
Bounds on Maximal Tournament Codes

Brian Gu

Abstract

In this paper, we improve the best-known upper bound on the size of maximal tournament
codes, and solve the related problem of edge-covering a complete graph with a minimum
number of bipartite graphs of bounded size. Tournament codes are sets of {0,1,∗} strings
closely related to self-synchronizing codes. We improve the current asymptotic upper bound
on the size of a length-k tournament code (given by van Lint and van Pul) by a factor in the
exponent, and then demonstrate a conditional method for improving the upper bound based
on the number of 0 and 1 characters in the optimal tournament code. We also consider a
previously-unused equivalence between tournament codes and certain graphs, which relates
tournament codes to bipartite coverings of complete graphs. We solve the problem of covering
a complete graph with a minimum number of bicliques of bounded size, determining that the
minimum number of bicliques of component size x needed to cover a complete graph on n
vertices is Θ

((n
x

)2
+
(n

x

)
logx

)
(an original result). Finally, we demonstrate the limitations

of applying the minimum bounded biclique covering result to the maximal tournament code
problem.



1 Introduction

Cryptographers and mathematicians in coding theory often study structures called codes because
of their uses for data storage, transmission, and encryption. A code is a set of words, whose
characters are taken from a given alphabet.

Tournament codes, which we study in this paper, are motivated by the properties of comma-
free codes. Comma-free codes are sets of strings such that the concatenation of any two strings in
the code does not have any substrings which are part of the code, besides the two original strings
concatenated. Comma-free codes have also been studied by researchers such as Tang [4] to bound
maximal tournament codes as early as 1987 [2]. The core property of tournament codes is that
there is a comparability relation between each pair of strings in the code.

A natural and currently open question which arises from the study of both comma-free codes
and tournament codes is the problem of a code’s maximal size in terms of the code length. Con-
structions of Tang [4] and Shor [2] have led to polynomial lower bounds, while other combinatorial
arguments have been used to produce super-polynomial upper bounds [5]. In this paper, we con-
sider this problem, improving the upper bound and demonstrating a link between an upper bound
and the number of certain characters in the code for future improvements.

We also draw an equivalence between a slightly modified version of the tournament code prob-
lem and the problem of edge-covering a complete graph with bipartite graphs. It is known that
the minimum number of bipartite graphs needed to edge-cover a complete graph on n vertices is
dlog2ne; we show that the minimum number of bipartite graphs with component size at most x is
Θ

((n
x

)2
+
(n

x

)
logx

)
, and relate this to the modified tournament code problem.

First, in Section 2, we give some mathematical background on the problem and existing work
on tournament codes. Next, in Section 3, we use a graph equivalence to tournament codes in order
to strengthen the upper bound by a constant factor in the exponent, improving the asymptotic upper
bound to nearly the square root of the previous best upper bound. In Section 4, we demonstrate a
connection between the number of 0s and 1s in the maximal tournament code and an upper bound
on tournament code size, using a correspondence of tournament codes to graph structures. In
Section 5 we consider the combinatorially related problem of edge-covering a complete graph with
a minimum number of bipartite graphs of bounded size. We prove and characterize an asymptotic
formula for the minimum, which we relate to a modified version of the tournament code problem.
Finally, in Section 6 we conclude and present possible future directions.

2 Background

A {0,1,∗} code of length k is any set of strings, each of length k, and each composed only of
characters from the set {0,1,∗}.

A tournament code of length k is a code of length k where every pair of strings in the set is
comparable. Two strings (s, t) are comparable if they satisfy the following properties:

• There are no indices i and j such that either si = 0, ti = 1, s j = 1, t j = 0 or si = 1, ti = 0,
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0*1100
10*110
*101** 10*110

0*1100

*101**
>

>

<

Figure 1: A tournament code with length 6 and size 3, with the comparability relationships between
them illustrating non-transitivity.

01*
101
1** 1 0 1

0 1 *

Figure 2: An example of three strings which are not all pairwise comparable, and which therefore
do not form a tournament code. The first and second strings are not comparable because the first
is less than the second in the first index, but greater than the second in the second index.

s j = 0, t j = 1. In other words, if s is greater than t at one index, then at no index is s less
than t, and vice versa. Note that ∗ is not considered greater or less than either 0 or 1; it is
incomparable.

• At some index i, either s is greater than t or t is greater than s.

This definition implies that, for every pair of strings in the tournament code, one is strictly greater
than another, and that the greater string has a 1 at some index where the other string has a 0.

Figure 1 is an example of a tournament code of length 6 and size 3. For example, the third
string is comparable to (and greater than) the second string because it is greater than the second
string at the second character index and at least the second string everywhere else where the two
strings are comparable (the fourth character index).

However, the set of strings in Figure 2 is not a tournament code. In Figure 2, the second and
third strings are not comparable since there is no index at which one string has a 0 and the other
has a 1. Additionally, the first string is greater than the second at position at the second index but
less than the second at the first index, violating the comparable property.

Currently, the best lower bound for the maximal size of a k-length tournament code is k3/2,
based on a construction of Collins, Shor, and Stembridge [2]. The upper bound, given by Tang [4]
and by van Lint [5], is asymptotically klogk; more specifically, Levenshtein [3] has shown that for
k ≥ 8, a bound is klog4 k.

To prove the upper bound, van Lint and van Pul (to whom van Lint attributes the unpublished
proof) consider a tournament code as a matrix, where each string represents a row and each char-
acter represents an entry. The rows and the columns of the tournament code matrix (of length k
and height T ) can be permuted without violating the tournament property, as long as the original
matrix was a tournament code.

By permuting rows and columns into what van Lint calls standard form (Figure 3), van Lint
and van Pul are able to generate a recurrence implying the upper bound. To achieve standard form,
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Figure 3: Standard form, as shown in van Lint’s [5] diagram. Note that every column in block A
has a 1, but that there cannot be any 1s in block B and that there cannot be any 0s in block C.

the rows are first permuted such that every codeword beginning with a 0 is at the top of the matrix,
followed by the codewords beginning with a 1. Next, the columns are permuted such that every
column in block A has a 1; consequently, no column in block C may have a 0 (or else some string
starting with a 0 and some string starting with a 1 would be incomparable), and no column in block
B contains a 1. Standard form is referred to again in our improvement on the upper bound.

We often find it helpful to consider a graphical interpretation of the problem. Consider the
graph where each string in a given tournament code is considered to be a vertex. If a string s has a
1 at an index where string t has a 0, we direct the edge from s to t on the graph. Because all pairs
of strings are comparable, directing edges in this way over all pairs of strings forms a complete
tournament on these vertices. This gives rise to the name tournament codes, as a round robin
tournament is a tournament where between every pair of players there is a win/lose relationship.

Thus, the maximal tournament code problem is equivalent to a graph covering problem. First,
consider a column of a k-length tournament code. On the corresponding graph, every string with
a 1 in this column has a directed edge towards every string with a 0 in this column, forming a
directed bipartite subgraph (Figure 4). Scanning over all columns is then equivalent to covering a
complete tournament with directed bipartite subgraphs such that every edge is covered by at least
one subgraph and such that no two subgraphs direct an edge in opposite directions. Thus, the
problem can be stated equivalently as finding the minimum number of directed bipartite subgraphs
needed to cover a complete tournament such that every edge is covered and so that no subgraphs
direct an edge in opposite directions.

In considering the graph interpretation of the problem, we use the term edge-cover to refer to
a covering of a graph by subgraphs such that every edge of the original graph is in one or more of
the covering subgraphs. In an edge-covering, overlaps between subgraphs are allowed.

Throughout the paper, logx by convention refers to the logarithm taken base 2.
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..0..

Figure 4: Imposing a bipartite graph on a tournament. Note that, for any given digit, an arrow is
drawn from all strings with a 1 in that digit to all strings with a 0 in that digit.

3 Unconditional Improvement on the Upper Bound

We improve the constant factor of the exponent in the Levenshtein’s [3] upper bound of k
1
2 logk. We

show in this section that an upper bound is asymptotically k(
1
4+ε) logk, for ε > 0.

First, let S(k) = k1+( 1
4+ε) logk. We make note of two properties of the function S, in Lemma 3.1

and Lemma 3.2. The proofs (which are computational), are omitted due to space constraints.

Lemma 3.1. If k > 2
1+4ε

8ε , then

S
(

k
2

)√
4k ≤ S(k).

Proof. The proof of this lemma is computational and given in the appendix.

Lemma 3.2. Let S(k) = k1+( 1
4+ε) logk. For all integers a, b, k1 ≥ 1, and k2 ≥ 1, we have

min{aS(k1),bS(k2)} ≤
√

abS
(

k1 + k2

2

)
.

Proof. The proof of this lemma is computational and also given in the appendix.

In combination with these two properties of the function S, we prove a bound on the number of
0s and 1s in at least one column of the tournament code matrix in order to prove our upper bound.

Lemma 3.3. Consider a tournament code of length k with maximal size, encoded in a matrix where
each entry is a character and each row is a string of characters. Let x0,i be the number of 0s in
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column i, and x1,i be the number of 1s in column i. If the width of the tournament code is k and the
number of rows in the tournament code is T (k) (which will be referred to as T ), then there exists
some i such that x0,ix1,i ≥ T 2

4k .

Proof. Consider the tournament graph representing the tournament code. The ith column of the
tournament code corresponds to a bipartite directed graph imposed on the graph with two com-
ponents of sizes x0,i and x1,i, and a total of x0,ix1,i edges. The bipartite graphs must completely
edge-cover the tournament, so ∑

k
i=1 x0,ix1,i ≥

(T
2

)
. Thus the expected number of edges covered

by a randomly selected bipartite graph is at least T (T−1)
2k , so there exists an index i such that

x0,ix1,i ≥ T (T−1)
2k . It is easy to verify that for k ≥ 1 and T ≥ 2 this is at least T 2

4k ; these condi-
tions always hold.

With these three lemmas, we can show that S is an upper bound on T , to within a constant
factor depending on ε .

Theorem 3.4. For all ε > 0, there exists cε such that T (k)≤ cεk(
1
4+ε) logk.

Proof. First, we show that T (k)≤ cεk1+( 1
4+ε) logk = cεS(k). Let cε be such that T (k)≤ cεk1+( 1

4+ε) logk

holds for all 1≤ k ≤ 2
1+4ε

8ε . Now we show by strong induction that the statement holds true for all
k > 2

1+4ε

8ε .
Suppose the statement holds for all k ≤ m−1. For k = m, permute the columns of a maximal-

size length-k tournament code such that the first column contains x0 zeroes and x1 ones where
x0x1 ≥ T 2

4m . The existence of such a column is guaranteed by Lemma 3.3.
Next, permute the rows and columns of the tournament code into standard form, as described

by van Lint [5] and as illustrated in Figure 3. In standard form, suppose that block A has length m1

and block D has length m2. Since the A and D blocks span m−1 columns, m1 +m2 = m−1 < m.
Then the number of strings in block A is bounded above by T (m1) and the number of strings in
block D by T (m2). Block A also has exactly x0 strings, while block D has x1 strings.

If m1 = 0, then no strings in the code with first digit 0 have a 1 as a character. The only way
for all strings with first digit 0 to then be comparable is for there to only be one string of first digit
0. Then the strings with first digit either 1 or ∗ form a tournament code of size at most T (m−1),
so the maximum length of this tournament code is T (m−1)+1. However, we already know that
T (k) is super-linear, so it is not possible for the maximal tournament code of length m to have
m1 = 0. Thus, m1 ≥ 1; a similar argument shows that m2 ≥ 1 as well.

Let x0 =
T
a and x1 =

T
b . Since x0x1 ≥ T 2

4m , we know that ab ≤ 4m. Additionally, we know that
T (m)≤ ax0 ≤ aT (m1) and also T (m)≤ bx1 ≤ bT (m2). Thus T (m)≤min{aT (m1),bT (m2)}. By
the inductive assumption, we obtain also

T (m)≤min{aT (m1),bT (m2)} ≤min{acεS(m1),bcεS(m2)}.

But now by Lemma 3.2, since m1 ≥ 1 and m2 ≥ 1, we know that

T (m)≤min{acεS(m1),bcεS(m2)} ≤ cε

√
abS

(
m1 +m2

2

)
≤ cε

√
4mS

(m
2

)
.
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Finally, by Lemma 3.1,
T (m)≤ cεS(m),

as desired, so the induction is complete. The theorem follows from the fact that 1+(1
4 +ε) logk =

O((1
4 + ε) logk).

Thus, we obtain the new asymptotic upper bound of k(
1
4+ε) logk.

4 Conditional Improvement on the Upper Bound

In Section 3, we improved the upper bound based on a bound for the number of 0s and 1s in the
matrix. In this section, we demonstrate a connection between the number of 0s and 1s in a maximal
tournament code and an upper bound on its size using a very similar method.

Let x0 and x1 be the number of 0s and 1s in a column of a maximal tournament code such
that the product x0x1 is maximal. Let f be a nondecreasing and positive function of k such that
log f (k) logk is concave down for k ≥ 1 and such that

x0x1 ≥
T (k)2

f (k)

for all k. Note that f (k) is closely related to the proportion of 0s and 1s over the whole code.
Finally, let S(k) = f (k)logk. Note that S is also positive and nondecreasing. As in Section 3,

we first prove two lemmas about properties of the function S: a recurrence, and a property from
convexity.

Lemma 4.1. For all positive integers k,

√
f (k)S

(
k
2

)
≤ S(k).

Proof. Starting from the left hand side,

√
f (k)S

(
k
2

)
=
√

f (k) f
(

k
2

)log k
2

,

by substitution of S for an expression in f . Noting now that f is a nondecreasing function, we find
that √

f (k) f
(

k
2

)log k
2

≤
√

f (k) f (k)logk−1

≤ f (k)logk = S(k),

as desired.
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Lemma 4.2. For all positive real numbers a and b, and for all positive real numbers k1 ≥ 1 and
k2 ≥ 1,

min{aS(k1),bS(k2)} ≤
√

abS
(

k1 + k2

2

)
.

Proof. By taking the logarithm of both sides, it is sufficient to show that

min{loga+ logS(k1), logb+ logS(k2)} ≤
loga+ logb

2
+ logS

(
k1 + k2

2

)
.

It is clear that loga+logb
2 is at least the minimum of loga and logb. Now because log f (k) logk is

concave down for k ≥ 1, and because k1 and k2 are both at least 1,

logS
(

k1 + k2

2

)
= log

(
k1 + k2

2

)
log f

(
k1 + k2

2

)
≥ 1

2
(logk1 log f (k1)+ logk2 log f (k2))

=
1
2
(logS(k1)+ logS(k2)).

So

min{loga+ logS(k1), logb+ logS(k2)} ≤
loga+ logb

2
+ logS

(
k1 + k2

2

)
,

as desired.

With these properties of S, it is now possible to prove a direct link between the number of 0s and
1s in the maximal tournament code, and the upper bound on the size of the maximal tournament
code. The following result relates T and f .

Theorem 4.3. There exists a constant c f such that, for all k,

T (k)≤ c f S(k) = c f f (k)logk.

Proof. We prove the theorem by the method of strong induction. In the base case, choose c f so
that the statement holds for k ≤ 2 (which is possible since S(k) is positive). Suppose the statement
holds for 1≤ k ≤ m−1. Now we show that it is true for k = m.

First, permute a tournament code with size T (m) into standard form. Suppose that x0 =
T (m)

a

and x1 =
T (m)

b , and that the lengths of blocks A and D in standard form are m1 and m2 respectively.
As shown in Section 3, both m1 and m2 are at least 1. Then the number of codewords with first
digit 0 is at most T (m1), and the number of codewords with first digit 1 is at most T (m2). Thus,

T (m)≤min{aT (m1),bT (m2)}.

And by the inductive hypothesis,

T (m)≤min{ac f S(m1),bc f S(m2)}.
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But since m1 +m2 < m and S is increasing, by Lemma 4.2 we find,

T (m)≤min{ac f S(m1),bc f S(m2)} ≤
√

abc f S
(m

2

)
=
√

f (k)c f S
(m

2

)
.

So by Lemma 4.1,
T (m)≤ c f S(m) = f (k)logk

and the induction is complete.

The significance of this theorem is that it implies that a better asymptotic bound on the number
of 0s and 1s in a maximal tournament code results in a better asymptotic upper bound on T (k). In
particular, the following corollary demonstrates the implications of proving that the number of 0s
and 1s must be linear in the size of the maximal tournament code.

Corollary 4.3.1. If f (k) = n for some constant n, then T (k) is polynomial in k.

This corollary implies that, if maximal tournament codes have a number of 0s and 1s linear in
the total number of characters, then T is polynomial. As Shor’s [2] construction contains a linear
number of 0s and 1s and seems quite tight, we conjecture that T (k) is in fact polynomial in k.

5 Minimal Bounded Biclique Coverings

Considering the number of 0s and 1s in maximal tournament codes is akin to considering the size
of the bipartite graphs in an edge-covering of a tournament. A natural approach then is to analyze
the undirected version of the problem, and to consider the minimum number of bipartite graphs
needed to edge-cover a complete graph when the size of the bipartite graphs is bounded.

An undirected biclique is a bipartite graph where every vertex in the first set is connected to
every vertex in the second set. We use the notation Ka,b to denote a biclique where the first set has
a vertices and the second set has b vertices. The size of the biclique Ka,b is defined as a+b. Call
the two components of the biclique Ka,b the independent sets of the biclique between which every
edge exists.

Minimizing the number of Kx,x bicliques in an edge-covering of a complete graph is equivalent
to the problem of maximal tournament codes with the following restrictions changed:

1. Instead of requiring pairs of strings to be comparable, we now only require them to be
distinguishable. Two strings are considered distinguishable if there exists an index where
one string is 1 while the other string is 0; however, there is no longer any notion of one string
being greater or lesser than another. Note that this is a necessary (but weaker) condition for
comparability in the original tournament code problem.

2. The number of 1s and 0s in each column is bounded by x.

The main result of this section is the following, an asymptotic expression for the minimum
number m of Kx,x bicliques needed to edge-cover a complete graph Kn:
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Theorem 5.1. If m is the minimum number of Kx,x bicliques needed to cover a complete graph Kn,

then m = Θ

((n
x

)2
+
(n

x

)
logx

)
.

We prove this asymptotic expression in several pieces. First, we show that both
(n

x

)2 and(n
x

)
logx are asymptotic lower bounds on the number of bicliques needed for a complete edge-

covering; this allows us to show that half the sum of the two expressions is a lower bound on
m.

The first lower bound is easily shown by counting edges.

Lemma 5.2. If m is the number of bicliques with component sizes x needed to edge-cover a com-
plete graph on n vertices, then

m≥ n(n−1)
2x2 .

Proof. Note that the total number of edges in the complete graph on n vertices is n(n−1)
2 . Each

biclique Kx,x has a total of x2 edges. Thus, there must be at least n(n−1)
2x2 bicliques in an edge-

covering of Kn using only Kx,x.

To compute the second lower bound, we use the following lemma about the sizes of bicliques.

Lemma 5.3. Consider an edge-covering of a complete graph G on x vertices using only bicliques.
The sum of the sizes of the bicliques is at least x logx.

Proof. Consider a partial covering of the graph G with c bicliques. We show that if the c bicliques
fully edge-cover G, then the sum of their sizes is at least x logx, where x is the number of vertices
in G.

Create a matrix M with x rows and c columns, where each row represents a vertex and each
column represents a biclique. Enumerate the bicliques B1,B2, . . . ,Bc. For the ith biclique, consider
the two components; for each vertex v in the first component, assign a 0 to the entry in the vth row
and the ith column, and for each vertex u in the second component, assign a 1 to the entry in the
uth row and the ith column. Assign a ∗ to the remaining entries in the column.

Two vertices have an edge between themselves if there exists a column such that one vertex has
a 1 in the column while the other has a 0. Call two vertices distinguishable if such a column exists,
and indistinguishable otherwise. This is equivalent to calling two {0,1,∗} strings distinguishable
if there exists some index where one string has a 0 and the other has a 1, and indistinguishable
otherwise.

Now we use a pigeonhole argument to show that if every vertex is distinguishable, then ∑ |Bi| ≥
x logx.

Consider 2c holes, each representing a unique bitstrings of length c. For each vertex v, place a
copy of vertex v in every hole where its row string–formed by considering the vth row of M as a
{0,1,∗} string–is indistinguishable from the hole’s bitstring.

If two vertices are placed in the same hole, then they are indistinguishable and the partial
covering is not a complete edge-covering because indistinguishable vertices do not have an edge
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between them; otherwise, one would have a 0 at an index where another has a 1, and they would
not be indistinguishable with the same {0,1} bitstring. Thus, by the pigeonhole principle, the total
number of vertex copies placed in holes must be at most the number of holes itself, 2c.

We now count the number of vertex copies. Suppose that vertex v’s row has sv stars, and that
the total number of stars in the matrix is s. Then v’s bitstring is indistinguishable from 2sv bitstrings
of length c, so a total of 2sv copies of v are placed in holes. Thus the total number of vertex copies

over all vertices is
x
∑

i=1
2si . If the partial covering completely covers G, this sum is at most 2c.

However, by the convexity of the function 2n, we know that

x2
s
x ≤

x

∑
i=1

2si ≤ 2c.

Therefore
x2

s
x ≤ 2c.

2logx+ s
x ≤ 2c.

logx+
s
x
≤ c,

which can be rewritten as
cx− s≥ x logx.

But cx− s is precisely the number of 0s and 1s in M, and is thus the sum of the sizes of all the
bicliques in the complete edge-covering. Thus

∑ |Bi| ≥ x logx,

as desired.

We also use a result on the minimum number of bicliques needed to cover a complete graph.
This result is well-known; the following proof is adapted from [1].

Corollary 5.3.1. The minimum number of bipartite graphs of any size needed to cover a complete
graph G on x vertices is dlogxe.

Proof. By Lemma 5.3, the sum of the sizes of the bicliques in an edge-covering of G using only
bicliques is at least x logx. Because every biclique in a graph with only x vertices can have size
at most x, the number of bicliques needed is at least x logx

x = logx. Since an integer number of
bicliques must be used, the number of bicliques needed is at least dlogxe.

Now we show that we can use exactly dlogxe bicliques to edge-cover G. Assign to each vertex
of G a unique bitstring of length dlogxe. Now consider dlogxe bicliques, each generated in the
following way:

• For the ith biclique, connect every vertex with a 0 in the ith index of the vertex’s bitstring to
every vertex with a 1 in the ith index.
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Since every bitstring is distinct, for every pair of vertices there exists some index where their digits
differ. Thus, every pair of vertices has an edge between them and the dlogxe bicliques completely
edge-cover the graph G.

The following related corollary will be used later to prove the upper bound.

Corollary 5.3.2. There exists a covering of K2x using dlog2xe Kx,x subgraphs.

Proof. First, consider any minimal covering of a Kx using the procedure in Corollary 5.3.1, and
the associated set of bitstrings B. Now consider C, the set of complements of these bitstrings
(bitstrings are complements if they have the same length and do not have the same character at any
index). Construct a set B′ of the same size as B by appending a 0 to the front of each bitstring in B.
Construct a set C′ by appending a 1 to the front of each bitstring in C. The intersection of B′ and C′

is clearly empty, so their union has 2x bitstrings. Now consider A, the union of B′ and C′. Because
B and C are complements, for every index except the first, the number of strings with a 0 at that
index in A is equal to the number of strings with a 1 at that index. Finally, by the construction of
B′ and C′, there are an equal number of 0s and 1s in the first index. It follows from here that A
encodes a covering of a K2x using dlogxe+ 1 = dlog2xe subgraphs Kx,x, and that A is a minimal
covering of a K2x.

With Lemma 5.3 and Corollary 5.3.1, we now present a proof that the second term in the
asymptotic formula is a lower bound.

Lemma 5.4. If m is the number of bicliques with component size x needed to completely edge-cover
a complete graph on n vertices, then

m≥ n log2x
2x

.

Proof. From Lemma 5.3, the sum of sizes of bicliques in a covering of Kn with only bicliques must
be at least n logn. If all of the bicliques have component sizes x, then each biclique has total size
2x, so there must be at least n logn

2x bicliques, which is at least n log2x
2x .

Finally, we compute an upper bound on m via construction, which is asymptotically equivalent
to the lower bound.

Lemma 5.5. There exists a complete edge-covering of a complete graph on n vertices using at
most

4
(⌈ n

2x

⌉
2

)
+
⌈ n

2x

⌉
dlog2xe

complete bipartite graphs Kx,x of component size x.

Proof. To impose this upper bound on m, we present the following construction. Let G be the
complete graph on n vertices we wish to cover.

We partition the vertices of G into
⌈ n

2x

⌉
disjoint groups of at most 2x vertices each. It takes four

Kx,x to connect every edge going between any two of the groups; there are
⌈ n

2x

⌉
groups, so 4

(d n
2xe
2

)
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bipartite graphs can be used to cover every edge that goes between all pairs of vertices not in the
same group. The remaining uncovered edges now only exist within groups of at most 2x vertices
each. But by corollary 5.3.2, we know that each of these can be edge-covered with dlog2xe Kx,x

bipartite graphs each; since there are
⌈ n

2x

⌉
of these, our construction requires

4
(⌈ n

2x

⌉
2

)
+
⌈ n

2x

⌉
dlog2xe

bipartite graphs to completely edge-cover the Kn graph G.

Remark. The following is an upper bound without the ceiling function:

m≤ (n+2x)(n+ x)
2x2 +

n+2x
2x

log2x.

With the upper and lower bounds shown, we can prove the main result of this section.

Proof of Theorem 5.1. Both the lower and the upper bounds on the minimum are
Θ

((n
x

)2
+
(n

x

)
logx

)
. Thus the minimum itself is also Θ

((n
x

)2
+
(n

x

)
logx

)
.

The nature of our proofs also allows us to establish a limit to the factor by which the upper and
lower bounds may differ.

Remark. We can also easily show that for all ε > 0, the upper and lower bounds are provably
within a factor of 6+ ε of each other when n is sufficiently large. Additionally, for all ε > 0, the
upper and lower bounds are provably within a factor of 2+ ε of each other when n

x is sufficiently
large.

Though this solves the bounded biclique covering problem and with it the equivalent modified
maximal tournament code problem, this result also makes it clear that considering the undirected
model of the problem is not strong enough to result in a better bound on the number of 0s and 1s.
If x is the largest number of 0s or 1s in any column of a maximal tournament code of length k,
Theorem 5.1 only gives the following inequalities on x. These inequalities are due to the fact that
the asymptotic formula noted in the above remark is also a lower bound on the number of bicliques
with components of size at most x needed to cover a complete graph. First,

x≥ c1T (k)√
k

,

based on the inequality

k ≥ c2

(
T (k)

x

)2

,

for some constants c1 and c2. Additionally,

x≥ c3T (k)(logT (k)− logk)
k

,
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based on the inequality

k ≥ c4T (k) logx
x

,

for some constants c3 and c4.
Both of these inequalities are at least as weak as the bound on the number of 0s and 1s shown

in Lemma 3.3, demonstrating the weakness of the undirected model.

6 Conclusion

We unconditionally reduced the upper bound to nearly the square root of the previous upper bound,
and exhibited a method to improve the upper bound further based on the number of 0s and 1s in the
maximal-size tournament code. If the number of 0s and 1s is is proportional to the total number of
characters in the code, then the maximal tournament code size is polynomial in the length of the
tournament code. A graphical interpretation of the problem provides a novel perspective which the
string representation masks, allowing us to make these improvements.

We also considered the undirected version of the problem and proved an asymptotic expres-
sion for the number of bounded-size undirected bicliques needed to cover a complete graph. We
showed that this effectively solves a slightly modified version of the maximal tournament code
problem, and demonstrated limitations in applying the biclique result to the original tournament
code problem.

Future work on this problem might include trying to impose a bound on the number of 0s and
1s in the tournament code that is stronger than the one shown in Lemma 3.3. Another future step
may be bounding the number of 0s in the code relative to the number of 1s, and vice versa. A
construction for a better lower bound than k3/2 could also be searched for, but it seems difficult
to improve this bound as Shor’s [2] construction seems very tight. Additionally, as our work with
the biclique covering of an undirected complete graph shows, the full power of the comparable
property in tournament codes will likely be needed to impose a better bound on the number of 1s
and 0s in the tournament code.
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Appendix A Proof of Lemmas

We present the computational proof of Lemma 3.1.

Lemma. Let S(k) = k1+( 1
4+ε) logk. If k > 2

1+4ε

8ε , then

S
(

k
2

)√
4k ≤ S(k).

Proof. The condition implies that
2

1
4+ε ≤ k2ε

k
1
2 2

1
4+ε ≤ k2( 1

4+ε)

2
√

k
2

1
4+ε

k
1
4+ε
≤ 2k

1
4+ε

√
4k

2
1
4+ε

2(
1
4+ε) logk

≤ 2k
1
4+ε

√
4k

1

2(
1
4+ε)(logk−1)

≤ 2k
1
4+ε

√
4k

1

2(
1
4+ε)(log k

2 )
≤ 2k

1
4+ε

√
4k

k(
1
4+ε)(logk−1)

2(
1
4+ε)(log k

2 )
≤ 2k(

1
4+ε) logk

√
4k

k(
1
4+ε) log k

2

2(
1
4+ε)(log k

2 )
≤ 2k(

1
4+ε) logk

√
4k
(

k
2

)( 1
4+ε) log k

2

≤ 2k(
1
4+ε) logk

k
√

4k
(

k
2

)( 1
4+ε) log k

2

≤ 2k1+( 1
4+ε) logk

(
k
2

)√
4k
(

k
2

)( 1
4+ε) log k

2

≤ k1+( 1
4+ε) logk

√
4k
(

k
2

)1+( 1
4+ε) log k

2

≤ k1+( 1
4+ε) logk

S
(

k
2

)√
4k ≤ S(k),

as desired.

We also present the computational proof of Lemma 3.2.
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Lemma. Let S(k) = k1+( 1
4+ε) logk. For all integers a, b, k1 ≥ 1, and k2 ≥ 1, we have

min{aS(k1),bS(k2)} ≤
√

abS
(

k1 + k2

2

)
.

Proof. Note that by taking the logarithm of both sides, it suffices to show that

min{loga+ logS(k1), logb+ logS(k2)} ≤
loga+ logb

2
+ logS

(
k1 + k2

2

)
.

Observe that loga+logb
2 is at least the minimum of loga and logb. Furthermore, since logS(k) =

(1+(1
4 + ε) logk) logk is a concave down function for k ≥ 1 and sufficiently small ε , by Jensen’s

Inequality logS(k1+k2
2 ) is at least the arithmetic mean of logS(k1) and logS(k2). Thus logS(k1+k2

2 )

is also greater than the minimum of logS(k1) and logS(k2), so

min{loga+ logS(k1), logb+ logS(k2)} ≤
loga+ logb

2
+ logS

(
k1 + k2

2

)
,

as desired.
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