expression above reduces to 21−n|E(F )| ≤ t(F,G)n + t(F, Ḡ)n.

Because Fn has n · |E(F )| edges, inequality 1 implies that Fn is common.

Our proof affords us the opportunity to investigate the equality case of Hölder’s Inequality

to glean some insight into graphs composed of disjoint clones of uncommon graphs, such as

in the following proposition.

Theorem 2.2. If there is a large graph G′ that is a counterexample to the commonality of F

and also has t(F,G′) = t(F, Ḡ′), then the graph formed from any number of disjoint clones

of F is a graph that is also uncommon.

Proof. The equality case of Hölder’s Inequality is bi = cap−1i for all i and some constant c.

In our proof of Theorem 2.1, a1 = a2 = 1, so the equality case occurs when b1 = b2, or
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t(Fn, G) = t(Fn, Ḡ). Because t(Fn, G) = t(F,G)n and t(Fn, Ḡ) = t(F, Ḡ)n, the equality case

is just

t(F,G) = t(F, Ḡ). (2)

Recall that by definition, a graph F is uncommon if and only if there exists some graph

G′ such that t(F,G′) + t(F, Ḡ′) < 21−|E(F )|. This is equivalent to

(t(F,G′) + t(F, Ḡ′))n < 2n−n·|E(F )|. (3)

In the equality case of Hölder’s Inequality, we have

(t(F,G′) + t(F, Ḡ′))n = 2n−1 · (t(F,G′)n + t(F, Ḡ′)n). (4)

Combining inequality 3 and equation 4, we get

t(F,G′)n + t(F, Ḡ′)n < 21−n·|E(F )|,

which is exactly the definition of uncommonality.

This new theorem naturally yields the question of which uncommon graphs have coun-

terexamples G′ to commonality with t(F,G′) = t(F, Ḡ′).

Another class of poorly studied disconnected graphs is that of an uncommon graph with

a disjoint edge. We propose the following partial result.

Theorem 2.3. If F is an uncommon graph such that there is a graph G′ with t(F,G′) +

t(F, Ḡ′) < 21−|E(F )| such that G′ has edge density one-half, then the graph F ′ formed from

adding a disjoint edge to F is also uncommon.

Proof. We claim that G′ is also a counterexample to the commonality of F ′. We note, from
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the definition of commonality in inequality 1, that F ′ is uncommon if

t(F ′, G′) + t(F ′, Ḡ′) < 21−|E(F ′)| = 2−|E(F )|.

Also, because G′ is disjoint, we know t(F ′, G′) = 1
2
t(F,G) because the probability that

the additional edge is present in G′ is 1
2
. Similarly, t(F ′, Ḡ′) = 1

2
t(F,G). Hence,

t(F ′, G′) + t(F ′, Ḡ′) =
1

2
(t(F,G′) + t(F, Ḡ′)) < 2−|E(F )|,

proving uncommonality.

The difference between the conditions of Theorems 2.2 and 2.3 is particularly insightful

into the general commonality of graphs because the relationship between the existence of

counterexamples with t(F,G′) = t(F, Ḡ′) and counterexamples with edge density 1
2

is un-

known. However, letting G′ be a complete bipartite graph and F be a triangle shows that a

counterexample to commonality can be edge symmetric (the density of edges and non-edges

is equal) but not necessarily F -symmetric (the density of F -copies and F -anticopies is equal).

3 Algebraic Structure of Graphs

Sidorenko’s original proof in [5] that the triangle is common is based on an asymptotic

combinatorial argument that explicitly calculates the prevalence of homomorphisms of the

triangle in a random graph and then uses a monovariant to establish that the number of ho-

momorphisms of the triangle in a random graph is minimal. His proof of the uncommonality

of the triangle with a pendant edge provides a coloring with fewer homomorphisms of the

triangle with a pendant edge than in a random graph. The proof that K4 is uncommon also

is based on an explicit coloring, though it was discovered using a computer program [9].
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Modern methods for disproving commonality include finding explicit colorings, which

are very large and are discovered through a computer search, and a method of Fourier

analysis developed in [4]. There is also a technique that allows for a graph to be proven to

be common algebraically, in terms of smaller graphs. The technique is known as the method

of flag algebras, which was developed by Razborov [10].

3.1 The Algebra of Homomorphism Densities

Flag algebras can be intuitively explained through adjacency matrices of simple graphs. For

any simple graph, there exists a symmetric adjacency matrix to describe that graph. Each

entry in the matrix is either a 1 or a 0, representing an edge or a non-edge, respectively,

between two vertices.

Graphs naturally generalize to weighted graphs, which can be viewed as symmetric adja-

cency matrices with values in the interval [0, 1], rather than only in the set {0, 1}. Let us also

denote the set of all weighted graphs as W0. We are interested in weighted graphs because

they generalize our problem, as the set of adjacency matrices with values in {0, 1} is a subset

of W0.

Recall that, by definition, a graph F is common if and only if t(F,G)+t(F, Ḡ) ≥ 21−|E(F )|

for all G ∈ W0. Also, note that the homomorphism density of F in G can be expressed as

the expected value of the product of all the values in G’s adjacency matrix corresponding to

the edges of F . In other words,

t(F,G) = Eϕ

(∏
e∈F

AG(ϕ(e))

)
, (5)

where ϕ is a homomorphism of F in G, and AG(ϕ(e)) represents the value of the edge e in

the adjacency matrix of G.

10



Taking the complement of a graph is almost equivalent2 to subtracting each entry of its

adjacency matrix from 1. Hence, we can also write

t(F, Ḡ) = Eϕ

(∏
e∈F

(1− AG(ϕ(e)))

)
. (6)

Thus, commonality is equivalent to

Eϕ

(∏
e∈F

AG(ϕ(e)) +
∏
e∈F

(1− AG(ϕ(e)))

)
≥ 21−|E(F )|.

To prove commonality, we employ a method known as the Cauchy-Schwarz method, or

the sum of squares method. However, before we can meaningfully define multiplication or

squares of graphs, we must first define labeled graphs.

A labeled graph is a simple graph such that some number of vertices have been marked

and every marked vertex has a unique label. The unlabeled vertices are all indistinguishable

(ignoring their connectivity). We denote a k-labeled graph to be a graph with k labeled

vertices. Thus, a 0-labeled graph has no labels, and a |V (G)|-labeled graph is completely

labeled. A partially labeled graph is merely a labeled graph that is neither 0-labeled nor

completely labeled.

The homomorphism density of a partially labeled graph is defined similarly to the homo-

morphism density of a simple graph. The labeled vertices are mapped to fixed vertices in G

through an extra parameter x, and the homomorphism proceeds normally from the unlabeled

vertices. Thus, the density of a labeled graph is denoted tx(F,G), where x is a parameter

that describes the images of the labeled vertices under the homomorphic mapping.

We also define a form of multiplication of partially labeled graphs known as the gluing

2The only difference between 1 − G and Ḡ is along the diagonal of the adjacency matrix where 1 − G
contains 1s (loops from edges to themselves), whereas the complement does not. However, as the size of a
graph increases, the measure of the diagonal tends towards zero, and thus the difference between 1−G and
Ḡ is negligible.
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product. We can multiply two k-labeled graphs by identifying, or overlapping, their labeled

vertices. If there are two labeled vertices with an edge between them in both terms of the

product, then we keep both edges in the result. Although this may create a multigraph, the

definition of density remains the same and all aforementioned results still hold. The graph

formed by multiplying two labeled graphs is known as the product of the two original graphs.

Note that the homomorphism density of the product of two graphs is the product of their

homomorphism densities.

Just like we can multiply k-labeled graphs, we can add them to form what is known

as a quantum graph. A quantum graph is merely a linear combination of k-labeled graphs

for some k. We define the homomorphism density of a quantum graph as the sum of the

homomorphism densities of its terms.

Note that both addition and multiplication of k-labeled quantum graphs yield other k-

labeled quantum graphs. However, our original problem of commonality is stated in terms

of simple graphs. To convert from labeled graphs back to unlabeled graphs, we introduce an

unlabeling operator JQK that is applied to a graph or quantum graph Q and yields out the

unlabeled graph or quantum graph with the same structure.

To convert from a labeled graph’s density to an unlabeled graph’s density, the unlabeling

operator takes the expected homomorphism density over every way to fix the labeled vertices

in the larger graph G. Thus, although the labeling operator does not preserve homomorphism

densities exactly, it does preserve non-negativity of densities because expectation preserves

non-negativity. In other words, t(JQK, G) ≥ 0 if tx(Q,G) ≥ 0 for all x.

We have thus created a structure that expresses addition and multiplication of graph den-

sities in terms of the underlying graphs themselves3. In fact, we have established an algebra

3We glossed over a relatively minor detail in this discussion — we are able to interchange any two graphs
with the same density in every G. For instance, because adding a disconnected vertex to a graph does not
introduce any new edges, we can always add or remove disconnected vertices from a graph to produce a new
graph equivalent to the original graph.
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over the field of the real numbers because we have some notion of addition, multiplication of

a graph (and its density) by a scalar, and multiplication of two graphs. We can therefore drop

the t density notation and simply write the graphs themselves to represent their densities.

Because our algebra is over the reals, we can define squares of graphs as the products

of graphs by themselves. Squares of quantum graphs are identically defined. Also, because

graph densities are all real numbers, we see that the square of a density is always non-

negative. Thus, the square of a graph always has non-negative homomorphism density. Note

that this is true even if we extend our edge weights to include negative numbers. In that

case, homomorphism densities, which are defined as in equation 5, can be negative. However,

because of the non-negativity of real number squares, the squares of graphs and quantum

graphs still have non-negative homomorphism densities.

3.2 Reduction of the Commonality Definition

Because we have established the validity of our density algebra over edge weights that include

negative numbers, we consider the transformation A1,G(ϕ(e)) := 2AG(ϕ(e))− 1, which maps

[0, 1], the original codomain of AG, to [−1, 1], the codomain of this new A1,G function. If we

replace each edge weight AG(ϕ(e)), or entry in the adjacency matrix of G, with A1,G(ϕ(e)) =

2AG(ϕ(e))−1, then we can consider the resulting graph and adjacency matrix as a weighted

graph on the interval [−1, 1]. We denote the set of all such weighted graphs as W1. Note that

we can define a new density

t1(F,G) = Eϕ

(∏
e∈F

A1,G(ϕ(e))

)

similar to equation 5 above.

We now return to our original definition of commonality in terms of homomorphic den-
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sities, but using our new system of edge weights. The resulting inequality is

Eϕ

(∏
e∈F

(
1 + A1,G(ϕ(e))

2

)
+
∏
e∈F

(
1− A1,G(ϕ(e))

2

))
≥ 21−|E(F )|. (7)

We see that expanding the inside of the expectation leads to some summation over all

subgraphs F ′ of F . The intuition behind this is that each term of each product requires

a choice between choosing 1
2
, which represents not including that edge in the subgraph, or

A1,G(ϕ(e))

2
, which represents including that edge.

In the expansion of inequality 7, the empty graph yields a constant term of 2 · 2−|E(F )| =

21−|E(F )|, which cancels with the constant term on the right hand side of inequality 7. Also,

the opposite signs inside the two products lead to cancellation of all the terms with an odd

number of edges.

Thus, inequality 7 above is equivalent to

Eϕ


∑
F ′⊆F
|E(F ′)|6=0

|E(F ′)|≡0 (mod 2)

∏
e∈F ′

A1,G(ϕ(e))

 ≥ 0 =
∑
F ′⊆F
|E(F ′)|6=0

|E(F ′)|≡0 (mod 2)

Eϕ

(∏
e∈F ′

A1,G(ϕ(e))

)
≥ 0,

which can be rewritten as ∑
F ′⊆F
|E(F ′)|6=0

|E(F ′)|≡0 (mod 2)

F ′ ≥ 0, (8)

dropping the t notation in favor of simply writing the graphs to represent their densities.

The main idea of the transformation from W0 to W1 is as follows: the flag algebras method

differs from traditional methods of proof in that it writes the density of G in an arbitrary

large graph K with edges weighted in the interval [−1, 1] as the sum of the densities of all

of the subgraphs of G with an even number of edges. To prove that the original graph G is

14



common, we must only show that this sum of subgraph densities is always non-negative.

The left-hand side of inequality 8 is the density of a quantum graph formed from the

sum of all the subgraphs of F with an even number of edges. To prove non-negativity of this

quantum graph’s density, we sum together inequalities of the form t(Q2, G) = t(Q,G)2 ≥ 0.

The beauty of the transformation to W1 and the sum of squares method is the sheer

simplicity of the proofs that result from it.

4 A Flag Algebras Proof of the Main Result

After defining the algebraic structure in the previous section, we can hand over the proof of

commonality to a computer that searches the space of squares of quantum graphs for a set

of squares that sum to the expression we are trying to prove is non-negative. We wrote a

program to prove our main result, which follows.4 We also used the NEOS online semi-definite

solver [11] for numerical calculations.

Theorem 4.1. The graph known as the pentagon with a chord is common.

Proof. Our flag algebras program requires the input of some set of labeled quantum graphs

F1, F2, . . . , Fm, which serves as the basis the computer uses to search for a sum of squares

proof of non-negativity. However, for the sake of minimizing computational complexity and

ease of proof verification, it is convenient to use induced density, a slightly different algebra

structure than defined in Section 3 [12]. When using induced density, the definition of graph

multiplication involves removal of double edges. In other words, if two labeled vertices both

contain an edge in the multiplicand graphs, then the product contains only one edge between

those two vertices. This is contrary to the product defined in Section 3, where multiple edges

were retained. However, squares of graphs are still non-negative in the induced basis [8].

4I would like to thank my mentor, James Hirst, for providing much of the code base necessary for the
project.
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Converting from the standard density of a graph F in W0 to induced density involves

applying an invertible linear transformation on F defined by,

Hom(F ) =
∑
F ′⊇F

F ′, (9)

where |V (F ′)| = |V (F )| and F ′ denotes the homomorphism density of F ′ in W0.

Hom(F ) is invertible because we can apply a Möbius Inversion to get the inverse of

Hom(F ), defined as

Ind(F ) =
∑
F ′⊇F

(−1)|E(F )|−|E(F ′)|F ′, (10)

where the same conditions hold as for the definition of Ind.

We recall that we are trying to prove that t(F,G) + t(F, Ḡ)− 1
32
≥ 0 for all G, where F

is the pentagon with a chord. The 1
32

comes from the definition of commonality and the fact

that F has six edges.

Also recall from Section 3 that we can approximate Ḡ with 1 − G, which represents

subtracting each entry of G’s adjacency matrix from one. Then, by the definition of homo-

morphism density from equation 6,

t(F, Ḡ) = Eϕ

(∏
e∈F

(1− AG(ϕ(e)))

)
.

Expanding this product like in section 3 gives us that

t(F, Ḡ) =
∑
F ′⊆F

(−1)|E(F ′)|t(F ′, G).

Thus, our proof of commonality reduces to proving that

∑
F ′⊆F

(−1)|E(F ′)|t(F ′, G) + t(F,G)− 1

32
≥ 0. (11)
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Because a disjoint vertex has no edges, it has homomorphic density of 1. Hence, the

constant term − 1
32

can actually be written as − 1
32
· ◦, where ◦ represents a single disjoint

vertex. Thus, the left hand side of inequality 11 is the homomorphism density of some

quantum graph f.

Let g = Hom(f). Then, taking Hom of both sides of the inequality f ≥ 0 yields g ≥ 0,

because the Hom of a zero quantum graph is another zero quantum graph.

In order to prove that g ≥ 0, we are searching for a positive semidefinite matrix5 Y of

real numbers and a vector of quantum graphs z such that zTY z = g.

Our computer program indicates that the vector g (computed by plugging in the pentagon

with a chord for F ) is

{31/32, 59/16, 33/16,−5/16,−5/8, 81/32, 1/8,−15/8,−15/32,−15/16,−5/32,−5/32,

17/16,−15/8,−15/16,−7/8,−15/8,−15/8,−15/8,−5/16,−15/8,

− 15/8,−5/8,−5/16,−5/16,−15/32,−3/8,−7/8, 1/8, 17/16, 33/16, 81/32, 59/16, 31/32},

where the entries of the vector are coefficients of the 5-vertex partially labeled graphs

(written with their adjacency matrices in lexicographical order). Consider the matrices:

Y1 =



31
32

−119
416
−383

832
−187

832
1

416

−119
416

431
416

89
832

17
832

−365
416

−383
832

89
832

83
208

−109
832

71
832

−187
832

17
832

−109
832

107
208

−149
832

1
416

−365
416

71
832

−149
832

31
32


,

5A positive semidefinite matrix has all non-negative eigenvalues. The positive semidefiniteness of Y guar-
antees non-negativity of g because there exists a linear change of basis (like an eigenvalue decomposition)
that can turn Y into a symmetric matrix Y ′ with all positive entries. Then, zTY ′z is guaranteed a sum of
squares, which is non-negative. Since we performed an invertible linear transformation on Y to generate Y ′,
zTY z must also be expressible as a sum of squares.
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Y2 =



5
13

− 243
1664

−563
832

563
832

243
1664

− 5
13

− 243
1664

103
832

295
1664

− 475
1664

− 1
64

63
1664

−563
832

295
1664

665
416

−547
416

− 59
128

799
832

563
832

− 475
1664

−547
416

41
32

531
1664

−591
832

243
1664

− 1
64
− 59

128
531
1664

131
832

− 479
1664

− 5
13

63
1664

799
832

−591
832

− 479
1664

33
52


,

Y3 =

(
1
2

)
, Y4 =



1
4

1
4
−1

8
−1

8

1
4

1
4
−1

8
−1

8

−1
8
−1

8
1
16

1
16

−1
8
−1

8
1
16

1
16


, and Y5 =

 9
8

137
208

137
208

9
13

 .

Then, let Y be the 18 by 18 matrix formed by lining Y1, Y2, Y3, Y4, and Y5 along the

major diagonal and then padding the rest of the matrix with zeros. It can be verified that

Y is positive semidefinite.

The program also tells us that the vector z is

{(1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1),

(1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1), (0, 1,−1, 0, 0, 0, 0, 0),

(1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 0),

(0, 0, 0, 1, 0, 1, 0, 0), (0, 0, 1, 0,−1, 0, 0, 0), (0, 0, 0, 1, 0,−1, 0, 0)},

where each ordered n-tuple represents a quantum graph. The values of the elements of

the n-tuples are the coefficients of each labeled graph that form the quantum graph. The

labeled graphs are ordered lexicographically on their lowest adjacency matrix. The first five

quantum graphs are linear combinations of the 1-labeled graphs on 3 vertices. The rest are

linear combinations of the 3-labeled graphs on 4 vertices.

It can be verified that zTY z = g holds. Because Y is positive semidefinite, this indicates

18



that there exists a representation of g as a sum of squares, which means that it must be

non-negative.

Note that our switch to the induced basis works because Ind and Hom are linear transfor-

mations. Thus, we can apply them to quantum graphs as well as simple graphs. Furthermore,

the invertibility of Ind and Hom guarantees us that the basis spanned by the quantum graphs

Ind(F1), Ind(F2), . . . , Ind(Fm) is the same as the basis of graphs spanned by F1, F2, . . . , Fm.

Hence, we can have our program search using the basis Ind(F1), Ind(F2), . . . , Ind(Fm) and

have it be theoretically equivalent to searching with the more computationally expensive

basis F1, F2, . . . , Fm.

The creation of this proof relied on a combination of my program and some experimen-

tation regarding which vectors F1, F2, . . . , Fm (the elements of z) are necessary to create a

search space large enough for the program to find a proof.

Also, we attempted many different strategies to try to come up with simple proofs of the

commonality of the pentagon with a chord in W1 by hand. However, we could find no simple

proofs, and experimentation with the program’s search space, defined by the z vector, hinted

that the provided commonality proof is minimal or at least close to minimal.

5 Conclusion

In this paper, we provided a modern proof that the graph composed of any number of disjoint

clones of a common graph is itself common. Our application of Hölder’s Inequality led to new

insights and partial results about the nature of graph commonality and uncommonality. This

opened new doors into research possibilities regarding the commonality of disjoint graphs.

More specifically, it is unknown in what cases the disjoint union of two common graphs is

common. Similarly defined problems, such as the disjoint union of two uncommon graphs,

are also undecided.
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We then proved a completely new result, closing a problem originally proposed by Jagger,

et. al. [4] central to the field of graph commonality. Namely, we proved that the pentagon

with a chord is a common graph. We used the technique of flag algebras to produce a space

for a computer search, and then wrote a program using the NEOS Server [11] to calculate

the final matrices for the proof itself.

This research is important in the context of graph commonality in general because it

provides the first step towards exactly enumerating the set of all non-bipartite common

graphs.6 The simplest classes of non-bipartite graphs are odd cycles and odd cycles with a

pendant edge, with the former proven common in [5] and the latter proven uncommon in [6].

Thus, the simplest class of non-bipartite graphs to investigate is that of the odd cycles with

a chord. In this paper, by establishing the commonality of the pentagon with a chord, we

break the ground for research to continue regarding this category of graphs. I am currently

pursuing further research in this direction using theoretical flag algebras.

The future applications of my research on graph commonality include analysis of large

networks, including the Internet and social networks. Subnetworks of people that are rep-

resented by common graphs are guaranteed to occur relatively often within the databases

of companies like Facebook and Google, making such social or web structures high-value

research targets. By identifying common graph-based structures that can be efficiently mon-

etized, companies can gain the competitive edge in the market and increase revenues.

My research to uncover knowledge about common graphs is even relevant to topics like

ecology and city planning. For instance, Urban and Keitt [14] outlined how ecological habi-

tats can be modeled using large networks. Common graphs represent frequently occurring

patterns in the environment; for instance, a pentagon with a chord could represent a patch

6The inclination among mathematicians to investigate non-bipartite graphs arises from the much-hailed
Sidorenko’s Conjecture in [13], which (if true) implies that all bipartite graphs are common. Proving
Sidorenko’s Conjecture in any generality is esteemed to be an extremely difficult problem, so commonal-
ity research often focuses on non-bipartite graphs.
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of forest with two lakes inside it. Such an analysis would allow urban designers to identify

specific regions for preservation to mitigate human impact on the local ecosystem.

With such a diverse range of applications for research on common graphs and such a

breadth of open questions in the field, I am continuing research for a better understanding

of the commonality of odd cycles with a chord in general, as well as a deeper study of

disconnected graphs.
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