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Abstract

Given a tree T, we investigate bounds on the extremal number of T in the hypercube
Qd, defined as the maximum number of edges in a T -free subgraph of Qd. We define a
parameter that enables us to bound ex(Qd, T ) for all trees and present an analog of the
Erdős-Sós conjecture in the hypercube. We calculate the extremal numbers for specific
families of trees and compare them to the general bound. We demonstrate trees that
achieve the lower bound and others whose extremal number is almost twice as much.
From there, we provide a restriction on minimum degree that guarantees the existence
of trees in subgraphs of the hypercube.

1. Introduction

The first problems in graph theory date back to 1736, when Leonhard Euler [6] determined
it was impossible to walk through the city of Konigsberg and cross all seven bridges exactly
once. Ever since, famous proposals such as the Traveling Salesman and Map Coloring prob-
lems have combined simple, real-life premises with graph theory research. Furthermore, the
proliferation of complex physical and technological networks in the late 20th century has
generated significant interest in graph theory over the past decades. Branches of graph the-
ory include algorithmic graph theory, random graph theory, and the subject of our project:
extremal graph theory.

Given a simple graph G and a family F of graphs, let the extremal number ex(G,F )
denote the maximum number edges a subgraph of G can have without containing a graph
in F. Problems that involve determining ex(G,F ) are called Turán-type extremal problems
and the maximal graphs are called extremal.

The earliest problems in extremal graph theory use a complete graph as the host graph.
Forbidden graphs F include cycles, paths, and smaller complete graphs. The results are
written in terms of graph parameters. A direct example is Turán’s theorem [8], which
bounds the extremal number for complete graphs on r + 1 vertices in complete graphs on n
vertices.

ex(Kn, Kr+1) =

(
1− 1

r

)
· n

2
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Dirac’s Theorem [3] is another result central to extremal graph theory. Any graph with
n ≥ 3 vertices and minimum degree δ(G) ≥ n

2
contains a Hamiltonian cycle. An extension of

Dirac’s demonstrates that a graph with average degree d contains a subgraph with minimum
degree of at least d

2
. Thus there exists some relation between global and local properties that

can affect substructures in the graph, and consequently, extremal number.

Only recently has extremal graph theory been studied in host graphs other than the
complete graph Kn and the complete bipartite graph Km.n. In 1984, Erdős [4] proposed one
of the first questions in ex(Qd, G) by asking the number of edges in the maximal C4-free
subgraph of the hypercube. This remains an open problem as current bounds by Brass et
al. [2] and Baber [1] still are not tight:

(d+
√
d)2d−2 ≤ ex(Qd, C4) ≤ 0.6068d2d−1.

The hypercube’s potential as a network topology in parallel computing has generated new
interest in exploring the extremal properties of its substructures. In 2010, Eoin Long [7]
showed that there exists a path of length 2d − 1 in any subgraph of a hypercube with
minimum degree d. Our project asks a similar question about trees in hypercubes: how can
their extremal number be bounded?

There are no prior results on ex(Qd, T ). However, in the complete graph Kn, bounds on
on the extremal number of trees on k + 1 vertices are well-known:

k − 1

2
· n ≤ ex(Kn, T ) ≤ (k − 1) · n.

The Erdős-Sós conjecture [5], an open problem since its proposal in 1962, claims that equality
holds for the lower bound.

Our project defines a parameter δT to provide similar bounds on the extremal number of
any tree T in the hypercube Qd. We prove that there exist trees with extremal number close
to each of the upper and lower bounds, thus showing a statement analogous to the Erdős-Sós
conjecture does not hold in the hypercube. A related goal of the project is to demonstrate
methods of calculating δT values for specific families of trees. We show its relation to a
known parameter used in Long’s paper.

The organization of the paper is as follows. In Section 2, we define additional terms used
in our paper and prove the general bound on ex(Qd, T ). Then, in Section 3, we present our
bounds on trees whose δT value can be easily computed and compare their extremal number
to the general bounds. In Section 4, we show methods of calculating δT for certain families
of trees with higher diameters. Finally, in Section 5, we summarize our results, examine
their relation to other work in extremal graph theory, discuss the applications of our work,
and propose future directions of research.

2. Definitions and a Novel Parameter

We present unique terms used in this paper as well as a new parameter for a general bound.
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2.1 Preliminary Definitions

Definition 2.1. For graphs H and F, the extremal number ex(H,F ) is the number of edges
in the maximal subgraph of H not containing any copy of F.

Definition 2.2. A hypercube Qd is a d-regular graph with 2d vertices and d2d−1 edges. We
use three systems of expressing Qd.

1. WriteQd as two copies ofQd−1 that have additional edges drawn between corresponding
vertices.

2. Write the vertex set as V (Qd) = {0, 1}d such that each vertex is assigned a unique
length d binary string of 0’s and 1’s. Vertices are adjacent if their string representations
differ in exactly one position.

3. Write the vertex set as V (Qd) = {0, 1}d and assign each vertex v a unique set {v}
containing the positions of 1’s in their string representations.

The third expression leads to some terminology that allows us to group vertices with
similar properties.

Definition 2.3. The size of v0, denoted |v0|, is the magnitude of its set {v0}.

Definition 2.4. In a graph X ⊆ Qd, define the tth layer as the set of vertices in X with size
t. We denote this layer as Lt(X), or simply Lt.

Noting the exponential relationship between minimum degree and path or cycle length
in Eoin Long’s work [7], we present a known parameter used to describe subgraphs of a
hypercube.

Definition 2.5. The cubical dimension of a graph G, expressed cd(G), is the smallest d
such that G ⊆ Qd.

We also define the structures we examine in this paper.

Definition 2.6. A star Sn is a tree with n vertices of degree 1 and one vertex of degree n.

Definition 2.7. A modified star S ′n is a star Sn with an additional leaf attached to one of
its edges.

Definition 2.8. A twin star Cj,j is a tree created by connecting the central vertices of Sj
and Sj with an extra edge.

Definition 2.9. A subdivided star Snk is a star with a central vertex and n disjoint paths of
length k emanating from this vertex.
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2.2 General Bounds

Finally, we define our own parameter δT that we use to bound the general case of ex(Qd, T ).

Definition 2.10. Let S be a subgraph of hypercube Qd. Let δ(S) denote the minimum
degree of S. For any tree T, we define δT such that T ⊆ S if δ(S) ≥ δT and T * S otherwise.
In essence, δT is the minimum degree condition for S that guarantees T ⊆ S.

Theorem 2.1. The extremal number for any tree T in the d-dimensional hypercube Qd is
bounded

δT − 1

2
2d ≤ ex(Qd, T ) < δT2d.

Proof. For the lower bound, consider the graph G containing the union of 2d−(δT−1) disjoint
QδT−1 in Qd. This graph satisfies δ(G) < δT so it is a construction of a T -free subgraph of
Qd with δT−1

2
2d edges.

By Dirac’s theorem, there exists a subgraph with minimium degree δT in a graph with
average degree 2δT . Thus, any S ⊆ Qd with δT2d edges contains T.

Remark. We note a similarity between the general bound for trees in the complete graph
and trees in the hypercube. As stated earlier, for tree T on k + 1 vertices

k − 1

2
· n ≤ ex(Kn, T ) ≤ (k − 1) · n.

This motivates us to examine an analog of the Erdős-Sós conjecture in the hypercube.

Conjecture 2.2. Equality holds for the lower bound of ex(Qd, T.)

ex(Qd, T ) =
δT − 1

2
2d

3. Bounding Extremal Number using Average Degree

We bound the extremal number for low-diameter structures such as stars, modified stars, and
twin stars. A lower bound is constructed and an upper bound is provided with a counting
argument. We then demonstrate that Conjecture 2.2 is false; a relation like the Erdős-Sós
conjecture does not exist in the hypercube.

3.1 Stars

Every subgraph of Qd with average degree greater than n − 1 contains Sn. An extremal
graph X can be constructed by taking the union of 2d−(n−1) copies of Qn−1. By the recursive
definition of a hypercube, this is possible for all d ≥ n−1. This construction creates an n−1
regular graph so all vertices have degree less than n. Thus, Sn 6⊆ X and

ex(Qd, Sn) =
1

2
(n− 1)2d.
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3.2 Modified Stars

We consider the extremal number for modified stars find that every subgraph G of Qd with
average degree greater than n − 1 contains the modified star S ′n. This is equivalent to the
following theorem.

Theorem 3.1. The extremal number for S ′n is

ex(Qd, S
′
n) =

1

2
(n− 1)2d.

Proof. To demonstrate the upper bound, we use contradiction. Assume that ex(Qd, S
′
n) >

1
2
(n− 1)2d. Then the average degree of an extremal graph X is greater than n− 1 and there

exists a vertex v ∈ X such that deg(v) ≥ n. The neighbors of v must all have degree 1 for
the graph to be extremal. Else, S ′n ⊆ X, which is forbidden.

For all vertices v′ ∈ X such that deg(v′) > n − 1, there must be a disjoint star Sdeg(v′)

that contains v′. Else S ′n ⊆ X Then we can partition X into two disjoint sets. Let Γ1 denote
the set of disjoint stars in X and Γ2 denote the set of other vertices and edges. The average
degree in Γ1 must be less than 2. Furthermore, the maximum degree of any vertex in Γ2 is
n− 1. Thus, the average degree of X cannot be greater than n− 1, contradiction.

We construct the same extremal graph as EX(Qd, Sn). Because X does not contain Sn,
X also does not contain S ′n. Thus 1

2
(n− 1)2d ≤ ex(Qd, S

′
n) ≤ 1

2
(n− 1)2d and the bounds for

the extremal number are tight.

Remark. We note some interesting characteristics of these two extremal numbers. In Kn,
the extremal number for a large graph is usually greater than the extremal number for a
smaller graph. However, we demonstrate that ex(Qd, Sn) = ex(Qd, S

′
n). Furthermore, Sn and

S ′n can be embedded in Qn but not Qn−1, so cd(Sn) = cd(S ′n) = n. Thus the average degree
in the extremal graph is one less than the cubical dimension of the stars.

3.3 Twin Stars

We find that every subgraph G of Qd with average degree greater than n − 1 contains the
modified star S ′n. This is equivalent to the following theorem.

Theorem 3.2. The extremal number for twin star Ck,k is

ex(Qd, Ck,k) ≤
(k − 1)d

d+ k − 1
· 2d.

When d = 2n − (k − 1) for integer k, equality for the upper bound holds.

Proof. We first provide a counting argument for the upper bound. Let X ⊆ Qd be a Ck,k free
graph. Partition the vertices of X into two sets, A and B, such that A is the set of all vertices
va ∈ V (X) satisfying deg(va) < k, and B is the set of all vertices in vb ∈ V (X) satisfying
deg(vb) ≥ k. Because X does not contain Ck,k, no two vertices in B can be adjacent.
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Denote the size of B as b. This implies that the size of A is 2d − b. Furthermore let y
denote the number of edges with an endpoint in A and another in B, and let x denote the
number of edges with both endpoints in A. We wish to maximize |E(X)| = x+ y.

Every vertex in B has degree at least k and at most d. This implies kb ≤ y ≤ db. Every
vertex in A has degree at most k−1, so the sum of the degrees of each vertex in A is at most
(k − 1)(2d − b). Each edge with both endpoints in X is counted twice in this sum, implying
2x+ y ≤ (k − 1)(2d − b).

Now we wish to maximize x+ y in the system{
kb ≤ y ≤ db

2x+ y ≤ (k − 1)(2d − b)

for non-negative integers a, b, k, d. Consider the solution set of these inequalities for constant
b in the x-y plane. Because 2x+y has a steeper negative slope than x+y, x+y is maximized
at the maximum value y in the solution set, and y = db.

Substituting this into the second inequality, we have 2x + db ≤ (k − 1)(2d − b) and we
can solve for x = 1

2
[(k − 1)2d − (d + k − 1)b]. Then we can rewrite |E(X)| = x + y ≤

1
2
(k− 1)2d + [d− d+k−1

2
]b. Because d > k− 1, (otherwise the caterpillar cannot be embedded

in Qd) |E(X)| is maximized when b is maximized. However x is nonnegative so b ≤ k−1
d+k−12d

with an extremal graph when x = 0, y = db, b = k−1
d+k−12d.

For values of b satisfying db ≥ (k − 1)(2d − b) or b ≥ k−1
d+k−12d, the system of inequalities

does not have solutions on the line y = db. Then x+ y is still maximized at the largest value
of y, which occurs at x = 0, y = (k − 1)(2d − b). We substitute to get |E(X)| = x + y =
(k − 1)(2d − b) which is maximized when b is minimized. Thus the extremal graph occurs
when x = 0, y = db, b = k−1

d+k−12d.

Both cases produce the same value of |E(X)| = x + y = k−1
d+k−12d as the maximum

number of edges in an extremal graph. Furthermore x = 0 implies that X is bipartite with
one partition containing degree d vertices and the other containing degree k − 1. Now we
provide a construction for when the upper bound is tight.

Using Definition 2.2, write V (Qd) = {0, 1}d. Let d = (k−1)(2n−1). Then H denotes the
n by d matrix with each of the binary representations of 1 through 2d− 1 appearing exactly
k − 1 times in its columns, ordered from least to greatest with leading zeroes.

Let B be the set of all column vectors y ∈ {0, 1}d that satisfy Hy = 0 in Z2. Let ej denote
a column vector with a 1 in the ith entry and 0’s elsewhere. We claim that for any column
vector z ∈ {0, 1}d satisfying Hz 6= 0, there exist k−1 distinct column vectors ej+1, ..., ej+k−1
such that z + ej+1, ..., z + ej+k−1 ∈ B. We show this with a lemma.

Lemma 3.3. Consider the column vectors in A and B as vertices of Qd. Draw an edge
between elements z ∈ A and y ∈ B if and only if z + ej = y for some j ≤ d. Then A and
B create a bipartite graph X on 2d vertices such that every vertex in A has degree k− 1 and
every vertex in B contains vertices of degree d.

Proof. For z ∈ A, let Hz = w for w 6= 0. Because we work in Z2, w must appear k− 1 times
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in the columns of H, and also w + w = 0. Thus, for each z there are k − 1 distinct ei such
that z + ei ∈ B and each element in A has degree k − 1.

Similarly for any y ∈ B, the product H(y + ei) equals the ith column of H. Because all
columns of H are non-zero, all vectors y + ei are contained in A. Furthermore the vector y
has d entries, so there are d distinct vectors e1, ..., ed. Thus each element in B has degree
d.

Because X is bipartite, the ratio of |V (A)| to |V (B)| equals d to k− 1. Thus the number

of edges in X is (k−1)d
d+k−1 ·2

d and we have a construction that demonstrates a tight upper bound

ex(Qd, Ck,k) =
(k − 1)d

d+ k − 1
· 2d

for d in the form (k − 1)(2n − 1).

Remark. This construction resembles the Hamming Code, an error connecting code used
in information theory. However, our construction that uses H does not work well for d 6=
(k − 1)(2n − 1). Because n must be an integer satisfying n ≥ dlog2(

d
k−1 − 1)e, the average

degree in A decreases exponentially as n increases linearly, creating a weak lower bound.

It is also interesting to note that the average degree of the upper bound construction
asymptotically approaches 2(k − 1), even though having an average degree of 2(k + 1) is
sufficient to guarantee the existence of Ck,k. Comparing this to Theorem 2.1:

δ − 1

2
2d ≤ ex(Qd, T ) < δ2d.

we extremal number for stars and modified stars is equal to the lower bound. Meanwhile,
the extremal number provided by Theorem 3.2 is very close to the upper bound.

We now move on to finding δT which gives bounds on extremal number.

4. Bounding Extremal Number using Minimum Degree

We bound the extremal number for trees with cubical dimension three, subdivided stars, and
depth two trees by expressing subgraphs of hypercubes in terms of their layers. We show
that certain minimum degree conditions are sufficient to guarantee the existences of these
trees in a subgraph X ⊂ Qd.

4.1 Trees with Cubical Dimension 3

Earlier, we observed that cd(Sn) = cd(S ′n) = n, and Section 3.1 and 3.2 demonstrate that
any subgraph G ⊆ Qd satisfying δ(G) ≥ n contains Sn, S

′
n. Furthermore it is simple to show

that cd(Ck,k) = k + 1 and any M ⊆ Qd with δ(G) ≥ k + 1 contains Ck,k. We investigate all
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trees T satisfying cd(T ) = 3 to see if they could be embedded into a graph with minimum
degree 3.

Theorem 4.1. Let M denote a subgraph of Qd with minimum degree 3. Let T3 denote the
set of trees with cubical dimension 3. For all trees t in T3, t is a subgraph of M.

The main idea behind this proof is that, for every tree in T3, we can assign a specific
vertex to L0 and use the size of its neighbors to show that the entire tree exists in any
subgraph with minimum degree 3. We provide an example here. The details of this proof
can be found in Appendix A.

Case 4.1. We claim that the tree in Figure 4.1 can be embedded in all M ⊆ Qd with
δ(M) ≥ 3.

Figure 1: Labeling for Case 4.1

Proof. Without loss of generality let |v0| = 0. Then neighbors v1, v2, v3 must exist in M such
that they all have size 1. V1 must have at least two neighbors of size 2, so we select one not
adjacent to v3 and label it v4. Then we know that v3 has at least two neighbors of size 2, so
we label them v5, v6. Finally v5 must have at least one neighbor of size 3 in M and we label
it v7.

Using casework for trees with cubical dimension 4 is difficult for two reasons: first, the
number of such trees is much higher, and second, trees with long central paths may require
constructing edges that start in Lt and end in Lt−1. However, noting that this method seems
to work with trees that have small depth, we investigate a minimum degree bound for depth
two trees.

4.2 Trees with Depth 2

In this section we calculate the minimum degree condition that guarantees the existence of
certain depth two trees. We note that the set of vertices in a tree with the same depth is
analogous to a layer in a hypercube. We also use a restriction argument, similar to that of
Section 4.1, to find neighbors of vertices that are not adjacent to other vertices.

Theorem 4.2. Let X denote a subgraph of Qd with minimum degree k. Call a tree a depth
two tree if one of its vertices can be assigned as a root such that all of the other vertices have
depth no greater than two.
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Let Tk denote the set of depth 2 trees that have at most k edges emanating from the root
and at most

⌊
k−1
2

⌋
+ 1 edges emanating from non-root vertices. Then T ⊂ X.

Proof. Without loss of generality, assign the root of the depth two tree Tk to L0. Because
δ(X) = k, the root must have k neighbors in L1(X). Label these neighbors as v1, v2, ..., vk ∈
L1. Each vertex has at least k − 1 neighbors in L2.

Consider vertex vj for 1 ≤ j ≤ k. Because j has at least k − 1 neighbors in L2, we
can connect vj to all of its neighbors that are not shared with vj+1, ..., vj+1+d k−1

2
e, where

subscripts are taken mod k, and guarantee that deg vj ≥
⌊
k−1
2

⌋
+ 1. It suffices to show that

if we repeat this restriction for all vj, then we will have the largest tree in Tk.

We use contradiction. Assume that the resulting structure is not a tree- else, it is
the largest tree in Tk. This implies that two vertices in L1 have an edge drawn to the
same vertex in L2. Then there must exist vg, vh such that vg /∈ vh+1, ..., vh+1+d k−1

2
e and

vh /∈ vg+1, ..., vg+1+d k−1
2
e. This implies that there must be at least 2 + 2dk−1

2
e vertices vj,

contradiction.

This restriction method requires significant casework to translate directly to degree 3
stars. However, considering the number and formation fo edges between layers of X may be
useful for generalizing to all trees in the future. We move on to subdivided stars.

4.3 Subdivided Stars

In this section, we calculate the minimum degree condition that guarantees the existence of
some Skn. We first present a lemma that double counts the edges between adjacent layers of
a hypercube in order to relate the sizes of the layers.

Lemma 4.3. For all subgraphs of Qd with minimum degree k, let S denote some set of
vertices S ⊆ Lt and let N(S) denote the neighbors of S in Lt+1. Then(

|N(S)|
2

)
≥
(
k − t

2

)
|S|.

Proof. Let p denote the number of pairs of vertices vg, vh in N(S) that share a neighbor in
S. Each vertex of a pair in in N(S) shares at most one neighbor in S with the other, else the
two vertices in the pair are not distinct. Hence the maximum number of pairs is p ≤

(|N(S)|
2

)
.

However, there may not be enough edges between S and N(S) so that every pair of
vertices in Lt+1 share a neighbor in Lt. If δ(X) = k, any vertex in Lt has at most

(
t
t−1

)
neighbors in Lt−1, so each vertex in Lt has at least k − t neighbors in Lt+1. Hence there are
at least

(
k−t
2

)
pairs of vertices in Lt+1 that are adjacent to each vt ∈ Lt and

(
k−1
2

)
|S| ≤ p.

Thus
(|N(S)|

2

)
≥ p ≥

(
k−t
2

)
|S|.
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With this lemma, we use Hall’s Marriage Theorem find perfect matchings between layers
of a hypercube and guarantee the existence of subdivided stars.

Theorem 4.4. In any subgraph X in Qd with minimum degree k, we can find a subdivided
star with paths of length ⌊

2k − 1

2
−
√

4k − 3

4

⌋
.

Proof. Without loss of generality, place the center of the star at L0. We wish to calculate
t such that there is a perfect matching from Li−1 to Li for all i ≤ t. By Hall’s Marriage
Theorem it suffices to show that for any set S ∈ Li−1, and the set of its neighbors N(S) ∈ Li,
|N(S)| ≥ |S|.

It is simple to show that |N(S)| ≥ |S| if
(|N(S)|

2

)
≥
(|S|

2

)
. From Lemma 4.3 this gives

the restriction
(
k−t
2

)
≥ |S|−1

2
which is equivalent to (k − t)(k − t − 1) + 1 ≥ |S|. Each layer

needs to contain at least k vertices that have a perfect matching, so substituting |S| = k
and completing the square in terms of t gives us:

t ≤ 2k − 1

2
−
√

4k − 3

4
.

Thus, any graph X ⊆ Qd with δ(X) = k contains a subdivided star with paths of length⌊
2k−1
2
−
√

4k−3
4

⌋
.

Remark. This method creates bounds for stars in which the size of vertices increases as the
distance from the central vertex increases. The length of a subdivided star’s paths can be
greater if the vertices in the path do not strictly increase in size.

5. Discussion and Future Work

In this paper, we provide the first results on the extremal number of trees in hypercubes.
We derived a general bound by defining a new parameter δT and compared the extremal
number of specific trees to this general bound.

δT − 1

2
2d ≤ ex(Qd, T ) < δT2d

For stars, modified stars, and twin stars whose δT value is straightforward to compute, we
were able to bound the extremal number more tightly. While stars and modified stars had
extremal numbers equal to the lower bound, the twin stars had an extremal number close
to the upper bound. We then demonstrated methods of calculating δT for structures with
higher diameter.

Nonetheless, the problem of bounding ex(Qd, T ) is far from resolved. A direction for
future research remains in calculating δT . Although we demonstrate methods of determining
δT for specific types of trees, there is no general method for calculating δT .
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For all trees investigated in this paper, we find that δT = cd(T ). Along with the results
from Long’s [7] paper, which relates the cubical dimension of paths to the minimum degree
of their extremal graph, this leads us to conjecture

Conjecture 5.1. For all trees T,
δT = cd(T ).

Equivalently, all cubical dimension T trees can be found in a subgraph X ⊆ Qd if δ(X) =
cd(T ).

As with δT , there are no known methods of calculating cd(T ) for any given T. Proving
this conjecture would generate quantitative insight as how the structure a tree influences its
ability to be embedded in a non-complete graph.

The applications of our project and future research will assist in constructing parallel
network architecture, which is largely based on the hypercube graph. For networks storing
location-sensitive information, it is desirable to restrict connectivity structures that would
allow for the rapid propagation of confidential data between processors in the case of an at-
tack. Our project provides the maximum number of links that a network can have without
containing potentially dangerous structures. This would also be useful in quantum comput-
ing, in which entangled qubits are liable to collapse together. By maximizing the amount of
entanglement, without becoming too entangled, our project demonstrates how to construct
efficient and stable networks.
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7. Appendix

We complete the casework for Theorem 4.1 and demonstrate that every spanning tree in Q3

can be found in a subgraph M ⊆ Qd satisfying that has minimum degree three. From Long’s
work, is is known that a path of length seven can be found in M.

Case A.1. We claim that the tree in Figure 2 can be found in M.

Proof. Assign v0 to L0(M). Then neighbors v1, v2, v3 must exist in M such that they all
have size 1. V1 must have at least two neighbors of size 2 in M , so we select one that is not
adjacent to v3 and label it v4. Then we label a size 2 neighbor of v3 as v6. V6 must have at
least one size 3 neighbor, so find we v7 such that |v7| = 3. This implies that v7 has either a
size 2 or a size 4 neighbor that is not already labeled, so we assign it as v5.

Figure 2: Labeling for Case A.1.

Case A.2. We claim that the tree in Figure 3 can be found in M.

Proof. Assign v0 to L0(M). Then its neighbors v1, v2, v3 all have size 1. Because deg v1 ≥ 3,
we know that v1 must have at least two neighbors in M that have size 2, which we label
v4, v5. Similarly v3 must have at least two neighbors of size 2, so at least one of its neighbors
is not adjacent to v1. We label this as v6. Since deg v6 ≥ 3, v6 must have at least one neighbor
of size 3, which we label as v7.

Figure 3: Labeling for Case A.2.
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Case A.3. We claim that the tree in Figure 4 can be found in M.

Proof. Assign v0 to L0. Then neighbors v1, v3 must exist in M such that |v1| = |v3| = 1.
Because deg v3 ≥ 3, we can pick a neighbor of v3 not adjacent to v1 and label it v6. Then we
label two other neighbors of v6 as v2, v7. Since |v6| = 2 and v6 does not neighbor v3, we can
also find two neighbors of v1 with size 2 and label them v4, v5.

Figure 4: Labeling for Case A.3.

Case A.4. We claim that the tree in Figure 5 can be found in M.

Proof. Assign v0 to L0. Then we can find three of its neighbors v1, v2, v3 in M that have size
1. We can find a neighbor of v1 that is not adjacent to v2 and label it v4. Similarly we can
find a neighbor of v2 not adjacent to v3 and label it v5, and we can find a neighbor of v3 not
adjacent to v1 and label it v6. Then v5 has at least one neighbor in M of size 3, and we label
it v7.

Figure 5: Labeling for Case A.4.
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Along with Case 4.1 from Section 4, this casework demonstrates that all spanning trees
in Q3, and thus all trees in Q3 exist in a subgraph M ⊆ Qd if δ(M) ≥ 3. Furthermore, it
shows that given any vertex of M, we can find any spanning tree of Q3 rooted at that vertex.
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