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Abstract

The paper deals with finding unions of lines in Fn
p2k

which obey the Wolff axiom and have

minimal size. We provide an extension of the constructions for F3
p2k

, obtained by Tao in 2002,
to a construction for Fn

p2k
. We determine the size of the union of lines in our construction

in Fn
p2k

to be O
(
p1.6kn

)
. We prove that our construction obeys the Wolff axiom up to a

heuristically negligible number of lines. The next step would be to prove rigorously that this
number is indeed negligible.

Summary

In our project, we examine sets of lines in certain classical objects in abstract algebra. The
goal is to evaluate the minimal size of sets of lines which satisfy certain conditions formulated
by Thomas Wolff in 1995. We do that by determining the smallest possible surface that
contains the whole set of lines. We find a general form of that surface in n dimensions, which
has applications in physics. It turns out that the size of our set is significantly smaller than
expected. This result may give helpful insight on how to approach problems with similar
formulation.



1 Introduction

A problem posed by Sochi Kakeya in 1917 raised a great interest among the mathematical

community because of its simple formulation and unexpected development.

Kakeya needle problem. What is the least amount of area required to contin-

uously rotate a needle of unit length in the plane by a full rotation?

It was conjectured that a deltoid (Figure 1a) that is inscribed in a circle of diameter 3/2 units

was the optimal solution. Its area is half of the area of the unit circle. It turned out, however,

that such figures may have arbitrarily small area (Figure 1b), as shown by Besicovitch [1] in

1928.

(a) Deltoid (b) Besicovitch set

Figure 1: Sets satisfying the Kakeya problem [2]

He also showed that for n ≥ 2 there are subsets of Rn of measure zero which contain a

unit line segment in each direction. Such sets are called Besicovitch sets. This observation

led to the Kakeya conjecture, which states the following.

Kakeya conjecture. A Besicovitch set S in Rn must have (Hausdorff or Minkowski) di-

mension at least n.

This conjecture helped initiate the field of mathematics known as geometric measure

theory. Besicovitch has proven the conjecture for n = 2, but it remains open in higher
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dimensions. In 1999, Wolff posed the finite field analogue to the Kakeya conjecture. The

discrete nature of the finite fields simplifies the problem and removes several technicalities.

Thus, proving the conjecture over finite fields may give a clearer idea of how to proceed in

the original conjecture. The finite field Kakeya conjecture was proven by Zeev Dvir [3] in

2008.

In [4] Wolff proposes a conjecture similar to the finite field Kakeya conjecture in which

the condition “there is a line in every direction” is replaced with the condition “there are at

most pkd lines in every (k + 1)-plane.” The latter condition is known as the Wolff axiom.

Wolff axiom. Consider the finite field Fpd of order pd in the n-dimensional space Fn
pd

, where

p is a prime and d is a positive integer. A collection L of lines in Fn
pd

is said to obey the Wolff

axiom if for each 2 ≤ k ≤ n− 1, every (k+ 1)-dimensional affine subspace V ⊂ Fn
pd

contains

at most O(|Fpd |k) lines in L. [5]

The focus of interest in our research is the following problem.

Conjecture 1.1 (Main Problem). Let L = {li} (i = 1, 2, . . . , pdn−d) be a set of lines in

Fn
pd

obeying the Wolff axiom. Let Σ = ∪li. Then the asymptotic size of Σ is of order pdn.

That is, |Σ| = O(pdn).

Now note that families of lines that lie in different directions (Besicovitch sets) obey the

Wolff axiom, although the converse is not true in general. Consequently, a lower bound for

the sets obeying the Wolff axiom provides a lower bound for Besicovitch sets as well. This

strategy has been used by Thomas Wolff [4] in 1995 and Terence Tao [5] in 2002. However,

in 2008 Dvir [3] provided a stronger bound for Besicovitch sets than the ones in [4] and [5]

without referring to sets satisfying the Wolff axiom.

Wolff provided a lower bound for the size of such sets [4] in 1995 using the hairbrush ar-

gument. The main goal of our project is to determine whether the hairbrush argument bound

(discussed in Section 3) is sharp in dimensions higher than four. An additional motivation
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to tackle this problem is a statement of Tao in [5, p. 2]:“It seems of interest to extend this

construction to higher dimensions, though perhaps the bound of |F |n+2
2 is not necessarily

sharp for large n.” Here this construction refers to the construction showing that the hair-

brush argument bound is sharp in four dimensions and “|F |n+2
2 ” is the bound obtained by

the hairbrush argument.

We are interested in the asymptotic behavior of |Σ| as p tends to infinity, i.e. in finding

the exponent ψ for which

|Σ| = O(pψ).

To this goal we introduce in Section 2 some preliminary definitions and theorems that

we shall need throughout this paper. We present a lower bound on the size of Σ obtained by

Wolff’s hairbrush argument by T. Wolff in Section 3. In Section 4 we discuss the previous

results in this area, including constructions for vector spaces of dimension three derived from

the Heisenberg group. We present in Section 5 a construction based on the constructions in

Section 4 for vector spaces of dimension four which obeys the Wolff axiom. Then we generalize

the construction to dimension n. The proof that this generalized construction satisfies the

Wolff axiom, however, is up to a heuristically negligible number of lines for now.

2 The Frobenius automorphism

General definitions and theorems about finite fields are introduced in Appendix A.

We now introduce the Frobenius automorphism, which plays a pivotal role throughout

this paper.

Definition 2.1. A mapping f : F→ H of the field F into the field H is called a homomor-

phism of F into H if f preserves the operations of F. If f is a bijection, then f is called an

isomorphism. An isomorphism of F onto itself is called an automorphism.
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Definition 2.2. Let F be a field of characteristic p. Then the Frobenius automorphism on

F is the map Φ : F→ F defined by Φ : α 7→ αp.

It is straightforward to check that Φ(αβ) = Φ(α)Φ(β) for each α and β of F. What is

more interesting is that the Frobenius map also respects the addition of F.

Proposition 1. If α, β ∈ F, we have Φ(α + β) = Φ(α) + Φ(β).

Proof. Φ(α + β) = (α + β)p where p is the field characteristic. The binomial theorem gives

(α + β)p =

p∑
k=0

(
p

k

)
αkβp−k.

Because p is prime,
(
p
k

)
is divisible by p for every 0 < k < p. Thus, the coefficients of all

terms excluding αp and βp are divisible by the characteristic p and hence they vanish. It

follows that

Φ(α + β) = (α + β)p = αp + βp = Φ(α) + Φ(β).

A direct consequence of LemmaA.1 is

Remark. The Frobenius automorphism raised to the power of n fixes all elements of Fpn . In

other words, that is, Φ(α)n = α for each α ∈ Fpn .

We use this fact many times throughout the paper and it plays a crucial role in obtaining

the results for the cases when the order of the field is an even power of a prime.

Definition 2.3. Let Fpn be a finite field and α ∈ Fpn . The powers of Φ(α), that is, Φ(α)i,

i = 1, 2, . . . , n− 1 are called the Galois conjugates of α.

Definition 2.4. Let Fpn be a finite field and α ∈ Fpn . Define the map Trp(α) : Fpn → Fpn

by

Trp(α) =
n−1∑
i=0

Φ(α)i.
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Trp(α) is called the trace of α.

Remark. The trace of α is equal to the sum of the Galois conjugates of α and α itself for all

α ∈ Fpn .

Before examining the properties of the trace map, we present a lemma regarding subfields

of prime order.

Lemma 2.1. Let Φ be the Frobenius map and α be an element of the field Fpn. Then Φ(α) = α

if and only if α is an element of the prime subfield Fp.

A proof of this lemma can be found in [6]. We will use the converse direction of this

lemma several times in Section 5. We now introduce the trace map which is used throughout

the entire paper.

Lemma 2.2. For all α ∈ Fpn, Trp(α) ∈ Fp.

Proof. We note that

Φ(Trp(α)) =
n−1∑
i=1

Φ(α)i + Φ(α)n

and Φ(α)n = α. Therefore

Φ(Trp(α)) = Trp(α).

From Lemma 2.1 we conclude that Trp(α) is an element of Fp.

We have shown that Trp(α) maps Fpn onto Fp. The following lemma shows another

property of the trace map.

Lemma 2.3. For all a, b ∈ Fp and α, β ∈ Fpn, Trp(aα + bβ) = a · Trp(α) + b · Trp(β).

The lemma is a direct corollary of Proposition 1 and Lemma 2.2.

Having introduced the definitions and theorems we use throughout the paper, we present

the hairbrush argument in the next section.
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3 The hairbrush argument

The hairbrush argument was first introduced by Wolff in [4]. It gives a lower bound on the

size of unions of lines that satisfy the Wolff axiom.

Theorem 3.1. Let Fn
pd

be a vector space of dimension n over the finite field Fpd. Let L

be a set of pd(n−1) lines li obeying the Wolff axiom and the set of points Σ be ∪li. Then

|Σ| ≥ O(p
d(n+2)

2 ).

It has been shown by Tao and Mockenhaupt that the hairbrush argument gives the sharp

lower bound for F2
pd

, F3
p2k

[7] and F4
pd

[5], where p is prime and k and d are positive integers.

The main idea of the argument is to find the line l0 in L that intersects the largest number

of lines in L and to examine the lines which intersect l0.

The rough idea behind the proof is as follows. Because there should be a large number

of intersections between lines of the union, we can consider the line l0 which intersects the

most lines li and find the number of points in Σ on the planes in which l0 lies. The details

of the proof can be found in [4].

The hairbrush argument provides us with a non-trivial lower bound which is valid for Fn
pd

for all n ∈ N.

However, it has not been proven that this bound is sharp in the general case. Construc-

tions have been provided only for vector spaces of dimension n ≤ 4. The constructions for

F3
pd

, which are presented in Section 4, exploit the Heisenberg group and will serve as a basis

for our constructions introduced in Section 5. The constructions for F2
pd

and F4
pd

are presented

in Appendix B and Appendix C, respectively.
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4 Heisenberg group and sets derived from it in F3
pd

The constructions in F3
pd

, where p is prime, have been achieved by T. Tao [7] in 2002 for

even d and by J. Ellenberg and M. Hablicsek [8] in 2013 for odd d. We state them without

proof. The construction presented by Tao in [7] relies on the Heisenberg group and on the

fact that in fields of the type Fp2k , the map Φ : α 7→ αp
k

is an involution. To discuss Tao’s

construction, we introduce the Heisenberg group.

Definition 4.1. The Heisenberg group H ∈ F3
p2k

is defined by

H =
{

(ζ1, ζ2, ζ3) ∈ Fp2k : ζ1 − ζp
k

1 − ζ2ζ
pk

3 + ζp
k

2 ζ3 = 0
}
.

Here is how this group is used in Tao’s construction:

Construction for F3
p2k

(Tao). The surface cut out by the polynomial

ζ1 − ζp
k

1 − ζ2ζ
pk

3 + ζp
k

2 ζ3 = 0

has p5k = q5/2 points and p4k = q2 lines.

It provides a counterexample to Conjecture 1.1 for F3
pd

where d is even and proves the

sharpness of the hairbrush bound for fields of the type Fp2k in 3 dimensions.

The size of the set of points Σ, containing the union of lines, depends on the structure

of the underlying field. The bound |Σ| = O(p5d/2) derived from the hairbrush argument is

sharp only for fields of the type Fp2k . This result shows the importance of the field structure.

The main method used to determine the cardinality of Σ is to find a surface contained in

F3
pd

which contains at least p2d lines satisfying the Wolff axiom. The cardinality of Σ then is

the number of points in this surface. This method is used by both Tao and by Ellenberg and

Hablicsek and it will be the basis of our construction. The latter construct a counterexample
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to Conjecture 1.1 for F3
pd

where d is a positive integer.

Construction for F3
pd

(Ellenberg and Hablicsek). Consider the hypersurface X of F3
pd

cut

out by the polynomial

f(α, β, γ) = Trp(α) + Trp(βγ
p)− Trp(β

pγ).

It contains p3d−1 points and there are p2d lines in X that satisfy the Wolff axiom.

Remark. For a field Fpd , one can find a surface which contains p3d−d/s points, where s is the

smallest nontrivial divisor of d, in which there are p2d lines that obey the Wolff axiom. This

is possible because a field Fpd can be represented as a vector space of dimension d/s over

Fps .

In Section 5 we expand the constructions presented in this section to higher dimensions.

5 Sets derived from the Heisenberg group in Fn
pd

for

n > 3

In this section we examine the sharpness of the bound obtained by the hairbrush argument in

vector spaces of dimension n > 3. The main goal is to find a series of constructions for smaller

n (n = 4, 5, 6, . . .) that follow particular patterns with hope of generalizing them. Thus, we

will be able to expand the constructions for vector spaces of arbitrarily large dimension.

We need the following definitions.

Definition 5.1. The prime dimension dimp(Fnpd) of a space Fn
pd

over a finite field Fpd is de-

fined by dimp(Fnpd) = d·(dim(Fn
pd

)), provided that a field extension Fpd/Fp can be represented

as a d-dimensional vector space over Fp.

For instance, F5
p2 = 10.
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In analogy with the Galois conjugates (Definition 2.3) of an element α of Fpd , we define

Definition 5.2. The polynomials

(f)p
i

, i = 1, 2, . . . , d− 1

are the conjugate polynomials of the polynomial f with coefficients in Fpd .

Definition 5.3. Let Fpd be a finite field with d = a · k. We define the k-trace of an element

α ∈ Fpd as

Trk(α) =
a∑
i=1

αp
i·k
.

Remark. We denote αp
k

by ᾱ because the map Φ : α 7→ αp
k

is an involution in Fp2k

We use this notation to describe our constructions more concisely.

Corollary 5.1. For all α ∈ Fpd, we have Trk(α) ∈ Fpk .

This is a direct corollary of Lemma 2.2.

5.1 Construction in four dimensions

We start with extending the sets derived from the Heisenberg group to vector spaces of

dimension four.

Our construction proves that the hairbrush bound is sharp only for fields of the type Fpd

where d is even. For odd d the size of our construction is no longer equal to the hairbrush

bound. For that reason, we build the construction only for fields of that type.

Construction for F4
p2k

. Let A be the algebraic variety in F4
p2k

cut out by the polynomial

fA = Trk(α1) + Trk(α2) + Trk(α3) + Trk(α4) (1)
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with coefficients in Fp2k . If we consider fA as a map Fp2k → Fpk , fA takes every value of Fpk

exactly pk times. Therefore, A has prime dimension dimp(A) = 2nk − k and as a result it

contains p2nk−k points. We now find the number of lines that lie in A. However, we consider

only the lines that intersect the α1α2α3 plane transversely. This allows us to parameterize

the lines and thus verify the Wolff axiom with less effort. The lines we examine are of the

form

L(a,b,c,u,v,w) =
{

(a, b, c, 0) + t(u, v, w, 1)| t ∈ Fpd
}
. (2)

We now parameterize the lines in the surface. We get that α1 = a+ut, α2 = b+ vt, α3 =

c+wt and α4 = t. If A contains the lines of the form L, then the quadruples (α1, α2, α3, α4)

are solutions of equation (1) for any value of t. We get the following constraints from equation

(1) for the coefficients cj of the jth power of t.


c0 = Trk(a) + Trk(b) + Trk(c)

ctp = up + vp + wp

ct̄ = ū+ v̄ + w̄.

(3)

Because the coefficients vanish, we get that c0 = ct = ctp = ct̄ = 0. We note that Trk(a) ∈ Fpk

and Trk(a) attains each value of Fpk exactly pk times. We also notice that the polynomials

determining ct̄i are conjugate to each other and hence without loss of generality, we examine

only ct (the other equations do not provide new information). In total, for each of a, b, u

and v we have p2k choices, for c we have pk choices and w is fixed by u and v. Altogether,

there are p2k · p2k · p2k · p2k · pk = p9k lines lying in A.

Now, let us consider the the hypersurface B in F4
p2k

cut out by the polynomial

fB = Trk(α1) + Trk(α2) + Trk(α3ᾱ4) (4)

with coefficients in Fp2k . Note that B also contains p2nk−k points. Analogously, we examine
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only the lines that intersect the α1α2α3 plane transversely. They are of the form (2). Using

analogous techniques, we get the following system


c0 = Trk(a) + Trk(b)

ctp = up + vp + c̄

ct̄ = ū+ v̄ + c

ct̄+1 = Trk(w).

(5)

Here cti is the coefficient of ti, α1 = a + ut, α2 = b + vt, α3 = c + wt, and α4 = t. We note

that the polynomials determining ctp and ct̄ are conjugate to each other and again we can

examine only ctp without loss of generality. In total, for a, u and v we have p2k choices, for b

and w we have pk choices, and c is fixed by u and v. Altogether, the hypersurface B contains

p8k lines that intersect the α1α2α3 plane transversely.

Consider the surface C obtained by intersecting A and B. We are interested in the number

of points in C and the number of lines that intersect the α1α2α3 plane transversely in C. The

lines, again, are of the form (2). From (3) and (5) we get the following system of equations.


Trk(a) + Trk(b) = 0

Trk(c) = 0

u+ v + w = 0

w = cp.

(6)

Remark. Only non-conjugate polynomials are included in this system of equations.

Here, for a and u we have p2k choices, for c and v we have pk choices, and w is fixed by

c. Altogether, we have p6k lines lying in C that intersect the α1α2α3 plane transversely.

The surface C contains fewer lines than either A or B and therefore C 6≡ A and C 6≡ B.

Therefore, from Theorem 6.29 in [9, p. 82] we get that dimp(C) = dimp(A)− k = 2nk − 2k.

Hence, C contains p2nk−2k points.

Let us summarize what we have so far. The surface C contains p2nk−2k points and p6k
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lines. The hairbrush bound yields that the minimal size of a set obeying the Wolff axiom is

|Σ| = O(p3d). Thus, we have a sufficient number of lines in C and when d = 2k the bound

is attained. What is left is only to verify that the lines in C satisfy the Wolff axiom. We do

that thoroughly in Appendix D. The result is that the Wolff axiom is indeed satisfied.

In conclusion, our union of p6k lines which obey the Wolff axiom is contained in a set

with p2nk−2k points.

We have shown that sets derived from the Heisenberg group can be extended to four

dimensions. An important note, however, is that the construction presented here is valid

only for fields of the type Fp2k . Tao proved that the hairbrush bound is sharp in dimension

four. His construction is presented in Appendix C. Our construction is built in a different

manner. We approach the problem by intersecting surfaces which contain lots of lines without

being too plane-like. This allows us to generalize our construction to higher dimensions. A

downside of our construction, however, is that it depends on the order of the underlying field

and more precisely, on the smallest non-trivial divisor of d in Fpd .

5.2 Construction in n dimensions

Before we examine the general case, we investigate some properties of the surfaces we ex-

amined that make them suitable for our construction. Choosing to work only with k-traces,

we ensure that the number of equations in the system that determines the number of lines

depends only on the smallest non-trivial divisor s of d for fields of the type Fpd . Because we

are examining only fields of the type Fp2k , in our construction we take s = 2. Consequently,

we have fewer restrictions for the lines. This results in more lines on the surface. This makes

such surfaces useful for our purposes because we want to intersect as many surfaces as pos-

sible to obtain a size as small as possible and each intersection reduces the number of points

and consequently the number of lines.
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Now we generalize our construction to vector spaces of dimension n over Fp2k . The con-

struction procedure is as follows.

(i) Find a general form of the hypersurfaces.

(ii) Determine the number of lines contained in each hypersurface.

Remark. In Fn
p2k

we only examine lines that intersect the α1α2 . . . αn−1 plane trans-

versely. The reasoning is analogous to the one applied in the construction for F4
p2k

.

(iii) Determine the number of hypersurfaces that we have to intersect.

(iv) Verify that the selected lines satisfy the Wolff axiom.

Construction for Fn
p2k

. Let us examine a set of algebraic varieties {Xi} in Fn
p2k

such that

Xi, i = 0, 1, . . . , bn/2c, are cut out by the polynomials

Yi = A(n− 2i) +M(2i), (7)

where A(n− 2i) is the addition part, defined as

A(n− 2i) =
n−2i∑
l=1

Trk(αl), (8)

and M(2i) is the multiplication part, defined as

M(2i) =
i−1∑
j=0

Trk(αn+2(j−i)+1 · ᾱn+2(j−i)+2). (9)

Each of the hypersurfaces Xi has p2nk−k points. We determine the number of lines that each

Xi contains in Appendix E. The result is that there are a total of pk(4n−7) lines through X0

and p4k(n−2) in Xi when i > 0.
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So far, we have completed the first two steps (i) and (ii) of the construction plan. Now

we start intersecting the surfaces we described. We do this step by step to see the number

of lines at each step and determine whether there are sufficiently many.

The system of equations determining the lines in the intersection X0 ∩X1 is as follows.



n−2∑
j=1

Trk(rj) = 0

n−1∑
j=1

sj = 0

sn−1 = r̄n−1

Trk(sn−1) = 0.

(10)

Here, we have pk choices for rn−2 and rn−1. Additionally, sn−1 is fixed by rn−1, and we have one

choice for sn−2. Altogether, we have p2k(2n−5) lines in X0∩X1. Furthermore, dimp(X0∩X1) =

2nk − 2k.

Remark. The construction in F4
p2k

is exactly the intersection of X0 ∩ X1 and indeed when

n = 4, 2k(2n− 5) = 6k.

The system of equations determining the lines in the intersection X0 ∩X1 · · · ∩Xl after

a series of routine operations is as follows.
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n−2∑
j=1

Trk(rj) = 0

Trk(sn−1) = 0

Trk(rn−3 · r̄n−2) = Trk(rn−3) + Trk(rn−2)

. . .

Trk(rn−2l+1 · r̄n−2l+2) = Trk(rn−2l+1) + Trk(rn−2l+2)

sn−1 = r̄n−1

n−1∑
j=1

sj = 0

Trk(sn−3 · s̄n−2) = 0

. . .

Trk(sn−2l+1 · s̄n−2l+1) = 0

sn−3 + sn−2 = r̄n−2 · sn−3 + r̄n−3 · sn−2

. . .

sn−2l+1 + sn−2l+2 = r̄n−2l+2 · sn−2l+1 + r̄n−2l+1 · sn−2l+2.

(11)

In Appendix F we analyze the number of lines in the resulting surface. We conclude that in

an n-dimensional vector space the resulting surface X0 ∩ X1 ∩ · · · ∩ Xl of the intersection

of l + 1 surfaces contains pk(4n−5l−5) lines. From this we see that l should be at most 2n−3
5

.

Otherwise, the resulting surface would have an insufficient number of lines. Because we want

the set of points to be of minimal size, we want the resulting surface to be an intersection of

as many Xi as possible. Therefore, for l we obtain

l =

⌊
2n− 3

5

⌋
.

With that, we have completed the third step (iii) of the construction plan. It remains to be

shown that the union of lines we selected satisfies the Wolff axiom. We do this in Appendix

G. However, our proof is not valid for a particular number of m-lines. We conclude that this

number is negligible heuristically, provided with the result for the construction in dimension

four. Additionally, we have checked explicitly the number of lines that ought to be removed
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in the cases n = 5, 6, 7. For these cases the heuristic argument holds.

In conclusion, the size of our construction is

O

p2k

(
n−
(b 2n−3

5 c+1

2

)) = O
(
p2k( 4

5
n)
)
. (12)

Thus, we provide a counterexample to Conjecture 1.1. However, O
(
p2k( 4

5
n)
)
> O

(
p2k(n+2

2 )
)

and therefore we do not prove that the hairbrush bound is sharp for all n. In Appendix H we

visualize the size of our construction and compare it to the hairbrush bound and the trivial

construction with size O(pdn).

6 Future development

An object of future research is to prove rigorously that the final result does not depend

on the number of lines we need to remove from our construction. A reasonable approach is

an induction on the case in four dimensions. It would also be interesting to generalize the

constructions in Section 5 from Fn
p2k

to Fn
pd

. Taking into consideration the paper of Ellenberg

and Hablicsek [8], this task seems feasible with an analogous approach.

7 Conclusion

In this project we have constructed a general form of unions of lines in Fn
p2k

based on the

Heisenberg group. They satisfy the Wolff axiom up to a heuristically negligible number of

lines. Additionally, the four dimensional case is examined and the Wolff axiom is verified for

it.

In particular, the algebraic structure of the unions of lines satisfying the Wolff axiom may

be advantageous for understanding the structure of sets satisfying the Kakeya conjecture.
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[10] G. Birkhoff and S. M. Lane. A Survey of Modern Algebra. The MacMillan Company,
1941.

18



Appendix A General definitions for finite fields

Here we introduce general definitions for finite fields and their structure.

Definition A.1. A field is a set F on which two binary operations, called addition and

multiplication, are defined and which contains two distinguished elements 0 and e, usually

denoted by 1, with 0 6= e. Furthermore, F is an abelian group with respect to addition

having 0 as the identity element, and the nonzero elements of F form an abelian group with

respect to multiplication having e as the identity element. The two operations of addition and

multiplication are linked by the distributive law a(b+ c) = ab+ ac. The second distributive

law (b+ c)a = ba+ ca follows automatically from the commutativity of multiplication.

The element 0 is called the zero element and e is called the multiplicative identity element.

The number of elements in the field is called the order of the field. The order of a finite field

is always a prime or a prime power [10]. A subfield of a field F is a subset of F which is itself

a field with induced operations from F. The smallest subfield is called the prime subfield.

Definition A.2. There is a smallest positive integer p satisfying the condition

e+ e+ · · ·+ e︸ ︷︷ ︸
p times

= 0

for the multiplicative identity e in Fq. This number is called the characteristic of the finite

field Fq.

When the field F is finite, its characteristic is a positive integer. This statement does not

hold for fields in general. However, we work only with fields of finite order. Another note

is that the characteristic p is always prime. Otherwise F would not be a field because the

divisors of p would not have multiplicative inverses.

Definition A.3. A field F is said to be an extension field, denoted F/K, of a field K if K

is a subfield of F.
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Definition A.4. A splitting field of a polynomial with coefficients in a field Fpd is a smallest

field extension of that field over which the polynomial splits into linear factors.

Furthermore, we can express the additive structure of the extension field F/K as a vector

space over K.

Definition A.5. Let n be a positive integer. The degree of a subfield Fpd of Fpn is defined

as
n

d
where d|n.

It is known that there exists a unique subfield Fpd of Fpn for every d|n.

The Theorems A.1-A.3 and Lemma A.1 are proved in a handout on finite fields by K.

Conrad [6]. They give a general classification of finite fields. Although we do not apply them

directly in the paper, they play an essential role in understanding the structure of finite

fields.

Theorem A.1. Let p be prime and π(x) be a monic irreducible in Fp[x] of degree n. Then

Fp[x]/(π(x)) is a field of order pn.

Theorem A.2. Every finite field is isomorphic to Fp[x]/(π(x)) for some prime p and some

monic irreducible π(x) in Fp[x].

Theorem A.3. For every prime power pn there exists a unique field of order pn.

Lemma A.1. A field of prime power order pn is a splitting field of Xp −X over Fp.

Appendix B On the case n = 2

This case is significantly easier than the general case because the Wolff axiom becomes

vacuous. The absence of the Wolff axiom reduces the problem to the following.

Problem in two dimensions. Consider a two-dimensional vector space F2
pd

over a finite

field Fpd. Let L = li, i = 1, 2, ..., pd be a set of lines in F2
pd

. Consider the set Σ of points on

li where Σ = ∪li. The cardinality of Σ is O(p2d).
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Proof. The upper bound of the total number of points in Σ is q2. This upper bound is reached

if no two lines li intersect. Every two non-parallel lines intersect at exactly one point. To

prove the lower bound, we evaluate the size of the set T of intersection points between lines

in L. Let there be a line li pointing in each of the q directions (e.g. there are no parallel lines

in L). Every two lines in L intersect. We have

|T | ≤ (pd − 1)(pd − 2)

2
. (13)

|TMAX | =
(pd − 1)(pd − 2)

2
. (14)

Because |TMAX |+ |ΣMIN | = p2d. This implies that

|ΣMIN | = p2d − |TMAX | ≥
p2d + 3pd − 2

2
=
p2d

2
as p→∞.

Therefore |Σ| = O(p2d) as p→∞, and the desired result is achieved.

Appendix C Construction for the case n = 4 not de-

rived from the Heisenberg group

A construction that proves the hairbrush argument bound sharp for F4
q has been given by

T. Tao in [5] in 2002.

Construction for F4
pd

(T. Tao). Let 〈, 〉 : F4
q × F4

q → Fq be a non-degenerate symmetric

quadratic form on F4
q . Let P be the unit sphere”

P := {x ∈ F4
q : 〈x, x〉 = 1}.
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and let L be the set of all lines of the form x+ tv : t ∈ Fq, where x ∈ F4
q , v ∈ F4

q\{0} are

such that 〈x, x〉 = 1, 〈v, x〉 = 0, and 〈v, v〉 = 0. Then |L| ∼ |F |3 and obeys the Wolff axiom,

while |P | ∼ |F |3 and contains all the lines in the set of lines L.

What is more interesting, however, is the fact that this construction, contrary to the ones

in our paper, yields exactly the hairbrush argument for every field Fpd where p is prime and

d is a positive integer. A natural question that follows is whether this construction can be

extended to higher dimensions.

However, this construction is not derived the from the Heisenberg group and the prop-

erties of the surface containing the set are different. It would be interesting to try extending

this construction to higher dimensions.

Appendix D Verifying Wolff axiom for the construc-

tion in F4
p2k

We have to verify three conditions.

(i) There are at most p6k lines in every 4-plane.

(ii) There are at most p4k lines in every 3-plane.

(iii) There are at most p2k lines in every plane.

The first condition is evidently satisfied because the total number of lines is p6k.

To verify the second condition, note that we examined only the lines that intersect the

α1α2α3 plane transversely. Because of that, we can parameterize each line with a point on

the plane and a direction. Let P be a 3-plane and P0 be the α1α2α3 plane. If P ≡ P0, there

are no lines lying in P because all the lines intersect it transversely. If P 6≡ P0, then P ∩P0 is
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a plane (2-plane). We now find the number of points (a, b, c, 0) and the number of directions

(u, v, w, 1) that satisfy the system of equations



Trk(a) + Trk(b) = 0

Trk(c) = 0

Aa+Bb+ Cc+ E = 0

u+ v + w = 0

w = cp

Au+Bv + Cw +D = 0.

(15)

First, we note that w is determined by c. However, we have three cases depending on the

values of A, B, C and D.

Case 1 (A,B,C,D) = (1, 1, 1, 0)

Case 2 (A,B) = (1, 1), (C,D) 6= (1, 0)

Case 3 (A,B) 6= (1, 1)

In Case 1 we have p2k choices for a and u, and pk choices for b. Despite the fact that w and

c are fixed, we have a total of p5k lines. Therefore, the lines on this plane violate the Wolff

axiom. We can consider this case as bad. We can disregard the lines on this plane, however,

because we can replace them with the Heisenberg group in three dimensions in Section 4

which has size O(q5/2) < O(q3) and therefore does not change the final answer.

In Case 2 we have p2k choices for u and pk choices for a. Consequently, a and u fix b, c,

v and w. Altogether, we have p3k lines and the Wolff axiom is satisfied.

In Case 3 we have p2k choices for a and pk choices for b. Consequently, a and b fix c, u,

v and w. In total, again, we have p3k lines and the Wolff axiom is satisfied.

Only the last condition remains. Let P1 be a plane. If P1 does not intersect P0 transversely,

then there are no lines in P1. Otherwise the intersection P0 ∩ P1 is a line. We determine the
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number of points (a, b, c, 0) and number of directions (u, v, w, 1) that satisfy the following

system of equations.



Trk(a) + Trk(b) = 0

Trk(c) = 0

Aa+Bb+ Cc+ E = 0

Au+Bc+ Cw + E = 0

u+ v + w = 0

w = cp

Fa+Gb+Hc+ I = 0

Fu+Gv +Hw + I = 0.

(16)

Using analogous reasoning, we see that the Wolff axiom is satisfied in this case as well.

We conclude that this union of lines satisfies the Wolff axiom.

Appendix E Number of lines in the surface Xi for each

0 < i < n/2

The number of lines in the surface Xi is determined by the following system of equations

(only non-conjugate polynomials are presented for conciseness).



n−2i∑
j=1

Trk(rj) +
i−1∑
m=1

(Trk(rh · r̄h+1)) = 0

n−2i∑
j=1

sj +
i−1∑
m=1

(r̄h · sh+1 + r̄h+1 · sh) + r̄n−1 = 0

i−1∑
m=1

Trk(sh · sh+1) + Trk(sn−1) = 0.

(17)

Here the equation of the line (α1, α2 . . . αn) is (r1, r2 . . . , rn−1, 0) + t(s1, s2 . . . , sn−1, 1) and

h = 2(i+m)−1. We examine only the lines that intersect the α1α2 . . . αn−1 plane transversely.
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Therefore, we get that rn = 0 and sn = 1. This is the reason why m ranges to i− 1 instead

of i in (17). If i = 0, the system simplifies to



n−1∑
j=1

Trk(rj) = 0

n−1∑
j=1

sj = 0. (18)

We have pk choices for rn−1, one choice for sn−1 and p2k choices for the others. Therefore,

we have a total of pk(4n−7) lines through X0.

If i = 1, the system simplifies to



n−2∑
j=1

Trk(rj) = 0

n−2∑
j=1

sj + Trk(rn−1) = 0

Trk(sn−1) = 0.

(19)

Here, we have pk choices for rn−2 and sn−1, one choice for rn−1 and p2k choices for the others.

Therefore, we have a total of p4k(n−2) lines through X1.

If i > 1, the system (17) remains unchanged and we have p3k choices for rn−2 and rn−3

altogether, pk choices for sn−1, one choice for rn−1 and p2k choices for the others regardless

of the value of i. In total, we have p4k(n−2) lines in Xi when i > 1.

Appendix F Number of lines in X0 ∩X1 · · · ∩Xl

To analyze the system of equations (11), we separate the system into l − 1 parts (denoted

here by Part 1 and
∑l−1

j=2 Part j), solve them separately, and then combine them.
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Part 1 

n−2∑
j=1

Trk(rj) = 0

n−1∑
j=1

sj = 0

sn−1 = r̄n−1

Trk(sn−1) = 0.

(20)

This part is identical to the system for X0 ∩X1 in (10). Therefore, we already know how to

solve it.

∑l−1
j=2 Part j 

Trk(rn−2j+1 · r̄n−2j+2) = Trk(rn−2j+1) + Trk(rn−2j+2)

Trk(sn−2j+1 · s̄n−2j+1) = 0

sn−2j+1 + sn−2j+2 = r̄n−2j+2 · sn−2j+1 + r̄n−2j+1 · sn−2j+2.

(21)

The other parts are all the same but for different r and s and it is sufficient to solve one.

Thus, without loss of generality, we can solve only the system


Trk(rn−3 · r̄n−2) = Trk(rn−3) + Trk(rn−2)

Trk(sn−3 · s̄n−2) = 0

sn−3 + sn−2 = r̄n−2 · sn−3 + r̄n−3 · sn−2.

(22)

(23)

(24)

From (24) we express sn−2 as

sn−2 =
sn−3(1− r̄n−2)

r̄n−3 − 1
. (25)

From (23) and (25) we get

sp
k+1
n−3

((
1− rn−2

rn−3 − 1

)
+

(
1− r̄n−2

r̄n−3 − 1

))
= 0. (26)
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Therefore, either sn−3 or

(
1− rn−2

rn−3 − 1

)
+

(
1− r̄n−2

r̄n−3 − 1

)
should be equal to 0. In the latter case

we get that

rn−2 · r̄n−3 + r̄n−2 · rn−3 = rn−3 + r̄n−3 + rn−2 + r̄n−2 − 2

Trk(rn−3 · r̄n−2) = Trk(rn−3) + Trk(rn−2)− 2.

(27)

From (22) and (27) we reach a contradiction. It follows that sn−3 = 0. Consequently, (24)

shows that sn−2 = 0 as well.

Let us combine Part 1 and
∑l−1

j=2 Part j. We find that sn−j (j = 1, 2, . . . , 2l) are fixed

and we have pk choices for rn−1 and rn−2l. Additionally, we have a total of p3k choices for

each of the pairs (rn−2j, rn−2j−1) (j = 1, 2, . . . , l − 1). For the others we have p2k choices.

In total, we have p4(n−1)/(p4kl ·pkl−k ·p2k) = pk(4n−5(l+1)) lines in X0∩X1∩· · ·∩Xl. Taking

a look back to the main problem, we need p2k(n−1) lines. Therefore, we find that

k(4n− 5(l + 1)) ≥ 2k(n− 1)

l ≤ 2n− 3

5
.

(28)

Therefore, in an n-dimensional vector space the number l + 1 (because l ranges from 0)

of surfaces we intersect should be at most 2(n+1)
5

.

Appendix G Verifying Wolff axiom for the construc-

tion in Fn
p2k

We have to verify n− 1 conditions: There are at most p2kn−i−1 lines in every (n− i)-plane,

for 0 < i < n. The condition for i = 0 is not satisfied if we take into account all the lines in

X0 ∩X1 ∩ · · ·Xl. Therefore, we have to remove some of the lines in order to meet the given

conditions. More precisely, we ought to have p2k(n−1) lines, but instead we have pk(4n−5l−5)

lines. Therefore, we have to fix a number of parameters. The product of their number of
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choices should be pγ where γ is

γ = k(4n− 5l − 5)− 2k(n− 1)

= k(2n− 5l − 3)

= k(2n− 5

⌊
2n− 3

5

⌋
− 3).

(29)

In the following table we present, without loss of generality, the parameters we fix in each of

the five cases.

n modulo 5 difference parameters we fix
n ≡ 0 (mod 5) p2k r1

n ≡ 1 (mod 5) p4k r1 and r2

n ≡ 2 (mod 5) pk rn−1

n ≡ 3 (mod 5) p3k rn−2 and rn−3

n ≡ 4 (mod 5) 0 −

We now have exactly p2k(n−1) lines and therefore the first condition is satisfied. Let us denote

the constraints (11) by C. The constraints for the lines in the ith condition for i ≥ 1 are of

the form



C
n−1∑
j=1

Rn−1, j · rj +Rn−1, n = 0

n−1∑
j=1

Rn−1, j · sj +Rn−1, n = 0

. . .
n−1∑
j=1

Rn−i, j · rj +Rn−i, n = 0

n−1∑
j=1

Rn−i, j · sj +Rn−i, n = 0.

(30)

For general m-planes the procedure is as follows.
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We divide the system into i+ 1 parts (denoted here by Part 1 and
∑i+1

m=2 Part m).

Part 1 C

∑i+1
m=2 Part m 

n−1∑
j=1

Rn−m, j · rj +Rn−m, n = 0

n−1∑
j=1

Rn−m, j · sj +Rn−m, n = 0.

(31)

We already know how to solve the first part of the system - it is identical to the solution (11).

Therefore, we have to solve only the remaining i parts. Because they are linearly independent,

each pair



n−1∑
j=1

Rn−m, j · rj +Rn−m, n = 0

n−1∑
j=1

Rn−m, j · sj +Rn−m, n = 0.

(32)

fixes exactly one rj and one sj. In total, we have pk(4n−5l−5)/p4km = pk(4n−5l−4m−5) lines. The

condition is that the lines should be less than p2kn−2km. It is satisfied if

k(2n− 5l − 5− 2m) ≤ 0. (33)

The minimum value of l =
⌊

2n−3
5

⌋
= 2n−7

5
is attained when n ≡ 1 (mod 5). We find that the

conditions are satisfied if

k(2n− 2n+ 7− 5− 2m) ≤ 0

k(2− 2m) ≤ 0.

(34)
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This is true for every m ≥ 1.

However, analogically to the verification of the Wolff axiom in four dimensions, there are

some specific cases that we need to examine.

For example, let (rn−2,0, rn−3,0) be a solution to the equation

Trk(rn−2 + rn−3) = Trk(rn−2 · r̄n−3) (35)

and P be an (n− 2)-plane defined by

αn−2 = rn−2,0

αn−3 = rn−3,0.

(36)

There are p2k(n−3)+k lines on P . Consequently, P does not satisfy the Wolff axiom. Analo-

gously to the construction in four dimensions, we can delete these lines. It is left to verify

that there are enough lines after removing all bad m-planes (m ≤ n − 2). Heuristically,

this should be true, based on the result in four dimensions. Furthermore, the authors have

checked explicitly the number of lines that need to be removed for n = 5, 6, 7. For these cases

the heuristic argument holds. Nevertheless, it should be examined and proved rigorously.
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Appendix H Plot of the size of our construction com-

pared to the hairbrush bound and the

trivial construction

The y axis plots ψ in pdψ which is indicative of the size of the set. The x axis plots the

dimension n. The blue line represents the size of the trivial construction of size pdn. The

orange line represents the size of our construction. The green line represents the hairbrush

bound.

Figure 2: For 4 ≤ n ≤ 10

Figure 3: For 4 ≤ n ≤ 1000
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